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Genetic loci are non-randomly arranged in the nucleus of the cell. This order, which is
important to overall genome expression and stability, is maintained by a growing number
of factors including the nuclear envelope, various genetic elements and dedicated
protein complexes. Here, we review evidence supporting roles for non-coding RNAs
(ncRNAs) in the regulation of spatial genome organization and its impact on gene
expression and cell survival. Specifically, we discuss how ncRNAs from single-copy and
repetitive DNA loci contribute to spatial genome organization by impacting perinuclear
chromosome tethering, major nuclear compartments, chromatin looping, and various
chromosomal structures. Overall, our analysis of the literature highlights central functions
for ncRNAs and their transcription in the modulation of spatial genome organization with
connections to human health and disease.
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INTRODUCTION

Spatial genome organization involves the 3D structure, positioning, and interactions of chromatin
within the nucleus. This is a non-random process that is characterized by the regulation
of various nuclear domains, topological associations, and epigenetic signatures. For example,
decondensed euchromatin domains, which include active enhancer elements and are generally
conducive to transcription, are found preferentially within the nuclear interior. On the other
hand, heterochromatin domains are densely packed chromosome regions that are occupied by
gene-silencing histone marks, which include histone H3 methylated on Lysine 27 (H3K27me3)
or Lysine 9 (H3K9me2 and H3K9me3) (Rice and Allis, 2001; Richards and Elgin, 2002). Such
heterochromatin domains are preferentially located near the nuclear periphery or a major nuclear
compartment called the nucleolus.

In fact, the nuclear genome is generally arranged within several cytologically distinct
compartments. In addition to the prominent nucleolus, other nuclear compartments include the
Cajal bodies, speckles, paraspeckles, and histone locus bodies. Nuclear compartments generally
form via dynamic self-organization of their different constituents at sites of gene clusters
(Mao et al., 2011; Sleeman and Trinkle-Mulcahy, 2014; Wang et al., 2016). For example,
nucleoli encompass the tandem ribosomal DNA (rDNA) repeats while histone locus bodies
form around the histone-encoding gene clusters. Early studies identified a role for molecular
crowding in the formation of some nuclear compartments (Richter et al., 2007; Cho and Kim,
2012). High concentrations of macromolecules in a local environment creates crowding and
promotes formation of weak non-covalent bonds between the macromolecules, thereby forming
membrane-less nuclear compartments. Consistent with this notion, the formation of several
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nuclear compartments is driven by liquid-liquid phase separation
(Zhu and Brangwynne, 2015; Hall et al., 2019). Importantly, the
three-dimensional organization of chromatin into these nuclear
compartments often underlies the expression and stability of the
various genetic loci that are harbored within such nuclear bodies.
For example, actively transcribed genes often associate with the
periphery of nuclear speckles, which are sites of RNA processing
(Hu et al., 2019). Disruption of nuclear speckles changes gene
expression profiles by decreasing intrachromosomal interactions
between active chromatin regions.

In addition to the formation of cytologically distinct nuclear
compartments, the genome is organized into topologically
associated domains (TADs) (Dixon et al., 2012), which can be
viewed as three-dimensional building blocks of looped chromatin
domains (Lieberman-Aiden et al., 2009; Dixon et al., 2012).
TADs are present in the genomes of several eukaryotes including
Drosophila (Sexton et al., 2012), mice (Krefting et al., 2018) and
humans (Lieberman-Aiden et al., 2009), and are categorized into
type A (active genes) and type B (inactive genes) compartments.
TADs can regulate transcription by acting as insulators,
preventing the spread of euchromatin or heterochromatin marks
and regulating enhancer-promoter interactions.

Topologically associated domains are built or defined by
their associated proteins, which include the cohesin complex,
condensin complex and CCCTCF binding factor (CTCF) which
binds DNA in a sequence-specific manner (Dixon et al., 2012;
Zuin et al., 2014). Cohesin and condensin are ring-shaped protein
complexes that bind chromatin independently of the DNA
sequence and mediate chromatin looping, bringing distant DNA
sequences along the linear genome into close proximity within
the 3D space of the nucleus (Nuebler et al., 2018). The cohesin
and condensin complexes, which are composed of structural
maintenance of chromosome (SMC) proteins, extrude the DNA
into loops through an ATP hydrolysis-dependent mechanism
(Burmann et al., 2017; Diebold-Durand et al., 2017; Ganji et al.,
2018). Cohesin loading onto chromatin is mediated by the
loading factor NIPBL, the absence of which results in the loss
of local TAD patterns (Schwarzer et al., 2017). The DNA is
extruded until cohesin reaches a boundary element or insulator
such as CTCF (Nuebler et al., 2018; Vian et al., 2018). CTCF is a
DNA binding protein that mostly associates with TAD boundary
regions, insulator sequences, and imprinting control regions (Rao
et al., 2014; Sanborn et al., 2015). CTCF is responsible for the
majority of chromatin loops across the human genome and is
thus an important regulator of spatial genome organization.

Another regulator of spatial genome organization is the
nuclear envelope, which harbors the inner nuclear membrane
(INM) proteins and nuclear pore complexes (NPCs) and is
lined by the nuclear lamina (NL), which is a meshwork of
lamin and lamin-associated proteins. The nuclear lamins are
important regulators of chromatin organization (Kind et al.,
2015). Genes that are activated for transcription are commonly
repositioned from the NL to either the nuclear interior or
closer to NPCs. Regions of the chromatin that interact with the
lamina are referred to as lamina associated domains (LADs),
and this association is mediated by lamin-associated proteins. In
mammals (Guelen et al., 2008), nematodes (Ikegami et al., 2010)

and flies (Pickersgill et al., 2006; van Bemmel et al., 2010),
LADs mostly harbor silent or weakly expressed genes, and
contain heterochromatin marks such as H3K9me3 and H3K9me2
(Casolari et al., 2004; Wen et al., 2009), whereas budding yeast
has no lamina or LADs and its genome is instead organized into
gene crumples and directly tethered to INM or NPC proteins
(Taddei et al., 2006; Mekhail et al., 2008; Hsieh et al., 2015). In
Drosophila cells, NL disruption alters LAD composition such that
there is more histone H3 acetylated on Lysine 9 (H3K9Ac) and
less chromatin compaction (Ulianov et al., 2019). Furthermore,
association of chromosomes with the nuclear lamina limits their
mobility within the nucleus (Wang H. et al., 2018). In addition,
studies in different organisms revealed that NPCs can regulate
chromatin structure and function (Dilworth et al., 2005; Brown
et al., 2008; Mekhail and Moazed, 2010). For example, the
nucleoporins from which NPCs are built can associate with
the promoters of active genes in yeast, thereby regulating gene
expression (Schmid et al., 2006).

