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ABSTRACT Clostridioides difficile infection (CDI) can result in severe disease and
death, with no accurate models that allow for early prediction of adverse outcomes.
To address this need, we sought to develop serum-based biomarker models to pre-
dict CDI outcomes. We prospectively collected sera �48 h after diagnosis of CDI in
two cohorts. Biomarkers were measured with a custom multiplex bead array assay.
Patients were classified using IDSA severity criteria and the development of disease-
related complications (DRCs), which were defined as ICU admission, colectomy,
and/or death attributed to CDI. Unadjusted and adjusted models were built using lo-
gistic and elastic net modeling. The best model for severity included procalcitonin
(PCT) and hepatocyte growth factor (HGF) with an area (AUC) under the receiver op-
erating characteristic (ROC) curve of 0.74 (95% confidence interval, 0.67 to 0.81). The
best model for 30-day mortality included interleukin-8 (IL-8), PCT, CXCL-5, IP-10, and
IL-2R� with an AUC of 0.89 (0.84 to 0.95). The best model for DRCs included IL-8,
procalcitonin, HGF, and IL-2R� with an AUC of 0.84 (0.73 to 0.94). To validate our
models, we employed experimental infection of mice with C. difficile. Antibiotic-
treated mice were challenged with C. difficile and a similar panel of serum biomark-
ers was measured. Applying each model to the mouse cohort of severe and nonse-
vere CDI revealed AUCs of 0.59 (0.44 to 0.74), 0.96 (0.90 to 1.0), and 0.89 (0.81 to
0.97). In both human and murine CDI, models based on serum biomarkers predicted
adverse CDI outcomes. Our results support the use of serum-based biomarker panels
to inform Clostridioides difficile infection treatment.

IMPORTANCE Each year in the United States, Clostridioides difficile causes nearly
500,000 gastrointestinal infections that range from mild diarrhea to severe colitis
and death. The ability to identify patients at increased risk for severe disease or mor-
tality at the time of diagnosis of C. difficile infection (CDI) would allow clinicians to
effectively allocate disease modifying therapies. In this study, we developed models
consisting of only a small number of serum biomarkers that are capable of predict-
ing both 30-day all-cause mortality and adverse outcomes of patients at time of CDI
diagnosis. We were able to validate these models through experimental mouse in-
fection. This provides evidence that the biomarkers reflect the underlying patho-
physiology and that our mouse model of CDI reflects the pathogenesis of human in-
fection. Predictive models can not only assist clinicians in identifying patients at risk
for severe CDI but also be utilized for targeted enrollment in clinical trials aimed at
reduction of adverse outcomes from severe CDI.
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Clostridioides difficile is a spore-forming bacillus that causes nearly 500,000 cases of
toxin-mediated gastrointestinal illness yearly in the United States, with 29,300

deaths and a cost of 1.5 billion dollars annually (1). The pathogenesis of C. difficile
infection (CDI) involves local toxin production within the intestines, leading to diarrhea
and intestinal wall inflammation. Some patients experience severe colitis, along with a
systemic inflammatory response as previously characterized (2).

We currently lack highly accurate predictive tools to assist with clinical decisions
following CDI diagnosis. The development of accurate predictive models for adverse
outcomes could guide the use of emerging treatments for CDI that can ameliorate or
prevent disease-related complications (DRCs) such as ICU admission, colectomy, or
death (3). For instance, fidaxomicin is costlier than vancomycin, while fecal transplants
carry the risk of alterations to the host microbiome with unknown long-term effects, as
well as transmission of enteric pathogens (4). Widespread deployment of these novel
treatments in patients with CDI is impractical due to expense, invasiveness, and
undetermined safety profiles, necessitating the development of tools for patient risk
stratification treatment selection optimization.

The Infectious Diseases Society of America (IDSA) and Society for Healthcare Epide-
miology of America (SHEA) guidelines use measurements of systemic immune response
(white blood cell [WBC] count � 15,000) or signs of renal dysfunction (creatinine � 1.5)
to define severe CDI (5). Further signs of organ failure (shock, hypotension, ileus, or
megacolon) are used to define complicated CDI. While this classification system guides
management decisions, the features used are late findings and do not always allow for
early identification of high-risk individuals. For instance, in a study of two cohorts
consisting of 156 and 272 unique CDI cases, of the 23 all-cause mortality cases, 10 of
the patients (43.5%) did not meet IDSA severity criterion at time of diagnosis. An ideal
model would identify cases of CDI at the time of diagnosis that are progressing toward
severe systemic disease, so that treatments to halt disease progression can be started.
Models built from baseline clinical variables or standard laboratory measurements have
met with limited success in accurately predicting adverse outcomes, or they do not
validate externally (6–12). Therefore, we set out to determine if predictive models built
from a panel of multiple inflammatory mediators measured at diagnosis of CDI can
accurately predict adverse outcomes, specifically, 30-day all-cause mortality and DRCs
defined as ICU admission, colectomy, and/or death attributed to CDI. To validate these
findings and provide further evidence of the utility of mouse models for CDI, we
employed an experimental C. difficile infection in mice and tested the capability of the
biomarker-based model to determine high disease severity in these mice.

