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Building and changing a microbiome at will and maintaining it over hundreds of gener-
ations has so far proven challenging. Despite best efforts, complex microbiomes appear
to be susceptible to large stochastic fluctuations. Current capabilities to assemble and
control stable complex microbiomes are limited. Here, we propose a looped mass trans-
fer design that stabilizes microbiomes over long periods of time. Five local microbiomes
were continuously grown in parallel for over 114 generations and connected by a loop
to a regional pool. Mass transfer rates were altered and microbiome dynamics were
monitored using quantitative high-throughput flow cytometry and taxonomic sequenc-
ing of whole communities and sorted subcommunities. Increased mass transfer rates
reduced local and temporal variation in microbiome assembly, did not affect functions,
and overcame stochasticity, with all microbiomes exhibiting high constancy and increas-
ing resistance. Mass transfer synchronized the structures of the five local microbiomes
and nestedness of certain cell types was eminent. Mass transfer increased cell number
and thus decreased net growth rates μ0. Subsets of cells that did not show net growth
μ0SCx were rescued by the regional pool R and thus remained part of the microbiome.
The loop in mass transfer ensured the survival of cells that would otherwise go extinct,
even if they did not grow in all local microbiomes or grew more slowly than the actual
dilution rate D would allow. The rescue effect, known from metacommunity theory,
was the main stabilizing mechanism leading to synchrony and survival of subcommun-
ities, despite differences in cell physiological properties, including growth rates.

microbial ecology j metacommunity assembly j stability j microbial community cytometry j single-cell
analytics

The ability to create structurally and functionally stable microbiomes would be greatly
beneficial to both industrial biotechnology and human health. Stable microbiomes
would be persistent in their composition and hence their functions and services (1–3).
Building and changing a microbiome as desired and maintaining it over hundreds of
generations is a challenging endeavor that still needs to be undertaken. Stable micro-
biomes would make it much easier to use renewable and less-expensive resources and
develop bio-based technologies as part of a circular bio-economy (4, 5). Bottom-up
and top-down approaches that are based on design–build–test–learn cycles (6) to
optimize artificial microbiome blueprints are promising potential avenues for the con-
struction of human-life-promoting microbiomes (7). However, the current means of
controlling microbiomes are still limited. For decades, scientists have attempted to
homogenize (8) or establish stable natural and artificial communities by shaping their
niches, e.g. via substrate type and concentration, media composition or pH, and tem-
perature, including using machine learning and other mathematically based approaches
(9–12). Despite all these efforts, however, complex microbiomes appear to remain sus-
ceptible to large stochastic variations.
To establish stable microbiomes, a first challenge is to quantify community composi-

tion and its change. Liu et al. (9) combined quantitative single-cell and taxonomic
analyses to characterize microbial communities that comprised hundreds of species.
However, when applying their approach to five parallel identically operated steady-state
reactors that began from the same inoculum, they found that the five communities
developed along different trajectories, leading to distinctly different compositions. One
primary reason for this, as suggested by Liu et al. (9), was the ongoing disturbance in
each reactor via dilution. Dilution reduced the abundance of otherwise dominant spe-
cies and caused the extinction of species with low growth rates, thereby significantly
increasing the role of stochasticity. Functional redundancy supported this process.
Zhou et al. (13) also found 14 distinctly different communities that developed from
the same inoculum, referred to as “stochastic assembly.”
The important role of stochasticity in understanding community assembly has been

widely acknowledged in ecology (14, 15). In particular, the work of Zhou and Ning
(16), which combined the framework (i.e., diversification, dispersal, selection, and
drift) of Vellend (17) and Nemergut et al. (18) with the βNTI- and βNRI-based
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approaches to assembly processes (19, 20) is now widely used
to determine stochastic processes of microbial community
assembly (21–24). Rank-abundance data of virtually all known
communities show that, except for a few dominant species,
most species occur at low abundances (25–29) and thus are
strongly affected by stochasticity.
How, then, do the more or less stable communities develop

which can be observed in macroecology? An answer can be
found in metapopulation theory (30), which is also incorpo-
rated in metacommunity theory (31, 32). In metapopulations,
small local populations (1) may go extinct but be replaced by
recolonization or (2) may be “rescued” from extinction by
immigration. In metacommunity theory, the former mecha-
nism is referred to as “patch dynamics” (33). The latter is
referred to as “mass effect/transfer” (34) or “rescue effect” (35).
In both cases, the regional pool that comprised all local popula-
tions buffers and thereby stabilizes local populations.
A second challenge in stabilizing microbial communities is

how we can mimic the stabilizing effect of the regional pool.
The patch dynamics mechanism requires limited dispersal to
avoid the possibility that local dynamics are overly synchro-
nized and their disparity is kept exclusive. In contrast, the res-
cue effect requires more substantial dispersal from the regional
pool and supports the survival of local populations that would
otherwise have too low an abundance and thus be at high risk
of extinction. Therefore, we hypothesize that mass transfer
from a regional pool could be a means to stabilize both struc-
tural and functional properties of microbial communities. Mass
transfer is a well-known phenomenon that occurs in the intesti-
nal system (36) and in wastewater treatment plants (26, 37).
Finding a simple but efficient way to implement mass transfer
from a regional pool could thus be a promising avenue for
understanding and building stable microbial communities with
specific desired functions.
Based on the setup that was used by Liu et al. (9), we imple-

mented a regional pool that was connected to five parallel local
communities via a loop design. Inflow from the local reactors
represents emigration to the regional pool, and feedback flow
represents mass transfer from the regional pool to each local
community. This metacommunity that comprised six continu-
ously running and interconnected bioreactors was established
and studied for ∼114 generations with varying mass transfer
rates. To quantify community dynamics, flow cytometry was
used as the major methodology, which quantitatively measured
community structure at the single-cell level. Additionally,
selected 16S ribosomal RNA (rRNA) gene amplicon sequenc-
ing was performed for whole communities and after the
directed sorting of subcommunities. We hypothesize that 1)
diversity values will become more equal with higher rates of
mass transfer, 2) an increase in mass transfer will strengthen the
presence of slow growing organisms, and 3) high mass transfer
rates will not affect function and increase the stability proper-
ties of constancy, resistance, and recovery (3). Answering these
questions will shed light on whether looped mass transfer is a
means of stabilizing microbial communities over extended peri-
ods of time and what ecological mechanisms are responsible for
this stabilization.