In addition to nuclear compartments, TADs/LADs, the
nuclear envelope and their associated protein complexes, non-
coding RNAs (ncRNAs) have emerged as major regulators
of spatial genome organization. ncRNAs are RNA molecules
that are not translated into proteins. ncRNAs are categorized
based on their size – long (>200 bp) and short (<200 bp) –
and are implicated in numerous cellular processes including
transcription, mRNA splicing, and protein translation (Mortazavi
et al., 2008; Khalil et al., 2009; Palazzo and Lee, 2015). ncRNAs
emerging from within a given genetic locus can regulate
transcription at the same locus (cis) or elsewhere in the genome
(trans). Here we review ncRNAs that emerge from single-copy
DNA loci or repetitive DNA loci and have diverse roles in
spatial genome organization, thus impacting gene expression
and stability. Collectively, ncRNAs impact spatial genome
organization by modulating perinuclear chromosome tethering,
the formation of major nuclear compartments, chromatin
looping and various chromosomal structures. These roles of
ncRNAs often intersect with various other regulators of genome
structure and function.

NON-CODING RNA AT SINGLE COPY
LOCI

Single copy loci include genes required for cell function and
survival and can give rise to ncRNAs that regulate higher order
chromatin structure and positioning (Figure 1). ncRNAs and
their active transcription can mediate chromatin looping to bring
distant DNA regions into close proximity and reposition genetic
loci to regulate their expression. Nuclear bodies, such as Cajal
bodies and paraspeckles, are formed by ncRNA transcription and
can regulate the localization or sequestration of transcriptional
regulators. Furthermore, ncRNAs play roles in organismal
development by regulating the subnuclear positioning and
transcriptional status of the X chromosome, HOX genes and
Kcnq1 genes. In this section we discuss roles for ncRNAs and their
transcription in the control of spatial gene positioning, chromatin
remodeling and nuclear compartmentalization.
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FIGURE 1 | Spatial organization of single copy loci by ncRNAs. (A) Transcription of snRNA genes and interaction between intron-encoded snoRNA/snRNAs with
coilin mediate Cajal body formation. Cajal bodies associate with sn/snoRNA and histone gene loci and regulate their gene expression. (B) Transcription of an
enhancer can produce eRNAs, which associate with the mediator complex and enable chromatin looping, thereby driving enhancer-promoter interaction. (C) In the
absence of the ThymoD ncRNA, the enhancer for the BCL11B locus is at nuclear periphery. ThymoD ncRNA mediates enhancer repositioning away from the nuclear
periphery and drives chromatin looping of the enhancer bringing it in close proximity to the BCL11B locus, thereby allowing for the transcriptional activation of this
locus. (D) In the somatic tissues of placental mammals, Xist lncRNA tethers the inactive X chromosome to the nuclear lamina by interacting with lamin B receptor.
Xist interacts with polycomb proteins to establish the heterochromatin state of the inactive X chromosome. Xist also mediates relocation of active genes from the
surface of the X chromosome to its interior.
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ncRNAs in the Formation and
Maintenance of Nuclear Compartments
Non-coding RNAs can impact the structure and function of
nuclear compartments such as Cajal bodies. The latter are
involved in various processes including telomerase biogenesis,
3′-end processing of histone pre-mRNAs, as well as the
processing, assembly and maturation of spliceosomal small
nuclear ribonucleoproteins (snRNPs) (Sawyer et al., 2016).
Cajal bodies associate with small nuclear and nucleolar RNA
(sn/snoRNA) gene loci, such that these genes form intra- and
inter-chromosomal clusters around the bodies (Figure 1A)
(Wang et al., 2016). In fact, the formation of Cajal bodies is itself
mediated by the transcription of snRNA genes (Kaiser et al., 2008)
and by interactions between intron-encoded snoRNA/snRNAs
and a protein called coilin (Kaiser et al., 2008; Machyna
et al., 2014). This is in accordance with studies reporting
the loss of Cajal bodies during mitosis and their reformation
during early G1 upon the resumption of transcription (Carmo-
Fonseca et al., 1993; Strzelecka et al., 2010). Furthermore, these
ncRNA-dependent Cajal bodies are responsible for the spatial
organization and expression of other types of genes, including
those encoding for histones or pre-mRNA splicing factors
(Sawyer et al., 2016; Wang et al., 2016; Wang H. et al., 2018).

Paraspeckles are nuclear bodies that form in response to
environmental stress at and around the NEAT1 gene (nuclear
enriched abundant transcript 1), which is transcribed into the
long ncRNAs (lncRNAs) NEAT1_1 (Men ε) and NEAT1_2
(Men β) (Sunwoo et al., 2009). These lncRNAs and their ongoing
transcription are required for the nucleation and maintenance
of these nuclear compartments (Shevtsov and Dundr, 2011).
Transcriptional upregulation of NEAT1 increases paraspeckle
size and sequestration of paraspeckle-associated transcriptional
regulators, such as the splicing factor proline/glutamine-rich
(SFPQ) (Hirose et al., 2014). In contrast, repression of NEAT1
disrupts paraspeckles, releases paraspeckle-associated proteins
into the nucleoplasm and hyper-induces the transcription of
various genes including ADARB2 (adenosine deaminase RNA-
specific B2), which is involved in RNA editing (Clemson et al.,
2009; Mao et al., 2011; Hirose et al., 2014; Imamura et al., 2014).

NEAT1 can also regulate the subnuclear localization of growth
control genes by associating with Polycomb 2 protein (Pc2), a
key subunit of the chromatin-repressive PRC1 complex (Yang
et al., 2011). Methylation/demethylation cycles of Pc2 dictate its
association with two ncRNAs, TUG1 (Taurine up-regulated 1)
and NEAT1, which are found in two distinct nuclear bodies.
Methylated Pc2 preferentially interacts with the TUG1 ncRNA
within the transcriptionally repressive Polycomb nuclear bodies,
thereby silencing the Pc2-associated growth control genes. On
the other hand, demethylation of Pc2 results in its preferential
interaction with NEAT1, which relocates Pc2 together with its
associated growth control genes to inter-chromosomal granules
within which the genes can be actively transcribed.