RESULTS
Serum markers of epithelial damage, inflammation, and neutrophilic migra-

tion are significantly associated with mortality and disease-related complications.
We studied an initial pilot cohort of 156 patients with CDI, of whom 58 (37.2%) met
IDSA severity criteria, 4 (2.6%) died within 30 days, and 10 (6.4%) had disease-related
complications. Of the 4 patients with CDI who died within 30 days, 2 did not meet IDSA
severity criteria at the time of diagnosis. Serum collected near time of diagnosis was
tested with a custom panel for serum biomarkers ranging from inflammatory markers
to epithelial growth factors (Table 1). Biomarker profiles of serum from severe and
nonsevere cases showed separation by principal-component analysis (see Fig. S1A and
B in the supplemental material), while redundancy analysis (RDA) of biomarkers differ-
entiated severe and nonsevere episodes by permutational multivariate analysis of
variance (MANOVA) (P � 0.005) and differentiated cases that developed DRCs
(P � 0.025) (Fig. S1C and D). These biomarkers did not distinguish between patients
who died within 30 days of diagnosis, most likely due to the limited number of 30-day
mortality cases in our pilot study (n � 4). Unadjusted logistic regression revealed that
interleukin-6 (IL-6), procalcitonin (PCT), IL-8, IL-2R�, and hepatocyte growth factor (HGF)
were significantly associated with severity (P values of �0.001, �0.01, �0.05, �0.05,
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and �0.05, respectively). All of these biomarkers except procalcitonin were also signif-
icantly associated with DRCs but not overall 30-day mortality (Table S1).

We employed a validation cohort of 272 unique CDI cases among 253 patients, of
whom 71 (26.1%) met IDSA severity criteria, 19 (7.0%) died within 30 days, and 18
(6.6%) had DRCs (Table 2). Eight of 19 patients experiencing 30-day all-cause mortality
did not meet IDSA severity criteria at the time of diagnosis. There were 14 patients that
experienced 30-day all-cause mortality and developed DRCs. Similar to the case with
the pilot, biomarker-based RDA of the validation cohort differentiated severe and
nonsevere CDI cases by permutational MANOVA (P � 0.001) and DRCs (P � 0.002). With
the increase in the number of patients who died, biomarker profiles from patients with
30-day mortality were also differentiated by RDA (P � 0.001) (Fig. S2). Characterization
of biomarker associations with each outcome was performed with unadjusted logistic
regression and showed that 12 of the 17 inflammatory markers were individually
associated with at least one outcome, with 6 biomarkers (HGF, procalcitonin, IL-6,
IL-2R�, IL-8, and tumor necrosis factor alpha [TNF-�]) significantly associated with all
three outcomes. With unadjusted inflammatory mediators, the most significant positive
associated biomarkers (P � 0.001) with IDSA severity were HGF, PCT, IL-6, and IL-2R�,
with 30-day mortality were IL-2R�, PCT, IL-8, and IP-10, and with DRCs were PCT, IL-8,
and IL-2R� (Table 3). All associations are shown in Table S2. These findings validate the
associations between biomarkers and adverse outcomes seen in the pilot cohort.

Development of high-performance, multivariable models to estimate CDI se-
verity and predict adverse outcomes. While logistic regression models were initially
produced to test feasibility of predicting 30-day all-cause mortality and DRCs from
serum biomarkers at diagnosis (Table S3), these models are often not useful outside the
particular cohort in which they were built. To produce more refined and generalizable
models, we used 5-fold cross-validated elastic net regression modeling. As our goal was
not to produce necessarily the best model but to describe which biomarkers have the
potential to predict adverse outcomes in a generalizable way that would be most likely
to validate in external cohorts, we show the modeling results for a range of tuning
parameters. Alpha values were tested from pure ridge regression (alpha � 0) to pure
lasso regression (alpha � 1), allowing the visualization of which biomarkers are retained