Results

Mass Transfer Stabilizes Structures and Functions of Microbiomes.
In this study, we investigated whether looped mass transfer can
stabilize microbial community structure and function by rely-
ing on the rescue effect. To this end, flow cytometric single-cell

data, clustered into gates (G) according to phenotypic cell
characteristics and considered as subcommunities (SC) were
analyzed at different recycling rates ðRC Þ under continuous
cultivation conditions. In a first step, the structural stability proper-
ties constancy, resistance (RS), and recovery (RV) as well as func-
tional stability by analyzing the removal efficiency of carbon,
ammonium-nitrogen, and phosphorus were determined.

Two hierarchical scales (i.e., local and regional scale) were
designed. For the local scale, independently inoculated and
connected microbiomes were cultivated in five identically oper-
ated local reactors (i.e., local communities L1–L5; SI Appendix,
section S1). For the regional scale, a pool R of emigrated
microorganisms from L1–L5 was formed from which disper-
sion back into the local scale was allowed (Fig. 1 and SI
Appendix, section S2). We followed this setup for ∼114 genera-
tions, and a total of 448 community samples (with a total of
35,840 subcommunities [SC]) were collected from the six bio-
reactors (SI Appendix, section S3). Quantitative variations in
the microbiomes were analyzed at the single-cell level using
flow cytometry (SI Appendix, sections S4 and S5) and relative
variations were analyzed by 16S rRNA gene sequencing (SI
Appendix, section S6). With this setup, we sought to determine
whether changes in recycling rates RC (SI Appendix, Table S2.
1) may be a means to stabilize microbiomes.

The experiment was divided into five phases, in which
increasing recycling rates RC between the regional pool R and
local reactors were tested in phases 2 to 4, whereas no exchange
was allowed in phases 1 and 5. Phase 1 (Insular I) showed large
variations in microbiome structures between local communities
in L1–L5 despite an identical inoculum. These variations were
sequentially reduced when recycling rates RC were increased
from 10 to 80% (Fig. 2A). Additionally, temporal variation
within each reactor decreased with an increase in RC (Fig. 2B).
Fluctuations reappeared after recycling was terminated (phase
5, Insular II; Fig. 2A). An overview on the experiment is pro-
vided in Movie S1.

The stability properties of constancy, resistance RS, and
recovery RV (2), calculated for all microbiomes L1–L5 and R,
supported these findings. The five local microbiomes estab-
lished the highest constancy at the highest recycling rates RC
(SI Appendix, Fig. S7.1A and Table S7.1). The values for resis-
tance RS were lowest between the Insular I to RC10 phases
(mean ¼ 0.46 ± 0.05 for L1–L5), suggesting considerable var-
iations in local microbiomes under these conditions. During
transitions from RC10 to RC50 and from RC50 to RC80, the
highest resistance RS values (mean ¼ 0.57 ± 0.03 and 0.60 ±
0.03, respectively, for L1–L5) were found and thus represented
the most stable conditions (SI Appendix, Fig. S7.1B). The
values for recovery RV were low in all phases and for all micro-
biomes (SI Appendix, Table S7.2), indicating that the commu-
nities did not return to compositions of previous phases.

In addition, we tested whether increasing mass transfer rates
affect the function of the six wastewater communities individu-
ally or the function of the metacommunity as a whole. Waste-
water communities have the function of removing carbon,
nitrogen, and phosphorus from the wastewater. Carbon is taken
up into biomass or degraded to CO2. Ammonium-nitrogen
comes from biomass destruction (especially proteins: amino
acids) and is removed mainly by nitrification and denitrifica-
tion. Phosphorus is released into wastewater under anaerobic
conditions and by cell destruction and can be removed by bio-
mass production and accumulation as polyphosphates in bio-
mass under mainly aerobic conditions. The analyzed data and
calculation framework are provided in SI Appendix, section S3
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and Tables S3.1–S3.4). Per reactor, the removal efficiency of
total phosphate (PHOt) and ammonium-nitrogen in superna-
tant (NH4) remained about the same with increased mass
transfer rates, while the removal efficiency for chemical oxygen
demand of the supernatant (CODs) decreased, but only
slightly. Instead, biomass (CN: cell number; CODb: carbon
bound in biomass, DW: dry weight) increased with mass trans-
fer rates. The entire metacommunity even showed increased
removal efficiencies due to repeated recycling of carbon and
ammonium-nitrogen in the flow (CODs: from 76.1% in RC10

to 87.5% in RC80; NH4: 62.7% in RC10 to 98.5% in RC80),
while PHOt values remained unchanged (11.3 ± 3.2%),

confirming the stable functions in the metacommunity setup
with increasing mass transfer rates. Partial Mantel test revealed
that the flow-cytometrically measured community composition,
which changed with increasing mass transfer rates, did not
influence community function in our metacommunity setup
(SI Appendix, section S13).