NEAT1 is commonly induced upon viral infection and can
regulate the transcriptional activation of various antiviral genes
(Ma et al., 2017). The splicing factor SFPQ is a transcriptional
repressor of the antiviral gene IL-8. Recently, NEAT1 has

been shown to mediate the relocation of SFPQ from the IL-8
promoter to paraspeckles, thereby activating IL-8 gene expression
(Imamura et al., 2014). Paraspeckles and NEAT1 have also
been linked to cancer biology, where they can have both
oncogenic and tumor suppressive roles. In some cancers, the
upregulation of NEAT1 and associated paraspeckles can be driven
by tumor microenvironmental conditions and estrogen receptor
stimulation, respectively (Chakravarty et al., 2014; Choudhry
et al., 2015). This upregulation is associated with increases in
active epigenetic marks and cellular proliferation. Surprisingly,
in some types of cancer, upregulation of NEAT1 and paraspeckles
prevented cellular transformation and tumorigenesis (Adriaens
et al., 2016). Overall, these findings highlight functional
connections between ncRNAs and nuclear compartments. These
studies also underscore the importance of understanding the
exact roles that ncRNAs can exert within different biological and
clinical settings.

ncRNAs and Chromatin Looping
Non-coding RNAs can regulate gene expression by mediating
chromatin remodeling between enhancers and promoters.
Transcription of enhancers in mammalian cells can give rise
to a type of ncRNA that is referred to as enhancer RNA
(eRNA), which can bring an enhancer and promoter in close
proximity by mediating the formation of a DNA loop, and
associate with mediator complexes to drive the expression of
target genes (Figure 1B) (Kim et al., 2010; Orom et al., 2010).
For example, activation of estrogen receptor-α induces the
transcription of eRNAs that mediate chromatin looping, thereby
driving transcription-inducing enhancer-promoter interactions
at target genes (Li W. et al., 2013). Another class of ncRNAs,
which is known as ncRNA-activating (ncRNA-a), has a function
similar to that of eRNA (Lai et al., 2013; Li W. et al., 2013). These
ncRNA-a species activate their neighboring genes by associating
with the mediator complex and enabling chromatin looping
in cis. This 3D chromatin configuration and gene expression
are reduced upon disruption of ncRNA-a species or mediator,
suggesting the dependence of chromatin loop structure and
function on interactions between ncRNA-a and mediator.

The active transcription of ncRNAs can also result in the
looping of DNA, bringing gene loci in close proximity or blocking
transcription of distant genes. In the plant Arabidopsis thaliana,
transcription of the ncRNA APOLO forms a chromatin loop
encompassing the promoter of its neighboring gene, PID (Ariel
et al., 2014), which is the key regulator of polar auxin transport
and root development (Benjamins et al., 2001). This APOLO-
mediated 3D chromatin configuration, which is also influenced
by PRC1 and PRC2 (polycomb repressive complex 1 and 2),
limits the access of Pol II to the PID promoter, thereby regulating
the transcriptional activity of this gene (Ariel et al., 2014).
Disruption of the APOLO-dependent expression of PID results
in defects in root development, highlighting the importance of
ncRNA-mediated chromatin remodeling to plant growth and
development (Benjamins et al., 2001).

Intergenic transcription-driven chromatin looping is also
implicated in lymphocyte development. In developing B cells,
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V(D)J recombination is required for the assembly of antigen
receptors (Alt et al., 1984; Sayegh et al., 2005). Importantly, V(D)J
recombination requires changes to the 3D configuration of the
immunoglobulin heavy locus (Igh) in order to bring the VH,
DH and JH genes in close proximity, which in turn allows the
genetic rearrangements to occur (Kosak et al., 2002; Medvedovic
et al., 2013). Prior to rearrangement, non-coding transcription
at this locus occurs at the VH intergenic region in the antisense
orientation (Yancopoulos and Alt, 1985). This intergenic region
contains Pax5-activated intergenic repeat (PAIR) elements (Fuxa
et al., 2004), which are transcriptionally upregulated in the
absence of CTCF (Degner et al., 2009). Antisense transcription
of these PAIR elements in pro-B cells mediates long-distance
interaction with the Eµ region on the Igh locus (Verma-Gaur
et al., 2012). The resulting DNA looping brings the distal VH
into close proximity with DJH and allows for VH to DJH
recombination. These DNA loops are not observed in the absence
of ncRNA transcription, highlighting the importance of active
ncRNA transcription to V(D)J recombination and its role in B
cell development.

In developing T cells, expression of BCL11B (BAF Chromatin
Remodeling Complex Subunit BCL11B) promotes expression
of T-lineage-specific genes and suppresses expression of the
genes associated with alternative cell fates (Li et al., 2010).
Activation of BCL11B expression is mediated by an enhancer
that is located at the so-called intergenic control region (ICR)
(Li L. et al., 2013). Repositioning of the enhancer from the
nuclear lamina to the interior allows for the transcriptional
activation of BCL11B (Figure 1C) (Isoda et al., 2017).
Importantly, this relocation within nuclear space is mediated by
transcription of the ncRNA ThymoD (thymocyte differentiation
factor), which mediates DNA demethylation at CTCF binding
sites and subsequent activation of CTCF/cohesin-dependent
chromatin looping.