TABLE 1 Support for inclusion of inflammatory mediators previously shown to be associated with CDI severity and adverse outcomesa

Inflammatory mediator (abbreviation) Alternative name(s) and/or abbreviation(s) Prior studies in CDI/UCb

Tumor necrosis factor alpha (TNF-�) Olson et al. (21),
Brito et al. (22), Klapproth and
Sasaki (23)

Interleukin-2 receptor � (IL-2R�) CD25 Rao et al. (2)
Interleukin-4 (IL-4) Connelly et al. (24)
Interleukin-6 (IL-6) Rao et al. (2)
Interleukin-8 (IL-8) Neutrophil chemotactic factor Rao et al. (2),

Steiner et al. (25),
Jiang et al. (26)

Interleukin-15 (IL-15) Rao et al. (2)
Interleukin-22 (IL-22) Sadighi Akha et al. (27)
Interleukin-23 (IL-23) Cowardin et al. (28),

Buonomo et al. (29)
Chemokine (C-C motif) ligand 2 (CCL2) Monocyte chemotactic protein 1 (MCP-1) or small inducible

cytokine A2 (SCYA2)
Rao et al. (2)

CCL5 RANTES Rao et al. (2)
Chemokine (C-C motif) ligand 4 (CCL4) Macrophage inflammatory protein 1� (MIP-1�) Rao et al. (2)
Chemokine (C-X-C motif) ligand 5 (CXCL5) El Feghaly et al. (30)
Chemokine (C-X-C motif) ligand 9 (CXCL9) Monokine induced by gamma interferon (MIG) Rao et al. (2)
Hepatocyte growth factor (HGF) Rao et al. (2).
Epidermal growth factor (EGF) Rao et al. (2)
Chemokine (C-X-C motif) ligand 10

(CXCL10)
Interferon gamma-induced protein 10 (IP-10) or small inducible

cytokine B10 (SCYB10)
Rao et al. (2)

Procalcitonin (PCT) Rao et al. (31)
aReproduced with permission from the work of Limsrivilai et al. (32).
bUC, ulcerative colitis.
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in the model as the inclusion criterion becomes more stringent (toward lasso regres-
sion). Additionally, biomarker inclusion is impacted by the selection of lambda, where
deviance was within 1 standard error of the minimum (1se) or at the minimum (min).

As smaller models are more useful for clinical applications and performance did not
differ drastically between the min (higher potential for overfitting) and 1se (higher
potential for being generalizable) models, biomarker inclusion for each model and the
area (AUC) under the receiver operating characteristic (ROC) curve performance for the
1se models are shown in Fig. 1, while the results for the min models are shown in
Fig. S3. To create the most parsimonious model, the 0.9 models are strongly weighted
to reduce unnecessary biomarkers and are the chosen highlighted models, although
similar performance is seen across lambda and alpha values. ROCs and AUCs for the
best elastic net models at each alpha value are shown in Fig. S4, highlighting the
stability of the model performance with decreasing biomarker inclusion.

For IDSA severity estimation, elastic net modeling shows that PCT and HGF are
included in all models and are the only biomarkers in 1se models with alpha values of
�0.5. The 1se (alpha � 0.9) model includes 2 biomarkers and produces an AUC of 0.74

TABLE 2 Cohort demographics and pertinent patient information

Demographic category Subcategory

Value for:

Pilot Validation

No. of cases 156 272
Age (yrs) 56 � 18 55 � 21

Sex Male 67 (43.0%) 131 (48.2%)
Female 89 (57.0%) 141 (51.8%)

Race Caucasian 137 (87.8%) 236 (86.8%)
Black or African American 10 (6.4%) 18 (6.6%)
Asian 0 (0%) 4 (1.5%)
American Indian or Alaska Native 2 (1.3%) 3 (1.1%)
Native Hawaiian and Pacific Islander 1 (0.6%) 0 (0%)
Other or unknown 6 (3.9%) 11 (4.0%)

Ribotypes 027 ribotype 15 (9.6%) 25 (9.2%)
014-020 ribotype 30 (19.2%) 47 (17.3%)

Method of CDI diagnosis Toxins A/B enzyme immunoassay 71 (46%) 69 (25%)
Reflex to PCR for tcdB gene 85 (54%) 203 (75%)

Disease measures IDSA severity 58 (37.2%) 71 (26.1%)
30-day mortality 4 (2.6%) 19 (7.0%)
DRCs 10 (6.4%) 18 (6.6%)
Subset with 30-day all-cause mortality and DRCs 2 (1.3%) 14 (5.2%)