In summary, the data suggest that high mass transfer rates
clearly lowered local and temporal variations in community
composition and supported such stabilizing properties as high
constancy and increasing resistance of all microbiomes, whereas
recovery efforts to reinstate a previous microbiome remained
unimportant. In addition, the typical functions of wastewater
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Fig. 1. Scheme of the reactor setup. The six reactors were run under the same environmental conditions. The five local community reactors L1–L5 were
run in an identical mode. The sixth reactor served as the regional pool R and was fed by the effluents of the local communities L1–L5. The dilution rate per
reactor is shown within the reactor schemes. A medium pump controlled the medium flow rate from the medium vessel to local communities L1–L5. An
effluent pump controlled the effluent rate from the local communities to the regional pool R. A recycle pump controlled the recycling flow rate from the
regional pool R to the local communities L1–L5. The flow rates are labeled with a gray arrow that indicates the flow direction.
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Fig. 2. Microbiome dynamics in the five reactors L1–L5 and regional pool R. Microbiome dynamics were measured by flow cytometry. The plots represent
the five different phases of the experiment. In phase 1 (Insular I), L1–L5 were isolated. In phases 2 to 4, the recycling flow rate from reactor R increased
sequentially from 10 to 80% (RC10 to RC80). Phase 5 (Insular II) was again without recycling. (A) The nonmetric multidimensional scaling (NMDS) plots in the
upper row show the increasing similarity of communities, both within and between reactors, with increasing recycling rate RC, while similarity was quickly
lost when recycling from reactor R stopped. Connected time points indicate the assembly trajectory of microbiomes. Points in gray represent samples from
the other phases. The NMDS plots were created using relative cell numbers of all SCs based on Bray–Curtis distance measure (try ¼ 100, trymax ¼ 200).
(B) Deviation of microbiome structure from the endpoints of respective previous phases (purple triangle) based on Canberra distance. The purple triangle in
the Insular I phase represents the inoculum.
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communities to remove carbon, phosphorus, and nitrogen
remained fairly stable and even increased in the metacommun-
ity setup.

Mass Transfer Synchronizes Microbiomes. The synchroniza-
tion of microbiome structures between local communities
L1–L5 and beyond with the regional pool was tested by calcu-
lating a range of diversity values (SI Appendix, section S8).
With the exception of inventory α-diversity, we found that
mass transfer strongly affected these values. All local micro-
biomes L1–L5 did not appreciably change in their richness dur-
ing the 110 d of continuous cultivation, but γ-diversity,
expressed as the richness of SCs in the metacommunity, was low-
est at RC80 and highest in the Insular I and II phases (Table 1
and SI Appendix, Figs. S8.4 and S8.5), suggesting that the same
SCs were dominating L1–L5 in phase 4 (RC80).
Temporal intracommunity β-diversity values highlight struc-

ture variations per community. The highest values were found
on day 3 for each of L1–L5 (35.8 ± 3.42), indicating rapid
changes in L1–L5 during the adaptation period in the Insular I
phase (Fig. 3A). For balanced periods within each phase, the
intracommunity β-diversity values for the Insular I and II
phases (8.63 ± 4.07 and 10.56 ± 4.86, respectively) and espe-
cially for RC50 and RC80 (5.56 ± 3.60 and 4.70 ± 2.52,
respectively) were significantly lower (Table 1).
Temporal intracommunity β-diversity variations were also a

means to find stochastic structural changes (i.e., drifts) in
L1–L5 that occurred during the balanced periods under RC . If
variations surpass a certain threshold, defined by the mean
intracommunity β-diversity value that was determined for the
balanced periods of the first phases of all L1–L5 (8.76, dashed
lines in Fig. 3A), then they were considered drifts. Drifts were
observed more frequently in the insular phases (Fig. 3A and SI
Appendix, Tables S8.1 and S8.2) and were lowest for RC80.
Additionally, this synchrony at RC80 was even less deranged
when looking at 16S rRNA gene sequencing data of sorted SCs
(SI Appendix, Fig. S9.3). Some of the drifts could have been
caused by different physiological cell states of dominant SCs (e.
g., Azospirillum switching between six SCs with different
growth states; SI Appendix, section S9), although the SCs could
also comprise six different species or ecotypes. To quantify the
relative contributions of deterministic and stochastic assembly
processes in the local reactors, we used the approaches of Stegen
et al. (38) and Ning et al. (39) based on our sequencing data
and the approach of Ning et al. (40) based on our single-cell
data. All three approaches, and in particular the normalized
stochasticity ratio (NST) analysis, which showed a decrease in
stochasticity to only 6% during RC80, confirmed that the sto-
chastic processes caused by dispersal limitation (in Insular I and
II phases) were overcome by homogenizing dispersal processes
during mass transfer (SI Appendix, section S14 and Figs. S14.

1–S14.3). Stochastic changes in community structures thus
appear to be significantly suppressed by mass transfer.

Intercommunity β-diversity was used to compare variations
between L1–L5 and R at each time point. This diversity param-
eter was also highly sensitive to the recycling flow rate RC and
significantly declined from the Insular I phase (19.58 ± 5.29)
to RC80 (2.58 ± 1.65) and increased again in the Insular II
phase (12.24 ± 5.20; Table 1 and Fig. 3B). The taxonomic
composition of L1–L5 and R (genus level) was clearly different
between the phases, with the exception of RC50 and RC80 (SI
Appendix, Fig. S9.1), thus supporting the synchrony in micro-
biome compositions that was shown by the cytometric data.

Furthermore, the degree of exchange of particular SCs by
other SCs, which is described by the term “turnover” βSIM, was
also high for the Insular I and II phases but only half as much
for the RC80 (i.e., multisite intracommunity β-diversity; 0.34 ±
0.02; SI Appendix, Table S8.3). In contrast, “nestedness” βNES,
a value that describes the local and temporal persistence of SCs
in communities (41), was highest at RC80 (0.14 ± 0.02; SI
Appendix, Fig. S8.6A and Table S8.3). The type of the persis-
tent SCs is presented in SI Appendix, Table S8.4. Thus, the
strong compositional synchronization of the local microbiomes
at RC80 was further supported by the determination of βSIM
and βNES values, as the high turnover of SCs was observed only
in the Insular I and II phases, but an increasing nestedness at
RC80 (SI Appendix, Fig. S8.6B and Table S8.3).