ncRNAs and X Chromosome Silencing
and Positioning
One of the well-studied ncRNAs implicated in mammalian 3D
genome organization is Xist (X inactive specific transcript),
a 17 kb lncRNA that mediates inactivation of one of the
X chromosomes during early female embryonic development
(Brown et al., 1992). Xist is specifically transcribed from
the inactive X chromosome. Xist occupies inactive regions of
the X chromosome before spreading across transcriptionally
active regions and initiating their inactivation. Subsequently,
the inactive X chromosome forms a heterochromatic structure,
which is referred to as Barr body and is found at the
perinuclear and perinucleolar regions, where transcription
silencing machineries are enriched (Zhang et al., 2007). Of note,
tethering of the inactive X chromosome to the nuclear lamina is
the result of interactions between Xist and the INM-embedded
lamin B receptor (Figure 1D) (Chen et al., 2016). This interaction
repositions transcriptionally active DNA regions of the X
chromosome in close proximity with Xist and its transcriptional
silencing domain, thereby promoting the spread of Xist across
the chromosome. In female embryonic stem cells, the spreading

of Xist along an X chromosome results in the establishment
of polycomb group proteins-dependent heterochromatin and
exclusion of transcription machineries (Figure 1D) (Plath et al.,
2003; Okamoto et al., 2004; Chaumeil et al., 2006; Schoeftner
et al., 2006). During this process, active genes that were once on
the surface of the X chromosome relocate to the interior, forming
Xist-containing transcriptionally silent domains (Chaumeil et al.,
2006). Furthermore, Xist maintains this heterochromatic nuclear
compartment by acting in cis to repel cohesin and other
chromatin looping factors that typically facilitate gene expression
(Minajigi et al., 2015). Consequently, compared to the active X
chromosome, the inactive X chromosome is devoid of TADs,
which can nonetheless be re-established upon depletion of
Xist and restoration of cohesin loading (Nora et al., 2012).
Taken together, these findings highlight how the Xist lncRNA
mediates mammalian X chromosome inactivation through the
formation of perinuclear heterochromatin domains and the
exclusion of factors that can promote chromatin looping and
gene expression.

The expression of Xist on the active X chromosome is
regulated by another lncRNA, Tsix, which is transcribed antisense
to Xist (Stavropoulos et al., 2001). Transcription of Tsix represses
Xist expression in cis through epigenetic processes (Stavropoulos
et al., 2001; Shibata and Lee, 2004). In mouse embryonic stem
cells, the X chromosome lacking Tsix transcription was non-
randomly inactivated (Lee and Lu, 1999; Luikenhuis et al.,
2001), and induction of Tsix transcription resulted in targeted
X chromosome activation (Luikenhuis et al., 2001). Therefore,
Tsix and Xist play antagonistic roles in regulating X chromosome
inactivation during embryonic stem cell differentiation.

In addition to Xist and Tsix, Firre (functional intergenic
repeating element) is another lncRNA that is transcribed from
a locus on the X chromosome (Hacisuleyman et al., 2014). Firre
can maintain the silencing of the X chromosome by tethering
it to the perinucleolar compartment (Yang et al., 2015). In
addition, Firre interacts with the nuclear matrix factor hnRNPU
and colocalizes with five distinct trans-chromosomal loci, which
reside in spatial proximity to the Firre locus. This colocalization
is lost in the absence of Firre, suggesting a role of this ncRNA
in the establishment of higher order chromosomal architectures
within nuclear space.

Typically, cells randomly choose whether the maternal
or paternal X chromosome is inactivated. However, under
certain circumstances, there can be bias toward one parental
X chromosome. Such a bias is referred to as skewed X
inactivation. In females, this can result in diseases such as
Duchenne muscular dystrophy and hemophilia A (Yoshioka
et al., 1998; Renault et al., 2007). Incomplete silencing of the
X chromosome can also result in skewed X inactivation since
some genes manage to evade silencing and remain therefore
expressed. For example, escape of the steroid sulfatase locus
from silencing can trigger X-linked ichthyosis, which is a group
of diseases characterized by very dry skin (Hernandez-Martin
et al., 1999). Thus, ncRNAs operate at the interface of spatial
genome organization and epigenetic silencing to mediate X
chromosome inactivation, the dysregulation of which underlies
different human diseases.
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ncRNAs and the Spatial Organization of
Developmental Genes
During vertebrate development, ncRNAs can regulate the spatial
organization of gene clusters, such as the HOX genes (Flyamer
et al., 2017). HOX genes, which are homeotic genes involved
in antero-posterior body axis development in vertebrates, are
found on four spatially clustered chromosomal loci (HOXA,
HOXB, HOXC, and HOXD). The genes are separated into distinct
topological compartments based on their transcriptional profile,
and during development, there exists a dynamic switch between
these topological domains (Noordermeer et al., 2011). This
higher order structure of the HOX gene clusters is regulated by
intergenic ncRNAs (Wang et al., 2011). For example, the ncRNA
HOTTIP (HOXA transcript at the distal tip) is transcribed from
the 5′ edge of the HOXA locus and is required for maintaining the
compartmentalization of the locus. HOTTIP can associate with
and target the WD repeat mixed lineage leukemia (WDR-MLL)
complex across the HOXA locus to yield active histone marks.
This in return maintains the active state of some of the HOXA
genes. HOTTIP also physically associates with CTCF, which can
bind to six conserved binding sites at HOXA and serve as an
insulator (Wang F. et al., 2018). This contributes to the discrete
expression profile of genes across the HOXA locus. The dynamic
3D architecture of these gene clusters is important as it dictates
the transcriptional profile of the HOX genes during development.
Dysregulation of HOX gene expression can abrogate limb and
skeletal development in murine and Drosophila embryos (Di-Poi
et al., 2010; Andrey et al., 2013). Therefore, regulation of the
spatial organization of HOX genes by ncRNAs is important for
organismal development.

Another critical component of development is known as
genetic imprinting, which consists of the silencing of one parental
allele. Imprinted genes tend to spatially cluster and this allows for
their coordinated regulation during development. lncRNAs have
been shown to regulate the expression and large-scale chromatin
structure of these genes through interaction with histone
modifying proteins and chromatin looping (Umlauf et al., 2004;
Terranova et al., 2008; Zhang et al., 2014). In early mammalian
embryos, the Kcnq1 genes cluster into a compact subnuclear
compartment, devoid of transcriptional activity (Verona et al.,
2003; Lewis et al., 2006). This nuclear compartment is enriched
with repressive histone marks and silencing protein complexes
such as polycomb proteins (Umlauf et al., 2004; Terranova et al.,
2008). Formation of this higher order repressive domain and its
localization within the perinucleolar compartment is mediated
by the Kcnq1ot1 ncRNA, which associates with the H3K9me3
repressive histone mark and polycomb proteins (Mohammad
et al., 2008; Pandey et al., 2008; Terranova et al., 2008). Kcnq1ot1
is an antisense ncRNA (∼100 kb) that is transcribed from
the intronic region of the Kcnq1 locus of one of the parental
chromosomes. Deletion of Kcnq1ot1 results in expression of the
parental allele that is normally silent (Mancini-Dinardo et al.,
2006). More recently, this ncRNA has been shown to directly
interact with the chromosome, through its 5′ terminal region, in
order to mediate intrachromosomal looping between the Kcnq1
promoter and Kcnq1ot1 promoter KvDMR (Zhang et al., 2014).

