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Gestational diabetes mellitus (GDM) is defined as glucose intolerance first diagnosed during pregnancy. This condition shares
same array of underlying abnormalities as occurs in diabetes outside of pregnancy, for example, genetic and environmental causes.
However, the role of a sedentary lifestyle and/or excess energy intake is more prominent in GDM. Physically active women are
less likely to develop GDM and other pregnancy-related diseases. Weight gain in pregnancy causes increased release of adipokines
from adipose tissue; many adipokines increase oxidative stress and insulin resistance. Increased intramyocellular lipids also increase
cellular oxidative stress with subsequent generation of reactive oxygen species. A well-planned program of exercise is an important
component of a healthy lifestyle and, in spite of old myths, is also recommended during pregnancy. This paper briefly reviews the
role of adipokines in gestational diabetes and attempts to shed some light on the mechanisms by which exercise can be beneficial
as an adjuvant therapy in GDM. In this regard, we discuss the mechanisms by which exercise increases insulin sensitivity, changes
adipokine profile levels, and boosts antioxidant mechanisms.

1. Introduction

Gestational diabetes mellitus (GDM) is the most prevalent
metabolic disorder during pregnancy and is defined as
glucose intolerance of variable severity that is first diagnosed
during pregnancy and usually resolves not long after delivery
[1, 2]. This definition includes any degree of glucose intoler-
ance from just impaired to frankly diabetic [3]. Resolution of
the condition is also important when differentiating between
previously undiagnosed type 2 diabetes and GDM [4]. Insulin
resistance, due to a series of hormonal changes, contributes
to decreased blood glucose uptake by muscles [5]. This phe-
nomenon seems to be important from an evolutionary point
of view, as it ensures adequate glucose supply for fetal growth
and development. In the third trimester a healthy pregnant
woman has to increase her insulin secretion by 2-4 times
to maintain glucose levels within normal limits. Pregnant
women who develop GDM are unable to augment insulin
production to compensate for their increased resistance to
insulin [6].

There are several modifiable and unmodifiable risk fac-
tors for developing GDM. Obesity is a modifiable risk
factor that is strongly associated with the development of

gestational diabetes. In a survey of 97000 singleton births,
obese women had a 3-fold increased risk of developing GDM
than nonobese women [7]. Not only obese (body mass index
(BMI) > 30 (kg/mz)) but also overweight women (29 >
BMI > 25 (kg/mz)) have a 1.8 to 6.5 times greater risk of
developing GDM [8]. It is important to appreciate that there
are parallel increases in both obesity and GDM, making it dif-
ficult to determine the contribution of obesity as an indepen-
dent risk factor. The Hyperglycemia and Adverse Pregnancy
Outcome (HAPO) study reveals a direct relationship between
BMI and pregnancy complications (preeclampsia, caesarian
section, higher neonatal birth weight) in pregnant women.
This study also reported that maternal plasma glucose cor-
relates with adverse pregnancy outcomes [9]. A study by
Getahun et al. reports a significant increase in the prevalence
of GDM from 1.2% to 4.2% in between 1989 and 2004 [10].
In the United States, GDM affects 14% of all pregnancies,
causing approximately 200,000 cases annually [11]; however,
its prevalence varies widely (1.7%-11.6%) between racial and
ethnic groups [12]. Recently, the International Association of
Diabetes and Pregnancy Study Groups recommended new
screening criteria for GDM based on the HAPO study. Using
these criteria, the total incidence of GDM reaches almost
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18% percent [13]. In Canada GDM is diagnosed in 3.7%
of nonaboriginal and 8%-18% of first-nations pregnancies
[14]. Another meta-analysis study showed that the risk of
developing GDM was 2.14-, 3.56-, and 8.56-fold higher in
overweight, obese, and severely obese pregnant women [15].
The diagnosis of GDM is associated with increased body
fatness as indexed by prepregnancy BMI; each unit increase
in BMI raises the prevalence of GDM by 0.92% [16].