Pertinent medical history Elixhauser score 4.6 � 3.3
Concurrent antibiotics 112 (71.8%) 87 (32.0%)
History of C. difficile infection 40 (25.6%) 52 (19.6%)
Inflammamatory bowel disease 41 (15.1%)

TABLE 3 Validation cohort: top six inflammatory mediators by simple unadjusted logistic regression for IDSA severity, 30-day all-cause
mortality, and disease-related complicationsa

Unadjusted analysis for IDSA severity Unadjusted analysis for 30-day all-cause mortality Unadjusted analysis for DRC

Biomarker OR OR sig. AUC Biomarker OR OR sig. AUC Biomarker OR OR sig. AUC

HGF 1.97 (1.49–2.60) *** 0.71 (0.64–0.78) IL-2R� 8.28 (3.41–20.11) *** 0.85 (0.77–0.92) PCT 1.94 (1.43–2.64) *** 0.82 (0.75–0.90)
PCT 1.57 (1.3–1.89) *** 0.69 (0.62–0.76) PCT 1.92 (1.42–2.58) *** 0.82 (0.73–0.9) IL-8 2.03 (1.44–2.86) *** 0.78 (0.67–0.88)
IL-6 1.39 (1.17–1.65) *** 0.68 (0.62–0.75) IL-8 2.03 (1.45–2.86) *** 0.80 (0.71–0.90) IL-2R� 4.86 (2.16–10.94) *** 0.79 (0.69–0.88)
IL-2R� 2.29 (1.47–3.57) *** 0.65 (0.58–0.72) IP-10 1.76 (1.31–2.36) *** 0.67 (0.54–0.79) IL-6 1.49 (1.17–1.90) ** 0.69 (0.54–0.84)
IL-8 1.44 (1.14–1.82) ** 0.64 (0.57–0.71) EGF 0.59 (0.43–0.8) *** 0.70 (0.58–0.83) HGF 1.94 (1.3–2.89) ** 0.71 (0.59–0.84)
TNF-� 2.87 (1.29–6.39) ** 0.61| (0.53–0.69) CXCL-5 0.53 (0.36–0.8) ** 0.75 (0.65–0.85) IP-10 1.42 (1.05–1.94) * 0.62 (0.49–0.75)
aOR, odds ratio; sig., significance. *, P � 0.05; **, P �0.01; ***, P � 0.001.
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(0.67 to 0.81) (Fig. 1), while the min (alpha � 0.9) model includes 13 biomarkers and
produces an AUC of 0.78 (0.71 to 0.84) (Fig. S3).

For 30-day mortality prediction, elastic net modeling shows that IL-8, PCT, IP-10, and
IL-2R� are the most included biomarkers for 1se models and are included in all min
models along with CXCL-5. The 1se (alpha � 0.9) model includes 5 biomarkers and

A

Best Alpha = 0.9, Elastic Net Models −− 1se lambda
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FIG 1 Biomarker inclusion and AUCs for 1 se lambda Glmnet models across 100 iterations for estimating IDSA severity or predicting adverse outcomes. (A)
Table showing which biomarkers are included in each Glmnet model. Inclusion was determined by (i) classification task (estimating IDSA severity or predicting
adverse outcomes) and (ii) the penalty for including additional low yield variables. Each model was performed across 100 iterations with different initial seeds
for each value of alpha. An alpha value closer to 0 weights toward ridge regression, and a value closer to 1 weights toward lasso regression. Lasso regression
places a higher penalty on including additional biomarkers, resulting in fewer biomarkers included in the final model for higher alpha values. The color of each
square indicates out of the 100 iterations how many times that individual biomarker was included in the produced models for the given alpha value. (B) Table
showing the performance of the best model with an alpha value of 0.9 and biomarkers included. (C) ROCs and AUCs for the best models with an alpha value
of 0.9.
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produces an AUC of 0.89 (0.84 to 0.95) (Fig. 1), while the min (alpha � 0.9) model
includes 12 biomarkers and produces an AUC of 0.91 (0.85 to 0.97) (Fig. S3).

For DRC prediction, elastic net modeling shows that IL-8, PCT, HGF, and IL-2R� were
included in most 1se models and all min models. The 1se (alpha � 0.9) model includes
4 biomarkers and produces an AUC of 0.84 (0.73 to 0.94) (Fig. 1), while the min
(alpha � 0.9) model includes 4 biomarkers and produces an AUC of 0.85 (0.74 to 0.96)
(Fig. S3). The same biomarkers were included in both models, indicating that deter-
mining DRCs is highly dependent on these four markers.