These promoters are 200 kb apart in the linear genome (Zhang
et al., 2014). However, promoter looping results in the imprinting
of the Kcnq1 cluster, or its allelic silencing. Deletion of KvDMR
can result in biallelic expression of maternal-specific genes in
the Kcnq1 cluster and growth deficiency in mice (Fitzpatrick
et al., 2002; Shin et al., 2008). In humans, loss of imprinting
can lead to Beckwith–Wiedemann syndrome, which is associated
with cancer growth and progression (Lee et al., 1999; Fitzpatrick
et al., 2002; Valente et al., 2019). Therefore, regulation of the
spatial organization of the Kcnq1 gene cluster by Kcnq1ot1
is important for mammalian genetic imprinting and healthy
development. Overall, these findings suggest that ncRNAs play
a role in regulating gene expression during development via
establishment of nuclear compartments and regulation of locus
positioning within nuclear space.

Taken together, ncRNAs from single-copy loci contribute
to spatial genome organization through chromatin remodeling,
nuclear compartmentalization and the subnuclear positioning of
various genes within nuclear space. These roles of ncRNA help
mediate cellular processes that are central to the proper control
of gene expression, genome stability, development, and health.

NON-CODING RNA AT REPETITIVE DNA
LOCI

Eukaryotic genomes are largely composed of repetitive DNA
sequences that can be generally classified as tandem or
interspersed repeats. Tandem repeats include satellite and
minisatellite repeats (e.g., centromeres) as well as microsatellite
repeats (telomeres). Interspersed repeats include transposable
elements that are either retrotransposons or DNA transposons.
Retrotransposons include LTR-retrotransposons such as HERV
and non-LTR retrotransposons such as SINEs (e.g., Alu), LINEs
(e.g., LINE-1) or SVAs. It is also important to note that some
types of repeats such as human ribosomal DNA (rDNA) can
be arranged in tandem repeats that are interspersed throughout
the linear genome. Regardless of their relative genomic location,
DNA repeats are often clustered within nuclear space. This
can facilitate their transcriptional co-regulation, minimize their
potential deleterious interaction with the rest of the genome and
control their exposure to potentially genome-destabilizing DNA
recombination and repair machineries.

Repetitive DNA sequences are non-randomly arranged
within the nucleus. For example, rDNA repeats are physically
sequestered in the nucleolar compartment of the nucleus. This
sequestration can be driven by inter- or intra-chromosomal
interactions, or even direct tethering to the nuclear envelope in
some organisms (O’Sullivan et al., 2009; Mekhail and Moazed,
2010; Chan et al., 2011; Hult et al., 2017). Telomeres, which
are at the ends of linear chromosomes, often colocalize within
PML bodies (Chang et al., 2013) at the nuclear interior or
within telomeric clusters or bouquets at the nuclear periphery
(Gotta et al., 1996). In budding yeast, the Transposons of
Yeast 1 (Ty1) retrotransposons cluster within or near nucleoli
(O’Sullivan et al., 2009), while centromeres cluster at the

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 December 2019 | Volume 7 | Article 336

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00336 December 17, 2019 Time: 16:56 # 7

Khosraviani et al. ncRNAs in Spatial Genome Organization

yeast spindle pole body (Jin et al., 2000). Importantly, several
ncRNAs from repetitive DNA loci have emerged as major players
that mediate crosstalk between spatial genome organization,
expression and stability. Here were review such ncRNAs, which
emerge from rDNA repeats, telomeric regions, transposable
elements, and centromeres.

Non-coding RNAs in rDNA Structure and
Function
Non-coding RNAs can play a role in the spatial organization and
function of rDNA through the modulation of heterochromatin
formation. Transcription of rDNA into ribosomal RNA (rRNA)
molecules is dependent on the varying demand for protein
synthesis that cells experience in response to intracellular signals
or environmental stimuli. Therefore, despite the existence of
100s of rDNA repeats in eukaryotes, only a fraction of rDNA
units are transcribed, while the remainder of the repeats is
epigenetically silenced. Transcriptionally active rDNA units are
marked by DNA hypomethylation, H4Ac and H3K4me2, whereas
inactive rDNA units are marked by promoter hypermethylation,
histone H4 hypoacetylation and methylation of H3K9, H3K27,
and H4K20 (Santoro et al., 2002). Deposition of these marks is
facilitated by the nucleolar remodeling complex (NoRC), which
guides chromatin remodeling proteins to the rDNA and other
loci. In mice, NoRC is recruited to nucleoli through interaction
between the large subunit of NoRC (TIP5) and promoter-
associated RNAs (pRNAs) that overlap the rDNA promoter
(Mayer et al., 2006). A class of pRNAs termed PAPAS (promoter
and pre-rRNA antisense) covers the rDNA promoter, and levels
of PAPAS generally reflect the physiological state of the cell, such
that there is an anti-correlation between PAPAS and pre-rRNA
levels (Figure 2A) (Bierhoff et al., 2010). In quiescent mammalian
cells, PAPAS is induced, binds to the histone methyltransferase
Suv4-20h2, targets it to the rDNA promoter and downregulates
rRNA transcription through enhanced H4K20me3 (Bierhoff
et al., 2014). In addition, upon heat shock, upregulation of
PAPAS attenuates pre-rRNA synthesis by recruiting another
chromatin remodeling complex named CHD4/NuRD to the
mammalian rDNA promoter (Zhao et al., 2018). On another
front, in mammalian cells under hypotonic stress conditions,
PAPAS upregulation recruits NuRD to reposition the rDNA
promoter-bound nucleosome to the “off” position, thereby
halting pre-rRNA synthesis (Zhao et al., 2016). Interestingly,
pRNA-dependent heterochromatin formation at rDNA has
also been shown to initiate the downstream establishment of
heterochromatic structures at genomic regions that are in close
proximity but lie outside of the murine nucleolus (Savic et al.,
2014). Taken together, these studies reveal that under different
environmental conditions, promoter-associated ncRNAs from
repetitive loci can silence gene expression in cis through various
processes. Future studies should explore how such ncRNAs are
induced under different environmental conditions.