Until a few decades ago, physical activity was discouraged
in pregnancy due to myths related to exercise-induced injury
and/or adverse fetal and maternal outcomes [17]. However,
findings from clinical and epidemiological studies show no
adverse maternal and fetal effects on women engaged in mild
and moderate physical activities. Indeed, pregnant women
are now advised to engage in regular aerobic exercise in
the absence of medical or obstetric complications [18]. The
American College of Obstetricians and Gynecologists and
the American Diabetes Association (ADA) recognize exercise
as “a helpful adjunctive therapy” for GDM and suggest 30
minutes or more of moderated exercise a day on most, if
not all, days of the week [19, 20]. This paper examines some
of the most important pathophysiologic aspects of GDM
and discusses how aerobic exercise can benefit some of the
physiological adaptations of GDM.

2. Pathophysiology of GDM

Normal pregnancies are associated with increased insulin
resistance, which begins in mid pregnancy and continues
until delivery. This resistance is thought to be compensated
by a nearly 200% to 250% increase in insulin secretion
during pregnancy [21]. GDM can be considered as a transient
form of type 2 diabetes, with the rapid onset triggered by
the metabolic and hormonal changes of pregnancy. Indeed,
the same set of underlying causes that induce diabetes,
including autoimmune interactions with the pancreatic beta
cells and monogenic causes of diabetes and insulin resistance
of peripheral tissues, are also involved in the pathogenesis
of GDM [22]. Some have even considered GDM “diabetes
in evolution” It is likely that chronic insulin resistance has
already developed in most (but not all) GDM patients before
conception and that additional insulin resistance occurs
during pregnancy [23]. In the long term, chronic insulin
resistance and hypersecretion are likely to lead to beta cell
dysfunction.

Autoimmune mechanisms may be principle underlying
pathophysiologic pathway in a minority (<10%) of GDM
patients. Circulating antibodies against pancreatic beta cells
or beta cell antigens (such as GAD) have been detected in
GDM patients: insulin deficiency due to immunologic beta
cell destruction is the initial step in this group of patients who
have evolving type 1 diabetes [24]. The role of pregnancy as
an inducer or accelerator of immunologic damage is yet to be
determined.

A monogenic form of diabetes constitutes 1%-2% of all
GDM patients, who either have an autosomal dominant
mutation (sometimes referred to as maturity-onset diabetes
of the young (MODY)) or a mutation in mitochondrial DNA
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(which is often associated with deafness). Such patients with
preexisting disease are usually diagnosed during pregnancy
screening tests. There is no direct correlation between BMI
and the monogenic form of GDM, as patients tend not to
be obese or have insulin resistance. The main underlying
pathophysiology is dysregulation of beta cell mass or func-
tion which results in hyperglycemia. Several subtypes of
MODY have been described in women with GDM, including
MODY?2 (mutation in glucokinase gene), MODY3 (mutation
in hepatocyte nuclear factor lx), and MODY4 (mutation in
insulin promoter factor 1) [22].

The mechanisms of pregnancy-induced insulin resistance
are not clear but variations in steroid and/or lactogenic
hormone levels may have some role. In particular, human
placental lactogen, human placental growth hormone, pro-
gesterone, cortisol, and prolactin are known to counteract the
effects of insulin [25]. This is supported by some evidence
such as (i) the chronology between raised insulin resistance
and the growth of fetoplacental unit which is accompanied
by increased production of these hormones, (ii) the sim-
ilarity of metabolic changes after administration of these
hormones to nonpregnant individuals having the metabolic
dysregulation of GDM, and (iii) impaired glucose uptake
after exposure of insulin-sensitive cells such as adipocytes
caused by pregnancy hormones [25]. However, changes
in hormone concentrations do not directly correlate with
insulin resistance and do not imply a simple cause-and-
effect relationship [26]. Recent data has focused on the roles
of adipose tissue-derived mediators, such as adiponectin,
leptin, resistin, tumor necrosis factor-alpha (TNF-«), visfatin,
apelin, and chemerin in the pathogenesis of insulin resistance
and inflammation (Figure 1) [27].