Regardless of model parameters, performances were similar across the largest and
smallest models for each outcome and had AUCs higher than the highest among
individual biomarker regression models. PCT was the only shared biomarker between
30-day mortality and IDSA severity models. DRC models included the two most
significant biomarkers for IDSA severity (HGF and PCT) as well as two others found in
30-day mortality models (IL-2R� and IL-8). This indicates that the task of predicting
DRCs has a solution that overlaps at least in part with estimating IDSA severity and
predicting 30-day mortality. Similar to results from logistic regression modeling, the
best-performing models were for 30-day mortality, followed closely by DRC, and the
worst performance was seen in models for estimating IDSA severity.

Biomarker-based models outperform basic clinical models for predicting 30-
day mortality and DRCs. IDSA severity is used clinically to assess the severity of CDI
and inform treatment, while the Elixhauser comorbidity index (Elixhauser), which was
developed in order to predict mortality, is used as an aggregate measure of the burden
of comorbid disease at baseline. We used IDSA severity and Elixhauser to estimate
adverse outcomes and compare to our biomarker-based models. Simple logistic re-
gression models showed that IDSA severity was significantly associated with 30-day
all-cause mortality (P � 0.003; AUC� 0.67 [0.55 to 0.79]) and DRCs (P � 0.002; AUC�

0.69 [0.57 to 0.80]) but performed substantially worse than our biomarker models
(Fig. 2A). Simple logistic regression models showed that Elixhauser index was signifi-
cantly associated with 30-day all-cause mortality (P � 0.001; AUC� 0.77 [0.69 to 0.84])
and DRCs (P � 0.018; AUC� 0.71 [0.63 to 0.80]), but not with IDSA severity (P � 0.51;
AUC� 0.53 [0.45 to 0.61]), and similarly performed worse than our biomarker-based
models (Fig. 2B).

The best biomarker-based elastic net model is able to improve the correct classifi-
cation of 30-day all-cause mortality cases at time of diagnosis compared to the IDSA
severity model for predicting 30-day all-cause mortality. This is demonstrated by a
positive continuous net reclassification improvement (NRI) (P � 0.022; NRI � 0.53 [0.078
to 0.98]) when comparing the two models. NRI ranges from �2 (100% of positives and
100% of negatives incorrectly reclassified) to �2 (100% of positives and 100% of
negatives correctly reclassified); thus, an NRI of 0.53 is a moderate improvement in
classification of individuals with 30-day all-cause mortality by the biomarker-basedmodel
over the baseline IDSA severity model.

To test if Elixhauser and IDSA severity would add additional information to the
models, we incorporated Elixhauser and IDSA severity into the best elastic net
biomarker-based models (Fig. 2C and D) and into the best logistic regression models
(Fig. S5) for 30-day mortality and DRCs. For alpha values of 0.9, the AUC for the 1se
model for 30-day mortality increased from 0.89 (0.84 to 0.95) to 0.91 (0.84 to 0.97), while
the AUC for the 1se model for DRCs increased from 0.84 (0.74 to 0.95) to 0.87 (0.78 to
0.97) with the addition of IDSA severity and Elixhauser. The 1se model for DRCs did not
include Elixhauser as a coefficient, indicating poor predictive capability of that variable,
while the addition of Elixhauser and IDSA severity resulted in procalcitonin not being
included in the 1se model for 30-day all-cause mortality.

Multivariable, predictive models for 30-day mortality and DRCs do predict
outcomes in a murine model of severe and nonsevere CDI. We and others have
developed murine models of CDI in which experimentally infected animals will develop
disease ranging from mild diarrhea to severe colitis. These murine models of CDI allow
us to test our predictive biomarker models in a model organism that can develop
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similar disease but lacks the potential comorbidities of human patients. We felt that this
was important to assess, since if our models perform well in an animal system, this gives
support to the notion that our models are being fit toward biologically relevant
biomarkers for CDI rather than comorbid disease or other confounding features that
would not be present in an animal system.
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FIG 2 IDSA severity and Elixhauser perform worse than biomarker models, but slightly improve performance when added to biomarker models directly. (A)
ROCs and AUCs for logistic regression using only IDSA severity to predict 30-day mortality and DRCs. (B) ROCs and AUCs for best 1se models using only
Elixhauser score to predict 30-day mortality, DRCs, and IDSA severity. (C and D) ROCs and AUCs for predicting 30-day mortality and DRCs with best 1se elastic
net biomarker model alone or with Elixhauser score and IDSA severity.
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For this validation, we used a CDI model employing antibiotic pretreatment fol-
lowed by experimental infection with C. difficile spores. We have previously demon-
strated that murine infection with VPI 10463 results in severe, rapidly fatal disease
within 48 h, while infection with strain 630 results in a more indolent course (13). For
these experiments we employed 78 antibiotic-treated mice that were challenged with
either strain 630g (37 mice), strain VPI 10463 (30 mice), or water (11 mice) and assessed
serum responses with a murine version of our multiplex panel. VPI 10463-infected mice
exhibited higher weight loss, more histopathologic intestinal damage, and higher
clinical severity (Fig. 3A to C and Fig. S6). Therefore, we classified mice infected with VPI
10463 to have severe and fatal CDI, while those infected with 630g were classified to
have mild and nonfatal CDI. The best models from our human cohort were applied to
the mouse cohort (best 1se and min lambda models with alpha of 0.9 for IDSA severity,