The nucleolus typically exhibits a phase separation-driven
tripartite organization into a fibrillar centre (FC), dense fibrillar
component (DFC), and granular component (GC) (Feric et al.,
2016; Hall et al., 2019). Upon exposure to environmental stresses

including heat shock or acidosis, a couple of ncRNAs induced
from the mammalian rDNA intergenic spacer (IGS) dissolve
this tripartite organization, structurally remodeling the nucleolus
into a so-called “protein detention centre” (DC) (Mekhail et al.,
2005; Jacob et al., 2013). The DC is suggested to be spatially,
dynamically and biochemically distinct from the standard
tripartite domains (Jacob et al., 2013). This structural remodeling
of the mammalian nucleolus can arrest rRNA synthesis and
create a hub for immobilized proteins, effectively mediating
their nucleolar sequestration and functional inactivation (Audas
et al., 2012). Upon removal of the environmental stressor,
the ncRNAs are repressed, DC is dissolved and tripartite
nucleolar organization is re-established (Jacob et al., 2013).
Thus, ncRNAs spatially remodel the nucleolus during stress.
Importantly, future studies should explore how cells control
the generation and function of such intergenic ncRNAs under
varying environmental conditions.

The organization of rDNA repeat regions into epigenetically
silent chromatin structures is essential to proper cellular
function and alterations in this organization may be associated
with human disease. For example, rDNA hypermethylation is
characteristic of early Alzheimer’s disease (Pietrzak et al., 2011),
upregulation of rRNA expression is characteristic of tumor cells
(White, 2005; Montanaro et al., 2008; Bywater et al., 2013) and
rRNA dysfunction is linked to a group of genetic diseases known
as ribosomopathies (Narla and Ebert, 2010; Nakhoul et al., 2014).
In addition, in yeast, the dysregulation of IGS ncRNAs at rDNA
repeats has been associated with premature aging through three
distinct mechanisms. First, loss of IGS silencing leads to the
upregulation of IGS ncRNAs, which displace cohesin complexes,
triggering rDNA instability and premature aging (Saka et al.,
2013). Second, IGS ncRNAs are prone to the formation of DNA
replication-blocking RNA–DNA hybrid-containing structures
called R-loops (Salvi et al., 2014). When these structures
accumulate, as in some yeast mutants, unequal sister chromatid
exchange events occur within the rDNA repeats, leading to
chromosome instability and premature cellular aging (Salvi et al.,
2014). Lastly, in yeast genetic models of neurodegenerative
diseases, hyper-reductions in IGS ncRNA levels can lead to
rDNA copy number instability and premature cellular aging
(Ostrowski et al., 2018). Thus, ncRNAs that play important roles
in the epigenetic silencing and organization of rDNA repeats can
impact processes underlying organismal health span.

Crosstalk Between Telomeric ncRNAs,
Heterochromatin, and Subnuclear
Positioning
The telomeres at the end of linear chromosomes are often
heterochromatic. In vertebrates, telomeres are composed of
hexameric 5′-TTAGGG-3′ repeats that are flanked by repetitive
subtelomeric regions. Telomeric and subtelomeric repeats
exhibit heterochromatic marks (H3K9me3, H4K20me3, and
hypoacetylation of H3 and H4). Loss of heterochromatin disrupts
telomere length control, increases telomeric recombination and
promotes premature cellular senescence (Garcia-Cao et al.,
2004; Benetti et al., 2007). Interestingly, the establishment
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FIGURE 2 | Continued
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FIGURE 2 | Spatial organization of repetitive DNA loci by ncRNA. (A) In human cells, there is an inverse correlation between PAPAS and pre-rRNA levels. In
quiescent cells, PAPAS binds to the Suv4-20h2 histone methyltransferase and directs it to the rDNA promoter for H4K20me3-dependent repression. Upon heat
shock, PAPAS hybridizes with the rDNA promoter and recruits the CHD4/NuRD complex, thereby preventing rDNA transcription. Upon hypotonic stress,
upregulation of PAPAS recruits the CHD4/NuRD complex to reposition rDNA promoter-bound nucleosome to the off position, thereby halting pre-rRNA synthesis.
(B) In germline tissues of flies, piRNAs transcribed from the telomeric region mediate perinuclear positioning of telomeres and promote HP1, Rhino, and H3K9me3
enrichments at telomeres. (C) In human cells, aluRNAs enriched in the nucleolus interact with nucleolin to maintain nucleolar structure and function. (D) In human
cells, α-satellite RNAs associate with and promote the centromeric enrichment of Survivin, CENP-C, and INCENP in order to maintain centromere stability.

of telomeric heterochromatin is influenced by a type of
ncRNA called telomeric repeat-containing RNA (TERRA), which
is composed of UUAGGG repeats (Nergadze et al., 2009).
TERRA transcription typically initiates from subtelomeric CpG
islands and proceeds to chromosomal ends. Several lines of
evidence support a role for TERRA in the regulation of
heterochromatin and other structures near chromosome ends.
First, TERRA associates with TIP5 and subsequently recruits
NoRC and the histone-modifying enzymes Suv4-20h2 and
SIRT6 to human telomeres (Postepska-Igielska et al., 2013).
Second, loss of human TERRA decreases telomeric H3K9me3
and HP1 enrichments and induces the DNA damage response
(Blasco, 2007; Deng et al., 2009). Third, TERRA facilitates
heterochromatin-promoting interactions between the human
Shelterin complex, HP1 and the origin recognition complex
(Deng et al., 2009). Fourth, TERRA transcription initiates
at subtelomeric CTCF-binding sites, tentatively suggesting
that the transcription of TERRA is itself spatially regulated
by chromosome looping (Beishline et al., 2017). ncRNAs
also regulate telomeric heterochromatin formation in non-
vertebrate species. For example, small ncRNAs are implicated
in heterochromatin formation at fission yeast telomeres (Cao
et al., 2009). Together, these studies highlight a role for
telomeric ncRNAs in the promotion of local heterochromatin
structures and consequent prevention of premature cellular
senescence. Importantly, there is crosstalk between telomeric
heterochromatin and the subnuclear positioning of telomeres.
For example, in budding yeast, the constitutive co-localization
of telomeres in a handful of clusters at the nuclear periphery
increases the local concentration of chromatin silencing factors,
reinforcing telomeric heterochromatin and limiting access to
the potentially genome-destabilizing recombination machinery
(Therizols et al., 2006; Schober et al., 2009; Chan et al.,
2011). In the fly germline, loss of some PIWI-interacting RNAs
(piRNAs) that are typically transcribed from telomeric regions
decreased perinuclear telomere positioning and lowered the
local enrichment of HP1, Rhino, and H3K9me3 (Figure 2B)
(Radion et al., 2018).