Thus, although α-diversity richness values of local communi-
ties did not change, γ-diversity and intercommunity β-diversity
were lowest at RC80. At the end of RC80 (day 86), only 13 out
of 80 SCs were dominating the final microbiomes in L1–L5
and R, with 54.7 to 65.6% of all cells in high synchrony. The
intracommunity β-diversity indicated the lowest variation and
lowest drift events at RC80, which was also proven by whole-
community 16S rRNA gene sequencing (SI Appendix, Fig. S9.
1), for community trend analysis (SI Appendix, Fig. S9.2),
and drift events (SI Appendix, Fig. S9.3). The 16S rRNA
gene sequencing data supported and reinforced the cytometric
data.

Mass Transfer Allows the Survival of Cells with a Low or Zero
Net Growth Rate in Microbiomes. Subcommunities were found
to survive in the reactors even when their net growth rate μ0
was lower than the prevailing dilution rate D ¼ 0.72 d�1.

The following ideal values for the mass transfer rate, M ,
were expected for the proposed experimental setup (SI
Appendix, Figs. S10.1 and S10.2) when conditions assumed
balanced situations (i.e., constant cell numbers) and when the
cell numbers of the inflow (i.e., regional pool) were equal to
cell numbers in the local microbiome. M should change with
the recycling rate RC : M ¼ 0.072 d�1 (RC10), M ¼ 0.36 d�1

(RC50), and M ¼ 0.576 d�1 (RC80; SI Appendix, Eq. S10.8).

Table 1. Summary of α-diversity, γ-diversity, intracommunity β-diversity, intercommunity β-diversity (L vs. L), and
intercommunity β-diversity (L vs. R) as mean ± SD per phase

Diversity/phase Insular I RC10 RC50 RC80 Insular II

α-diversity 15.87 ± 4.42 15.84 ± 2.90 15.48 ± 1.71 15.52 ± 2.63 17.71 ± 3.18*
γ-diversity 39.73 ± 3.17*** 31.00 ± 3.08 22.00 ± 2.73* 18.80 ± 3.85* 33.11 ± 3.62
Intracommunity β-diversity 8.63 ± 4.07 8.04 ± 3.65 5.56 ± 3.60 4.70 ± 2.52 10.56 ± 4.86
Intercommunity β-diversity (L vs. L) 19.58 ± 5.29*** 13.58 ± 4.09 5.43 ± 3.36*** 2.58 ± 1.65*** 12.24 ± 5.20
Intercommunity β-diversity (L vs. R) 17.50 ± 4.23*** 12.20 ± 3.58** 6.50 ± 3.03*** 2.43 ± 1.82*** 9.73 ± 4.54**

The mean ± SD values were all calculated among local microbiomes L1–L5 during balanced periods if not stated otherwise. The values marked with asterisks behind the diversity
values in these phases were significantly different from those in any other phase. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.
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Corresponding to μ0 ¼ D�M (SI Appendix, Eq. S10.9), the
net growth rate can theoretically be calculated to be 0.648 d�1

(RC10), 0.36 d�1 (RC50), and 0.144 d�1 (RC80; SI Appendix,
Fig. S11.1A). The actual M values in the experiment closely
followed the theoretical calculations (SI Appendix, Table S10.1),
whereas the net growth rate μ0 showed a few variations because
of fluctuations in cell numbers (SI Appendix, Table S10.1 and
Fig. S11.1C). These results demonstrate that at high RC and
high M values the net growth rate μ0 decreased sharply.
Similar to μ0 for the whole community, the net growth rates

of the subcommunities, μ0SCx , can be calculated (SI Appendix,
Eqs. S11.1–S11.5). μ0SCx decreased with increasing RC , partly
to zero (Fig. 4, blue points), and the number of SCs in all local
microbiomes with μ0SCx ≥0 decreased from 305 out of 305
SCs in the Insular I phase to 124 out of 155 SCs at RC80 and
increased back to 280 in the Insular II phase (SI Appendix, Fig.
S11.1D). The number of SCs with μ0SCx ≥0 per local micro-
biome at RC80 was similar to those in the regional pool R (23
SCs), which was much lower than the other phases (Fig. 4).
Subcommunities remained in the reactor setup at RC80

because of net growth in at least one of the five local

microbiomes (Fig. 4, red points for L1–L5) and were rescued
by their redistribution via the regional pool R. Some slow-
growing or nongrowing SCs have also increased their abun-
dance in the regional pool R (Fig. 4, red points for R). Some of
the rescued SCs were cytometrically sorted and taxonomically
sequenced. For example, at RC80, Azospirillum (G33), Azospira
(G18), and Ochrobactrum (G1; SI Appendix, Fig. S9.5)
indicated net growth in all or most of the L1–L5 (Fig. 4, SI
Appendix, section S9), whereas an unassigned genus from
PeM15 (order, G12 and G14) accumulated in R, and cells of
Sphingobacteriaceae (family, G4) and Pseudacidovorax (G2,
G11; SI Appendix, Fig. S9.5) grew in few of the microbiomes
L1–L5 and R and all were rescued by redistribution using R.
These SCs were mainly monodominant and could be assumed
to be superior local competitors under RC80 and R. Some other
SCs that were also among the growing SCs (G5, G9, and G25;
SI Appendix, Fig. S9.5 and Table S9.2) were multidominant.
Generally, fewer SCs responded to mass transfer at RC80 but
did so with higher relative abundance per SC (SI Appendix,
Fig. S12.2). When performing correlations between absolute
cell number per SC (SI Appendix, Fig. S8.2) and RC , five SCs
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Fig. 3. Intra- and intercommunity β-diversity characteristics of local microbiomes L1–L5 and the regional pool R. (A) Variation of intracommunity β-diversity
over time. The number of unique dominant SCs was determined in pairwise successive samples within a microbiome. The threshold value was 8.76 and
used to distinguish drift events from intrinsic cellular fluctuations during balanced growth condition (horizontal dashed line). The intracommunity β-diversity
values were reduced and showed fewer drift events under RC50 and RC80 conditions compared with other phases. (B) Variation of intercommunity
β-diversity over time. Numbers of SCs were determined that were not shared in pairwise samples at the same time point between local microbiomes L vs. L
(open symbols) and L vs. R (closed symbols). An increase in recycling rates RC lowered intercommunity β-diversity to a high degree. The shaded areas repre-
sent different phases with changes in RC.
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Fig. 4. Cell numbers of SCs and net growth rates μ0SCx (x ¼ 1 to 80), determined for the balanced periods of the different phases in the local communities
L1–L5 and the regional pool (R). On the left, the net growth rate μ0SCx (day�1) is presented only for dominant SCs with relative abundances >1.25% in at least
one sample during the corresponding periods in L1–L5 and R. The color gradient and size of the red circles represent the value of positive μ0SCx . Darker col-
ors and larger circles indicate higher μ0SCx values for positive net growth. All blue circles represent zero net growth μ0SCx : The SCs are ranked in descending
order according to their mean cell number (cells per milliliter) for all days and all reactors. Cell numbers of x ¼ 80 SCs of a total of 421 samples are shown
as a boxplot on the right. Outliers of deviated cell number values are shown as points.
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were revealed that all also showed net growth or rescue charac-
teristics (G5, G12, G13, G14, and G33; SI Appendix, Fig. S12.
1). Among the growing and rescued SCs were those that were
nested. At RC80, flow cytometrically determined nested SCs
were G2, G4, G5, G9, G12, and G14 (SI Appendix, Table S8.
4), and the 16S rRNA gene analysis determined Pseudacido-
vorax (G2), PeM15 (order, G12, G14), and multidominant G5
and G9 for these SCs (SI Appendix, Fig. S9.5).
Thus, the mass transfer supported genera that showed net