Mouse Validation: Testing Best Min and 1Se Lambda Human 
5−fold Cross Validated Elastic Net Models with Alpha = 0.9
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FIG 3 Mouse model of CDI to validates human CDI biomarker models. (A) Diagram showing method for mouse model of CDI. (B) Scatterplot
showing weight change at day of euthanization compared to weight at day 0 for mock-infected, 630g-infected, and VPI 10463-infected mice. (C)
Scatterplot showing clinical score (based on activity, coat, posture, diarrhea, and eyes/nose) at euthanization for mock-infected, 630g-infected,
and VPI 10463-infected mice. VPI 10463-infected mice had more weight loss and higher clinical scores than 630g-infected mice (D). Mice infected
with VPI 10463 were categorized as severe and those infected with 630g were categorized as nonsevere CDI cases. The 1se and min lambda elastic
net models with alpha values of 0.9 for IDSA, 30-day mortality, and DRCs were applied to the mouse cohort with the resulting ROCs and AUCs.
Weight change was analyzed using a t test with a Bonferroni post hoc adjustment, and clinical scores were analyzed using a Mann-Whitney U test
with a Bonferroni post hoc adjustment. *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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30-day mortality, and DRCs). Descriptions of which biomarkers are included in each
model are found in Fig. 1B and Fig. S3b. To apply the models to the mice serum data,
each outcome (severity/mortality/DRCs) was defined as positive for VPI 10463-infected
and negative for 630g-infected mice (Fig. 3D) or by a cutoff of weight loss, cecum
histopathology score, or colon histopathology score, as higher weight loss or histopa-
thology represents more severe disease in mice with CDI (Fig. S7).

The 1se models for prediction of 30-day all-cause mortality and DRCs accurately
identified mice infected with high-virulence C. difficile. Specifically, applying each 1se
model to the mouse cohort for high- versus low-virulence infections revealed AUCs of
0.59 (0.44 to 0.74) for the models built for IDSA severity, 0.96 (0.91 to 1.0) for the models
built for 30-day mortality, and 0.85 (0.75 to 0.94) for the models built for DRCs.

DISCUSSION

CDI is associated with an increased risk of mortality, and at present, we are
inadequately determining who will experience adverse outcomes. Multiple models
have been produced to address this problem, including those utilizing electronic
medical records, standard laboratory tests, and medical history (6–12). However, these
models have met with limited success in external validation, and there is room for
improvement in predictive ability of CDI adverse outcomes. Additional studies have
examined specific biomarkers in serum that could be associated with severe CDI, but no
study to date has looked across a wide spectrum of serum-based biomarkers to
determine their effectiveness of predicting cases of mortality or DRCs. Our results
support the hypothesis that models built from a panel of multiple inflammatory
mediators measured early in the course of CDI can accurately predict adverse outcomes
and can do so better than current measures commonly used to predict adverse
outcomes upon CDI diagnosis.

Our panel and model could be utilized at the time of diagnosis to evaluate the risk
of mortality for an individual patient. A negative result reduces the risk of 30-day
all-cause mortality, while a positive result increases mortality risk from �10% at
baseline to �25%. Currently, the therapeutic options are limited in scope, but identi-
fying a high-risk patient could tip the scale toward using more aggressive therapy, such
as colectomy. A secondary use of the panel could be to enable the study of therapies
targeted specifically at reducing mortality in CDI, which otherwise are infeasible due to
lack of statistical power. For example, if a study was being performed for a therapy
against standard of care with a theoretical 30% reduction of mortality in the standard
population with baseline �10% mortality risk with a targeted power of 80% and an
alpha (i.e., type I error) of 0.05, 2,700 patients would be required for the study. However,
if our panel and model were used to identify only high-risk individuals that would be
considered for enrollment, the population mortality risk would be increased to �25%,
reducing the needed number of patients to 928. This would decrease the number of
required subjects 3-fold, substantially reducing cost and improving feasibility.