Connections exist between telomere malfunction and disease.
The aberrant loss of telomeric heterochromatin can trigger
telomeric DNA damage responses and recombination events,
which are associated with several diseases (Hagelstrom et al.,
2010). The accumulation of TERRA-associated R-loops drives
telomere instability in the rare autosomal recessive syndrome
ICF (immunodeficiency, centromeric instability, and facial
anomalies; Sagie et al., 2017). Similarly, in budding yeast,
elevated TERRA levels can promote premature senescence
(Wanat et al., 2018). On another front, various changes to
TERRA levels are linked to cancer (Artandi and DePinho, 2010),

dyskeratosis congenita (Armanios et al., 2009; Gu et al., 2009;
Mason and Bessler, 2011) and aplastic anemia (Armanios et al.,
2009; O’Sullivan and Karlseder, 2010; Armanios, 2012). We
refer the reader elsewhere for a full review on the emerging
connections between telomeric ncRNAs and disease (Maicher
et al., 2012). Taken together, these studies suggest that telomeric
ncRNAs modulate heterochromatin formation and subnuclear
positioning at telomeres to promote health and longevity.

Transposable Elements
Similar to other repetitive DNA loci, transposable elements
are often silenced by heterochromatin formation to limit
the potentially deleterious effects of such elements (Slotkin
and Martienssen, 2007). Transposable elements are silenced
through a wide range of chromatin modifications, including
DNA methylation, histone modifications (e.g., H3K9me
and H4K20me) and chromatin condensation (Slotkin and
Martienssen, 2007). Similar to PAPAS-dependent recruitment
of Suv4-20h2 to the rDNA, in quiescent human cells, it was
reported that ncRNAs from the transposable elements IAP and
LINE-1 recruit Suv4-20h2 to mediate H4K20me3 enrichment
and condense chromatin at transposable elements (Bierhoff
et al., 2014). Such elements are also silenced through the action
of small ncRNAs. For example, murine piRNAs generated from
retroelements are bound to the PIWI-like protein MIWI2 and
translocated into the nucleus to silence retroelements through
de novo DNA methylation (Aravin et al., 2008; De Fazio et al.,
2011). Additionally, small RNAs generated from LINE-1 and
IAP retroelements can regulate their epigenetic state in mouse
embryos (Fadloun et al., 2013). Taken together, these studies
suggest that ncRNAs help establish the epigenetic states necessary
to keep transposable elements in check.

In addition to regulating chromatin compaction at
transposable elements, transposon-associated ncRNAs can
modulate the spatial organization of the nucleolus. For example,
in HeLa cells, transcripts originating from intronic Alu elements
(aluRNAs) become enriched in the nucleolus, where they
interact with the nucleolin (NCL) protein and contribute to the
maintenance of nucleolar structure and function (Figure 2C)
(Caudron-Herger et al., 2015). Similar processes were observed
in human keratinocytes and fibroblasts for aluRNAs, and for
the related B1 transcripts in mice. Interestingly, aluRNAs can
somehow target other genomic loci to the nucleolus (Caudron-
Herger et al., 2015), tentatively suggesting that these ncRNAs
may impact spatial genome organization by establishing physical
links within and outside of the nucleolus.

Given the high mutagenic potential of transposable element
activity, it is perhaps not surprising that these elements have
been linked to disease (Belancio et al., 2009). Transposons can
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promote disease through several processes including insertional
mutations, deleterious non-allelic homologous recombination
and the generation of cis-acting signals that modify gene
expression (Belancio et al., 2009). It is estimated that ∼0.3% of
human genetic diseases are caused by retroelements (Callinan
and Batzer, 2006). For example, 15 human diseases are caused
by Alu insertions while 18 germ-line diseases and 6 types
of cancer are caused by unequal homologous recombination
events between Alu repeats (Deininger and Batzer, 1999; Burns,
2017). In addition, LINE-1 and SVAs are causative agents
in numerous other human diseases (Belancio et al., 2009).
In fact, the increased activity of transposable elements is a
known contributing factor to neurodegenerative diseases such
as Alzheimer’s disease, Aicardi Goutières syndrome, multiple
sclerosis, and amyotrophic lateral sclerosis (Guo et al., 2018; Tam
et al., 2019). Elevated expression of transposable elements is also
a potential mechanism underlying the pathogenic development
of various mental disorders including schizophrenia, bipolar
disorder, autism spectrum disorders, and major depression
(Misiak et al., 2019). In the context of these various diseases, it
is thought that loss of heterochromatin structures may be a major
contributor to the increased transposable element activity and its
deleterious impact. Together, the literature indicates that ncRNAs
from transposable elements can positively contribute to spatial
genome organization and stability, but that losing control of such
elements can disrupt genome function and promote disease.

Centromeres
Centromeres are tandem repeats, which are largely assembled
into heterochromatic structures and are important for
kinetochore function and chromosome integrity. Centromeres
are composed of centric and pericentric regions, which have
different chromatin structures that are epigenetically established.
CENP-A-containing centric chromatin is characterized by
H3K4me3, while pericentric regions are enriched in H3K9me2,
H3K9me3, H4K20, and HP1. Heterochromatin formation at
centric and pericentric regions is mediated by NoRC, similar to
heterochromatin formation at rDNA (Wong et al., 2007; Nemeth
et al., 2010). In fact, the common positioning of centromeres
near nucleoli may contribute to this dual role for NoRC at rDNA
and centromeres (Wong et al., 2007; Nemeth et al., 2010).