growth μ0SCx in at least one or a few of the local communities
and were rescued by redistribution to all five communities
through the regional pool R or accumulated in R and were also
redistributed via R to the local communities. Subcommunities
that exhibited net growth were also nested. These mechanisms
ensured the survival of cells, even if they did not grow or grew
more slowly in local microbiomes than the actual dilution rate
D would allow.

Discussion

Stochasticity and dispersal are essential processes in shaping the
structure and function of (meta)communities in natural envi-
ronments, thereby influencing the ecological capacity and
impact of microbial communities [e.g., Zhou et al. (42) and
Wu et al. (43)]. Both random drift events, which influence the
birth and death of organisms, and the extent to which organ-
isms disperse are key factors in how communities are affected at
local and temporal scales. According to Hubbell’s (44) neutral
theory, many natural patterns of community assembly can only
be explained by these neutral events, in which niche-based
selection is accompanied by random immigration and emigra-
tion, resulting in ecological drifts and a metacommunity
formed by dispersal (45). Through experimentation and anal-
ogy, ecological drifts have been shown to be greater when abi-
otic niches are shallow, competition is weak, and dispersal is
low (46–48).
The absence of dispersal results in communities that are iso-

lated from each other, making them susceptible to stochastic vari-
ation (9, 10, 13). Low dispersal is common in macroecology and
contributes to the presence and coexistence of multiple species
within a metacommunity of multiple patches (49, 50). In con-
trast, high dispersal is known to increase similarity between locali-
ties and thus the risk of global extinction (51–53). High dispersal
has a quantitative effect on local community formation in accor-
dance to the mass-effect paradigm, in which community compo-
sition in sink habitats tends to resemble that of the source habitat
(44, 54). Frequently, the abundance of species in source commu-
nities and their transfer rates influence the composition of sink
habitats (55), and lost individuals are replaced by members of
source communities (56). This underscores the assumption that a
regional pool that floods local communities with high rates of
mass transfer can lead to synchrony and stability. Usually, mass
transfer occurs between ecologically distinct niches in natural and
engineered systems. Even when mass transfer is high, different
environments have specific community structures, e.g. discrete
bacterioplankton communities in a lake and its inlets (32) or
microbial communities in connected transects of wastewater
treatment plants (26, 37).
In the metacommunity of this study, identical localities oper-

ated in the same way were also expected to develop disparity
(9), but these were overcome by the loop design. The looped
mass transfer between the five local reactors L1–L5 and the
regional pool R minimized the ability to form independent
and disparate microenvironments. Separate local niches that

originally formed during the first 26 d of insular setup elapsed.
After, the microbiomes in L1–L5 and R formed a mutual niche
where the same core microbiomes always dominated (SI
Appendix, Fig. S12.2). These metacommunity niche-shaping
effects were major events that caused the transitional loss of cell
types that were previously dominant in the insular phase. Our
study demonstrated that the invented loop-designed mass trans-
fer significantly switched the community assembly from the dis-
persal limitation to a homogenous dispersal process (SI
Appendix, section S14; NST, 40; QPEN, 38; iCAMP, 39),
thereby stabilizing the microbiomes and increasing the syn-
chrony between the six localities.

It should be noted that while experiments which are
designed to compare different treatments often focus on effect
size and significance and therefore require a certain number of
replicates, in our case stabilization of community structure and
function, as compared to isolated reactors as in Liu et al. (9),
has been demonstrated by a wide range of metrics, addressing
different aspects of the community, all based on single-cell
data, building on an analysis of about 90 million cells. More
extensive studies, either tracking thousands of generations, as
shown for example by the Lenski group (57) for pure popula-
tions, or involving multiple independent and parallel metacom-
munities, could further verify the results due to even higher
sample density and the repetitive experimental design. Never-
theless, studying a community for a minimum of 114 genera-
tions under balanced continuous growth conditions allowed us
to determine the basic properties of the community under suc-
cessive changes in mass transfer rates. These were stability prop-
erties, diversity metrics, net growth rates of subcommunities,
proportions of stochastic and deterministic processes, and the
rescue of cell types at high mass transfer, creating communities
that remain unchanged in composition and function.