Validation is an important step in determining if a model is overfit to the particular
cohort and/or confounding factors rather than the disease process itself. Utilizing
murine CDI allowed us to test the models in a separate system without potentially
confounding factors such as age, treatments, and comorbidities. Our results show that
the risk model of 30-day all-cause mortality and DRCs are related to the underlying
biology of the infection as the models are also predictive of severe outcomes in murine
CDI. Additionally, this provides additional support for the observation that murine CDI
has a similar immune response to human CDI, supporting continued use of the animal
model in the study of the biology of CDI.

Overall, our results confirm our hypothesis that a serum-based biomarker panel
predicts adverse outcomes from CDI. Additionally, we show that models constructed
from serum biomarkers outperform both IDSA severity criteria and Elixhauser comor-
bidity index for predicting adverse outcomes. Therefore, serum biomarker-based mod-
els could be used to inform medical decision-making for patients with CDI, and this
study has explored models from a range of modeling algorithms to inform which
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biomarkers are the most promising. Specific interest should be placed on continuing to
study HGF, procalcitonin, IL-8, IL-2R�, IP-10, and CXCL-5, as they were the most
prevalent biomarkers selected in models of adverse outcomes from CDI in this study.

MATERIALS AND METHODS
Cohort design. Sera were collected within 48 h of diagnosis of CDI in two distinct cohorts of patients

and frozen at �80°C until analysis. The pilot cohort collections ranged from October 2010 to November
2012, contemporaneous with our prior publications on various biomarkers in CDI. The validation cohort
collections ranged from January to September 2016. We felt that it was important to separate these two
cohorts as they were heterogeneous for several reasons: (i) the 4-year gap in time, (ii) the change in
testing practices (e.g., collection of stool in Cary-Blair medium and no rejection of formed specimens
in the pilot cohort era and use of best-practice alerts and educational alerts to modify testing protocols
in the validation cohort era), and (iii) the change in treatment practices (movement away from
metronidazole and toward fidaxomicin and vancomycin per new institutional guidelines). All patients
were diagnosed with CDI by the clinical microbiology laboratory using a two-step algorithm including
detection of C. difficile glutamate dehydrogenase (GDH) and toxins A and B by enzyme immunoassay (C.
DIFF Quik Chek Complete; Alere, Waltham, MA), with reflex to PCR for tcdB gene for discordant results
(Focus Simplexa assay from DiaSorin, Saluggia, Italy [pilot cohort], and BD Geneohm assay from Becton,
Dickinson and Company, Franklin Lakes, NJ [validation cohort]). We examined prediction tasks for three
major outcomes of interest: Infectious Disease Society of America (IDSA) severity, 30-day all-cause
mortality, and disease-related complications (DRCs). An IDSA severe case is defined as leukocytosis with
a white blood cell count of �15,000/ml or a serum creatinine level of �1.5 mg/dl (5). DRCs included
colectomy, death, or ICU admission within 30 days attributed to CDI as determined by infectious disease
(ID) physicians on our team blinded to the biomarker results (D.A.P. and K.R.).

The pilot cohort was analyzed with a 14-plex assay to examine key serum biomarkers. After our
preliminary results and further study, CXCL-5, IL-22, and IL-23 were added to the panel to produce the
17-plex assay that was utilized on our validation cohort (Table 1). A similar panel was produced for mice
with identical inflammatory mediators or the closest homologues. Our analysis was split into classifica-
tion of current disease using IDSA severity as the gold standard and outcome prediction. The two
outcomes of each CDI case that we set out to model were 30-day all-cause mortality from time of
diagnosis and disease-related complications (DRCs), which included ICU admission, colectomy, or death
caused by CDI specifically. Attributable CDI severity was determined through physician-based chart
review.