Several classes of centromeric ncRNAs have been found to play
a role in the establishment of centromeric heterochromatin and
kinetochore function across a wide range of species. Importantly,
centromeric heterochromatin is maintained by low levels of
satellite repeat RNAs (Diaz et al., 1981; Trapitz et al., 1988;
Rudert et al., 1995; Li and Kirby, 2003; Martens et al., 2005;
Wong et al., 2007). In fission yeast, short-interfering RNAs
produced by pericentromeric ‘otr’ ncRNAs help establish and
maintain pericentric heterochromatin (Volpe et al., 2002), while
in budding yeast, the expression of centromere-derived lncRNAs
(cenRNAs) must be fine-tuned in order to maintain centromere
function (Ling and Yuen, 2019). Increased cenRNA levels result
in chromosome instability, aneuploidy and down-regulation of
centromeric proteins while decreased cenRNA levels also result
in chromosome instability. There is overwhelming evidence that
centromeric- or pericentromeric-derived ncRNAs are important

for the recruitment of centromeric proteins (Figure 2D) (Maison
et al., 2002; Wong et al., 2007; Ferri et al., 2009; Chan et al.,
2012). In Drosophila, centromeric SAT III ncRNAs act as a
structural component of the kinetochore and are required for
the recruitment of centromeric proteins (Rosic et al., 2014). In
mice, lncRNAs produced from major pericentromeric satellite
repeats recruit the SUMOylated form of HP1 through direct
interaction with DNA at the site of their transcription (Maison
et al., 2011). Murine major satellite-derived ncRNAs have also
been shown to form RNA–DNA hybrids that promote the
association of histone lysine methyltransferases Suv39h1 and
Suv39h2 with polynucleosomes (Velazquez Camacho et al.,
2017), suggesting a function for these ncRNAs in establishing
heterochromatic structures. In human cells, single-stranded
α-satellite RNAs are required for nucleolar localization of CENP-
C and INCENP in interphase cells (Wong et al., 2007). Reducing
or increasing centromeric transcription decreases the loading
of several CENP proteins (Bergmann et al., 2011, 2012). In
human cells and X. laevis egg extracts, loss of α-satellite
ncRNAs reduces centromeric localization of the kinetochore
protein Aurora-B and causes improper spindle attachment
and chromosome misalignment (Ideue et al., 2014; Blower,
2016). Additionally, studies in maize, human cells and X. laevis
suggest that centromeric ncRNAs stabilize CENP-C binding
to DNA (Du et al., 2010; Grenfell et al., 2016; McNulty
et al., 2017). Murine minor satellite repeat transcripts associate
with CENP-A and regulate the structure and function of
centromeres during stress and differentiation (Bouzinba-Segard
et al., 2006; Ferri et al., 2009). Moreover, aberrant accumulation
of these transcripts disrupts chromosome segregation, weakens
sister chromatid cohesion, abrogates centromeric epigenetic
signatures and results in the accumulation of micronuclei.
Together, these studies reveal that the maintenance of an
optimal level of centromeric ncRNAs may be important for
centromeric function.

While mammalian centromeres can often co-localize with
nucleoli in S phase cells, budding yeast centromeres cluster
with each other at the spindle pole body, which is opposite
the nucleolus (Mekhail and Moazed, 2010). Importantly, this
co-localization may contribute to the cells’ ability to survive
DNA double strand breaks (DSBs). Specifically, it was proposed
that centromeres are released from the spindle pole body upon
DNA damage induction to allow for increased chromosome
flexibility and facilitate donor-acceptor locus contacts necessary
for homology-directed repair (Strecker et al., 2016). The
release of centromeres also drove the formation of intranuclear
microtubule filaments onto which damaged DNA was mobilized
by motor proteins to repair-conducive nuclear neighborhoods
(Chung et al., 2015; Oshidari et al., 2018, 2019). It will
be important to test whether endogenous transcription of
centromeric ncRNAs contributes to this increased genome
flexibility and formation of intranuclear filaments mediating
DNA repair. Consistent with this possibility, the forced
expression of an inducible gene integrated within a single
centromere was sufficient to trigger the formation of the
intranuclear microtubule filaments that are typically only
observed upon DNA damage induction (Oshidari et al., 2018).
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Changes to the epigenetic state of centromeres has been
linked to disease (Black and Giunta, 2018). Tandemly arranged
satellite repeats are prone to recombination events that can
lead to chromosome rearrangements, genetic abnormalities and
karyotypic abnormalities that are hallmarks of cancer (Kim
et al., 2013). In addition, a study examining epigenetic signatures
in ICF patients reported that, in all of the patients studied,
juxtacentromeric satellite II repeats exhibited hypomethylation,
tentatively suggesting that this altered epigenetic feature may
underlie the chromosome fragility observed in ICF patients
(Miniou et al., 1994). Centromeric repeat-associated ncRNAs
have been implicated in chromatin-related changes in age and
age-related diseases. There is a correlation between centromeric
instability and senescence, which is potentially explained by
an age-related loss of CENP-A at centromeres (Lee et al.,
2010; Maehara et al., 2010; Hedouin et al., 2017). Senescence-
related loss of CENP-A may be mediated by alterations to the
levels of centromeric repeat transcripts, due to the fact that
constitutive pericentromeric heterochromatin is decondensed
in senescent cells (Swanson et al., 2013; Giunta and Funabiki,
2017). It has been directly shown that high rates of centromeric
transcription can cause CENP-A translocation and mitotic arrest
(Hedouin et al., 2017). Interestingly, some forms of cancer are
characterized by elevated levels of α-satellite and pericentromeric
satellite ncRNAs (Ting et al., 2011). These ncRNAs can form
deleterious R-loop structures, which have been suggested to
contribute to pericentromeric instability in several cancers
(Bersani et al., 2015).

Taken together, the literature reveals numerous intersections
between various types of ncRNAs and spatial genome
organization in the modulation of repetitive DNA loci and their
broader impact on the genome and health.

CONCLUDING REMARKS

In this review we have highlighted roles of ncRNAs and intergenic
transcription from single copy and repetitive DNA loci in

the regulation of spatial genome organization. Several ncRNAs
participate in spatial genome organization through several
common mechanisms of action, such as chromatin looping
and heterochromatin formation, while others operate through
distinct pathways such as perinuclear tethering. Deregulation of
spatial genome organization is associated with developmental
and age-related diseases including cancer. Although aberrant
expression of ncRNAs has been implicated in disease, more
direct or causal links between such ncRNAs, spatial genome
organization and pathobiology should be established (Palazzo
and Lee, 2015). Future studies should aim to identify the
exact molecular switches that induce ncRNA-dependent changes
to spatial genome organization, and whether these regulatory
mechanisms are conserved across evolution. Furthermore, we
expect future studies to identify novel processes through
which ncRNAs can regulate the relationship between genome
structure and function.
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