The metric “stability” is described by various properties, out
of which constancy, resistance, and recovery are the most essen-
tial ones (1). We found greater constancy and resistance values
in L1–L5 at RC50 and RC80, reflecting stability of the commu-
nity to stochastic assembly processes and perturbation events
(i.e., dilution rate). The source–sink relationship between
L1–L5 and the regional pool R created a reduction of the spe-
cies pool but at high cell abundance that provided less space for
neutral forces. Long-term constancy was established when
transfer rates at RC50 and RC80 prevented the extinction of
local species through the rescue effect and when regional equal-
ity was achieved according to Chesson (58). The increase in
resistance that was observed in the present study could also be
the result of the gradual increase in mass transfer rates (i.e., the
RC10 phase selected already partially nested SCs that eventually
dominated at RC50 and RC80, such as G2; SI Appendix, Table
S8.4). Recovery by definition describes the ability of a commu-
nity to return to the constancy space after a temporary distur-
bance (1, 2). We found that recovery values were always low
because the microbiomes were intentionally steered toward a
low-diverse but unchanging state through the use of the loop-
designed metacommunity setup. Nonetheless, recovery values
were always positive, despite permanent changes in mass trans-
fer rates and because of reinforcement of the rescue effect,
which, in addition to the high constancy and resistance values,
demonstrates the high stability properties of the metacommun-
ity at RC50 and RC80. Nevertheless, we would like to point out
that very long-lasting mass transfer rates could still lead to slow,
transient changes in microbial community structure, as Francis
et al. (59) predicted for macroecological systems, but we
always would expect synchrony to be maintained in local
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communities. The functions of the wastewater community, i.e.,
high carbon, ammonium-nitrogen, and phosphorus removal
efficiencies and biomass production, were always active in both
L1–L5 and R and were not lost even as mass transfer rates
increased (SI Appendix, section S3). For carbon and ammonium
we even found an increase in removal efficiency with mass
transfer rates in the metacommunity setup due to repeated
recycling of the compounds in the flow, suggesting that the
functions of the wastewater community to remove carbon, nitro-
gen, and phosphorus were at least stabilized if not increased.
Notably, relief from mass transfer restored efficiencies to near
starting values and also led to a renewal of earlier diversity levels
(Insular I phase vs. Insular II phase), indicating that rare species
were still present to allow diversity to return.
By using various diversity metrics we found that high mass

transfer rates affected diversity values and reinforced specific
cell types. Looped high mass transfer did not alter richness in
terms of number of dominant SCs or individual cell production
per reactor much (PC; SI Appendix, Table S10.1), but it
reduced β-diversity between and within microbiomes and
resulted in the loss of local niches, which in turn reduced
γ-diversity (Table 1). As a consequence of the lower number of
cell types, high mass transfer resulted in lower stochastic drift
events (SI Appendix, Table S8.1) and thus narrower established
constancy spaces (Fig. 2B). Fewer or even no drift events were
found in the balanced growth periods, indicating that neutral
forces in the metacommunity were low, differing from insular
environments (9, 10). Random birth and death events were
limited by the continuous inflow of source organisms from the
regional pool R and by the increase in biomass with increasing
mass transfer (SI Appendix, Fig. S3.1). High biomass is known
to lower susceptibility to demographic drift or disturbance
(60).
Another argument in favor of the power of mass transfer to

prevent variation was the low degree of the exchange, βSIM
(turnover), of SCs within and between microbiomes at high
mass transfer rates, which was different for insular situations (SI
Appendix, Fig. S8.6 and Table S8.3). Conditions of strong
mass transfer have been described to moderate the turnover of
community structures and support the nestedness of species, e.
g. in the process of biotic homogenization (61) or postglacial
recolonization processes of northern biotopes (62). Most SCs
that benefitted from mass transfer were also those that showed
persistence, βNES (nestedness; SI Appendix, Table S8.4). Similar
to core species, they could also play an important role in
maintaining community traits. Core species are common and
dominant, e.g. in gut microbiomes (63), in benthic octocoral
associations in the form of symbiosis (64), and species in mac-
roecology that cope with climate warming, which largely deter-
mines temporal stability of the total biomass in alpine grassland
communities (65). A huge number of technologies are available
to recognize core species and, moreover, to determine their
functions, as recently reviewed by Hatzenpichler et al. (66).
However, our study did not focus on the functional activity of
individual cells. Nevertheless, we were able to decipher some of
the most persistent cell types and their functional capacity
through correlation analyses combined with cell sorting and
16S rRNA gene sequencing. In our loop design, dominant SCs
indicated an increased number of correlations despite nutrient
limitation that was caused by high cell density during RC50

and RC80 in L1–L5 and especially in the regional pool R (SI
Appendix, Table S13.1). Genera in nested SCs were able to sur-
vive in R (SI Appendix, Table S8.4) because they could poten-
tially cope with the low carbon and ammonium resources, such

as Sphingobacteriaceae (SI Appendix, Fig. S9.1) (67–69) or
PeM15 (70). Nested Azospirillum (G33), Azospira (G18), and
Pseudacidovorax (G2, G11; SI Appendix, Fig. S9.5) are nitrogen
fixers. They may have displaced other genera because of ammo-
nium self-sufficiency (71–73). Thus, the regional pool R might
have acted as a “hotspot” for genus and function selection,
which underscores the possibility of selecting desired functions
by modifying the conditions of the regional pool.

We also found that mass transfer supported slow-growing
organisms through the rescue effect. Mass transfer is a
source–sink relationship and contributes to the spread and sur-
vival of species in sinks that would otherwise go extinct (74).
Source–sink relationships are generally very strong to ensure
coexistence, and modeled environmental variations were found
to not affect them (75–77). The rescue of species at a sink site
is reflected in various biotechnological processes where biotech-
nologists have successfully used this source–sink principle
for bio-augmentation to keep a desired species in a system
(78, 79).