This study was approved by the University of Michigan institutional review board (IRB).
Human and mouse Luminex 17-plex assay. Two custom, bead-based, multiplex inflammatory

mediator panels were performed on samples using a Luminex 200TM dual-laser detection system. Our
panel was selected from previous research cited in Table 1. The human multiplex panel included 17
inflammatory mediators previously identified as being potential biomarkers for CDI, including CCL-2
(MCP-1), CCL-4 (MIP-1b), CCL-5 (RANTES), CXCL-5, CXCL-9, CXCL-10 (IP-10), epidermal growth factor (EGF),
hepatocyte growth factor (HGF), IL-2R	, IL-4, IL-6, IL-8, IL-15, IL-22, IL-23, procalcitonin (PCT), and TNF-�.
The mouse 17-inflammatory-mediator panel included the same cytokines for murine serum except that
it included KC, a mouse homologue of IL-8, instead of IL-8 and included LIX, a mouse homologue of
CXCL-5, instead of CXCL-5. All resulting measurements, in picograms per milliliter, were log transformed.
Demographic information and clinical variables were extracted from the electronic medical record for the
human cohort.

Data analysis methodology. Given that measurements from Luminex assays are linear and thus
accurate over a wide range of concentrations, generally spanning several orders of magnitude, the
inflammatory mediator measurements were log transformed prior to analysis to correct for nonnormal
distributions (positive skew). Principal-component analysis (PCA) was performed for the panel of inflam-
matory mediators, independent of our outcomes of interest, using princomp in the stats package in R
(14). We performed redundancy analysis (RDA) for each binary variable (IDSA severity, 30-day all-cause
mortality, and DRCs) as the predictor, and the outcomes were the log-transformed inflammatory
mediators to assess whether the biomarker profile might be different between the individuals positive
for the binary metric tested (e.g., those that experienced DRCs and those that did not). This was achieved
by performing analysis of variance using Euclidean distance and a permutation test to find P values. This
was performed using the vegan package in R (15). We assessed the impact of individual inflammatory
mediators on the outcomes by performing unadjusted logistic regression for each inflammatory medi-
ator.

We first attempted to model our outcomes using multivariable logistic regression with binomial
deviance as our error measure. However, our overall goal was to identify important inflammatory
mediators and construct models in a manner that avoided overfitting and would be more likely to
generalize to an external cohort. With this in mind, we utilized 5-fold cross-validated elastic net
multivariable logistic regression with the goal of testing the impact of adjusting the stringency of
inclusion criterion and tuning parameters. A lambda value was selected where deviance was within
1 standard error of the minimum (1se, more stringent) or at the minimum (min). Additionally, we
swept through alpha values range from pure ridge regression (alpha � 0) to pure lasso regression
(alpha � 1) to identify which biomarkers would be included under each condition. For each value of
alpha tested, 100 iterations across different seeds were performed. All of these methods (regularized
regression, cross-validation, evaluating different lambda values, and sweeping the alpha tuning
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parameter) were aimed at avoiding overfitting, and even though this results in models that do not
perform as well, the resulting claims about model performance are more conservative and more
likely to validate externally. This was performed using the Glmnet package in R (16). Comparison of
elastic net models was performed by creating receiver operating characteristic (ROC) curves and
calculating the area under the ROC (AUC) using the pROC package in R (17). Net reclassification
improvement index analysis was done using the PredictABEL package in R (18). All analysis was
performed using R (19) and RStudio (20).

Mouse experimental methods. Eight- to 12-week-old, specific-pathogen-free (SPF) C57BL/6 mice
were treated with 10 days of cefoperazone (0.5 g/liter) delivered in their drinking water to render them
sensitive to Clostridioides difficile infection. The C57BL/6 mice used were produced by the Young Lab
breeding colony at the University of Michigan established from mice purchased from the Jackson
laboratory. After 2 days off antibiotics, mice were given an oral gavage of water, C. difficile 630g spores,
or C. difficile VPI 10463 spores (Fig. 3). Inoculum was estimated between 103 and 104 spores. While
mock-infected mice gained weight over the course of the observational time, 630g-infected mice
remained at the same weight while VPI 10463-infected mice lost significant weight over 2 days. In our
model, VPI 10463 infection following cefoperazone will result in a high proportion of death if allowed to
progress beyond 48 h. To obtain serum samples, VPI 10463-infected mice were sacrificed 2 days after
infection, while half of the 630g-infected mice were sacrificed at day 2 as time controls and the rest were
sacrificed at 4 days postinfection, when they reached their maximum disease. Cecum and colon histo-
pathology were scored from 0 to 12 by a blinded pathologist for edema, epithelial damage, and
inflammatory cell infiltration. Each mouse was given a clinical score from 0 to 20 at euthanization based
on posture, coat, activity, diarrheal signs, and weight change from day 0 (D0). Further description of the
model can be found in the work of Leslie et al. 2019 (33).
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