Most studies, however, ignore or cannot distinguish between
the niche-specific competitive hierarchy of microbiome mem-
bers in sources or sinks and the effects of emigration and immi-
gration on these relationships. Recent studies have begun to
track sink members within microbiomes by calculating their
net growth based on the relative abundances of 16S rRNA gene
sequencing data and bulk biomass to approximate their contri-
bution to sink biomass formation (80, 81). Our study goes a
step further by implementing net growth metrics for all cell
types that migrated back and forth within the loop-designed
source–sink metacommunity, based on data from individual
cells.

We found that slow-growing or almost nongrowing cell
types, which would typically be washed-out under continuous
feeding conditions (9), remained part of the microbiome
through the rescue effect (Fig. 4). At the extreme, at RC80,
when the metacommunity was fully mixed and when the final
microbiome was established, the growth of some SCs in L1–L5
was especially low or nonexistent because of an increase in bio-
mass and decrease in nutrient resources. However, these SCs
overcame their nongrowth in one or two reactors by growing in
one or more of the other five local reactors and, subsequently,
by redistribution via R, which enhanced their persistence in the
metacommunity. Similar rescue effects were modeled for a
macroecology background in relation to a metafood web, sug-
gesting that biodiversity can be buffered under global change
(82). The source–sink relationship from local communities
L1–L5 to the regional pool R and its reverse loop supported
the growth of SCs in L1–L5 rather than in nutrient-limited R.
Unknown is why cells were nested in R and rescued through R.
The few SCs (e.g., multidominant G5 and PeM15 in G12,
G14) showed small cell morphologies. It is conceivable that
they might have been able to successfully utilize the limited
resources and simultaneously take advantage of the high-
exchange-rate (D ¼ 3.6 d�1) qualities of R.

Our setup was thus able to protect slow-growing or even
nongrowing microorganisms for at least 114 generations, which
otherwise would not have survived without mass transfer and
the rescue effect. The loop-designed metacommunity may thus
be a tool to protect and preserve functionally valuable microor-
ganisms even if their growth rate is slow and lower than the
prevailing dilution rate.

In summary, looped mass transfer is a means of stabilizing
microbial communities over long periods of time. The degree
of stabilization can be selected via the mass transfer rate RC :
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Mass transfer reduced local and temporal variations, and the
stochastic behavior that is normally observed in insular setups
was reduced. All microbiomes showed high constancy and
increasing resistance as well as unaffected functions at high
mass transfer rates. Mass transfer also synchronized structures
of the microbiomes by the mechanism of homogeneous dis-
persal, resulting in the lowest intercommunity β-diversity at the
highest mass transfer. The variation of β-diversity within
communities ceased, and the persistence of particular SCs was
highest at high mass transfer. High turnover of community
structures was observed only when no mass transfer occurred.
An increase in mass transfer also increased cell numbers,
thereby decreasing net growth rates μ0. Subcommunities that
showed no growth ðμ0SCx ¼ 0Þ in one locality were rescued by
growth at another locality and by their redistribution via the
loop design. Thus, lost SCs, whose growth rate was below the
dilution rate and that would normally go extinct, were fostered
and replaced by members of the source community. The
regional pool itself also served as a rescue site through the redis-
tribution of SCs that accumulated specifically in R.
The local reactor conditions that were used in this study ulti-

mately selected our microbiome. It is conceivable to test other
local and especially regional conditions that support other cell
types in natural communities in the future and thus design
other stabilized communities. In particular, when certain medi-
cally or biotechnologically relevant functions are desired that
require organisms with different physiological properties,
including different growth rates, our loop design provides a
solution for long-term stabilization and thus the reliable func-
tioning of microbiomes.

Materials and Methods

The metacommunity consisted of five local communities (L1–L5) that were oper-
ated in parallel and identically in continuous-flow reactors (Fig. 1). To establish
mass transfer between L1–L5, effluents from all five bioreactors were combined
in a sixth bioreactor (i.e., the regional pool R). After mixing, a part of the regional
pool R was returned to L1–L5 via a recycling loop.

In accordance with Liu et al. (9), the cultivation of L1–L5 began simulta-
neously with an identical inoculum that originated from a full-scale wastewater
treatment plant (SI Appendix, section S1). To study the effects of mass transfer,
recycling flow rates RC were applied with 10% (RC10), 50% (RC50), and 80%
(RC80) of the original medium feeding rate of 0.4 mL�min�1 (SI Appendix,
section S2).

The experiment was run for 110 d. Five phases were distinguished in accor-
dance to their recycling flow rate RC: phase 1 with no recycling (Insular I, start-
ing on day 0), phases 2 to 4 (with recycling flow rates RC10, RC50, and RC80,
starting on days 26, 47, and 64, respectively), and phase 5 (Insular II, starting
on day 89), again without recycling. Within each phase, the first 7 d (five times
volume exchange of a reactor) were defined as the adaptation period, and the
subsequent days were a balanced period during which abiotic parameters were
expected to be more or less constant (SI Appendix, section S3).

A total of 448 samples were collected from the six bioreactors, (i.e., 76 sam-
ples from each of the five local communities L1–L5 and 68 samples from the
regional pool R; SI Appendix, section S3 and Dataset S1). The harvested cells
were stabilized, stored at �20 °C, and stained with 40,6-diamidino-2-phenylin-
dole (DAPI) for flow cytometric measurement (SI Appendix, section S4). The
samples were analyzed with a MoFlo Legacy Cell Sorter (Beckman Coulter). To
ensure reliability of the cell handling procedures, a microbial cytometric mock
community (83) was used, which was handled identically to the reactor samples
on each measurement day. The instrument was optically aligned daily using
0.5-μm and 1-μm ultraviolet monodisperse fluorescent beads, and the same
beads were inserted into each sample as an internal reference to monitor the
instrument’s stability (SI Appendix, section S4). All raw data are available in the
FlowRepository (https://flowrepository.org/; accession no. FR-FCM-Z3MU).

Single-cell data were collected in logarithmically scaled two-dimensional (2D)
dot plots of DAPI fluorescence vs. forward scatter for cell-size-related information.
A cell gate that excluded beads and noise was defined, which included 200,000
virtual cells for each measurement. According to apparent cell clusters in the 2D
dot plots of all measured samples (n¼ 448), a gate-template with 80 gates was
defined (G1–G80). The cell gate, the cell numbers per gate of the gate template,
and the measured total cell number (CN) were used to determine both the rela-
tive and absolute cell numbers per gate over time (SI Appendix, Figs. S8.1–S8.
3). In this study, we refer to the cells from a gate (G) as a subcommunity (SC).
Data from a total of 35,840 SCs (including 80 SCs of the inoculum) were
obtained (SI Appendix, section S4 and Dataset S2). Dominant SCs were defined
as having an average proportion of cell numbers higher than 1.25%.

For cell counting, live cells were stained with SYTO9 and counted flow cyto-
metrically with the CyFlowSpace (Sysmex Partec GmbH) by using the True Volu-
metric Absolute Counting mode and FloMax 2.4 (Sysmex Partec; SI Appendix,
section S5).

A total of 500,000 cells of each selected SC were sorted, and the cell pellets
were stored at �20 °C for subsequent DNA isolation (SI Appendix, section S4).
DNA from both whole-community samples and sorted cells was extracted (SI
Appendix, section S6). The 16S rRNA gene amplicon sequencing was performed
by using Pro341F (84) and Pro805R (85) primers for the V3-V4 region. To ensure
quality of the sequencing run and analysis, a sequencing mock community
(ZymoBIOMICS Microbial Community Standard; Zymo Research) was included in
the sequencing project (SI Appendix, Fig. S6.1). The community and SC samples
were resolved at the genus level (SI Appendix, Figs. S9.1 and S9.5). All raw data
are available in the NCBI Sequence Read Archive (https://www.ncbi.nlm.nih.gov/
bioproject/PRJNA756026/; accession no. PRJNA756026). All tools and scripts
that were used for the statistical analyses are provided in SI Appendix, section
S6, step 6.

Changes in microbiome structures were visualized by dissimilarity analysis
(Bray–Curtis index) based on relative cell abundance per SC (SI Appendix,
section S8, step 1). The temporal variation in community structure was quanti-
fied by calculating Canberra distances from the endpoints of respective previous
phases to each of the subsequent relative cell numbers per SC (SI Appendix,
section S7, step 1). Effluents between local communities L1–L5 and the regional
pool R were compared by permutational analysis of variance (PERMANOVA) to
test whether L1–L5 alone structured the R community (SI Appendix, section S8,
step 2).

Intra- and intercommunity β-diversity were calculated to quantify temporal
and regional variations of the local microbiomes L1–L5 and regional pool R (9).
Community inherent stochastic drift events were highlighted based on intracom-
munity β-diversity values. Changes in α- and γ-diversity values were also
documented (SI Appendix, section S8, step 3). The relative proportions of deter-
ministic and stochastic processes that influenced the assembly of the communi-
ties from dispersal limitation in the Insular I phase (and back in the Insular II
phase) to a homogenous dispersal process during mass transfer were calculated
using the tools described in SI Appendix, section S14.

To quantify the increasing synchrony in SC emergence in the reactors,
community composition variation was partitioned into species replacement and
species loss to determine turnover and nestedness using a method that was
developed for microbial community flow cytometric data. The turnover βSIM and
nestedness βNES components of Sørensen dissimilarity were calculated (61, 62)
(SI Appendix, section S8, step 4).

To understand the effect of mass transfer on diversity patterns and synchrony,
we calculated the net growth rate of both the entire microbiomes (μ0; SI
Appendix, section S10) and every dominant SCs in local microbiomes L1–L5
(μ0SCx; SI Appendix, section S11). The net growth rates were calculated from cell
numbers in the inflow, cell numbers lost by the effluent, and the growth of cells
in a time interval Δt (d) (SI Appendix, section S10 and Eqs. S10.1–S10.10 and
S11.1–S11.5).

To verify synchrony with increasing recycling flow rates RC, stability properties (2)
were calculated for the whole communities (SI Appendix, section S7) and
highlighted for SCs that were promoted by mass transfer (SI Appendix, section S12).

Data Evaluation. Unless otherwise noted, all calculations and analyses were
performed using RStudio v1.2.1335 with R v3.6.3. The dissimilarity analysis was
supported by the R packages vegan v2.5.6 (86) and flowCyBar (87) (http://
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bioconductor.org/packages/flowCyBar/). The correlation analysis and the partial
Mantel test were supported by the R packages Hmisc v4.4.0 (88) and vegan v2.
5.6 (86). The quantification of stability properties followed the R script of Liu et al.
(2). Detailed descriptions of the statistical handling are provided in SI Appendix:
stability test (SI Appendix, section S7), community composition analysis (SI
Appendix, section S8), sequencing-data-based analysis (SI Appendix, section S9),
net growth rates (SI Appendix, sections S10 and S11 and Datasets S6 and S7),
and correlation analysis (SI Appendix, sections S12 and S13), respectively. The
Wilcoxon test was conducted to determine significance (P < 0.05) of the differ-
ence in α-, β-, and γ-diversity values, numbers of correlations, and stability prop-
erty values between pairwise phases. The PERMANOVA test was supported by
R package vegan v2.5.6 (86). The graphical work was supported by the R pack-
age ggplot2 v3.3.0 (89).

Data Availability. Flow cytometric raw data, 16S rRNA gene amplicon
sequencing data, and R scripts and materials for data analysis and relevant
graphical work have been deposited in FlowRepository (accession no. FR-FCM-

Z3MU), NCBI Sequence Read Archive (accession no. PRJNA756026), and GitHub
(https://github.com/ufzshuangli/mc_masstransfer).
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