Adiponectin. Human adiponectin consists of 244 amino acids
and has a distinct domain structure. It has a collagen-like
and a globular Clq-like domain (similar to the complement
component Clq). This adipokine circulates in the blood in
at least three homomeric complexes: trimer (low-molecular
weight form, LMW), hexamer (medium molecular weight
form, MMW), and higher order multimers (high molecular
weight form, HMW) [28, 29]. Plasma concentrations reveal a
sexual dimorphism, with females having higher levels than
males [30]. The HMW form may be the most biologically
active form regulating glucose homeostasis [31, 32], but
other studies show that even though the HMW form has a
greater association with some cardiovascular diseases [33],
it has a similar utility for the identification of insulin resis-
tance and metabolic disturbances as does total adiponectin
[34]. As opposed to other adipocytokines, plasma levels
of adiponectin inversely correlate with body mass index
(BMI), intra-abdominal fat, and indices of insulin resistance
[35]. Plasma levels of adiponectin decrease with weight gain
and are increased by weight loss [36, 37]. Many studies
suggest that adiponectin is an important regulator of insulin
sensitivity and glucose homeostasis, with several reports
confirming an inverse relationship between insulin resistance
and plasma adiponectin levels [38]. Hypoadiponectinemia
is also associated with beta cell dysfunction [39, 40]. Other
studies show that adiponectin has anti-inflammatory effects,
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such as inhibition of endothelial nuclear factor kappa B
(NF-xB) and suppression of phagocytic activity and TNF-«
production in macrophages [38, 41, 42]. Adiponectin levels
in early pregnancy seem to be unchanged or decreased [43-
45] and are inversely related to maternal BMI and insulin
sensitivity [46]. However, in GDM pregnancies, adiponectin
levels decrease independently of changes in maternal BMI or
insulin sensitivity [43, 47-49]. A study by Cseh et al. observed
significantly decreased plasma adiponectin levels in 30
women with GDM, compared with 40 nondiabetic pregnant
women; they reported that plasma adiponectin levels had a
negative linear correlation with serum tumor necrosis factor-
a (TNF-«), leptin, fasting C-peptide concentration, BMI, and
fasting C-peptide/blood glucose ratio (which was used as an
indirect parameter of insulin resistance) [50]. Furthermore,
lower first trimester adiponectin levels were predictive of
the development of GDM later in pregnancy. Women with
adiponectin concentrations lower than 6.4 ug/mL experience
a 4.6-fold increased risk of GDM, compared to those with
higher concentrations [51]. A few studies have measured
adiponectin levels after delivery at different time intervals
(3 months and 1, and 15 years) in women with GDM and
compared with those women having normal pregnancies.
Hypoadiponectinemia persists even 1.57 years after delivery
in GDM subjects, where it is associated with decreased

insulin sensitivity and low HDL and and negatively correlated
to other inflammatory markers such as CRP, plasminogen
activator inhibitor-1 (PAI-1), and IL-6, even after adjust-
ment for BMI [52-54]. Even though the basis for hypoad-
iponectinemia and GDM is unclear, suggested mechanisms
for the insulin sensitizing effect of adiponectin include (a)
promotion of insulin signaling at the receptor/postreceptor
level, (b) reduction of gluconeogenesis, (c) improved lipid
oxidation, and (d) inhibition of TNF-« signaling in adipose
tissue [55]. Some experiments with globular adiponectin,
whose in vivo importance is questionable, propose a role
for AMPK [56] and PPAR« [57] in its metabolic effects on
skeletal muscles. Muscle binding of adiponectin translocates
GLUT4 (resulting in increased glucose uptake) and increases
nonoxidative glycolysis while also reducing intramyocellular
triacylglycerol content to improve fatty acid oxidation [58,
59]. Adiponectin also sensitizes liver cells to the actions of
insulin and suppresses the synthesis and function of enzymes
such as phosphoenolpyruvate carboxykinase and glucose-6-
phosphatase involved in gluconeogenesis [60]. Adiponectin
also affects fatty acid metabolism in the liver with sec-
ondary influences on plasma triacylglycerol and circulating
nonesterified fatty acids. Adiponectin also induces insulin
secretion in vitro and in vivo [61]. While the information on
the influence of adiponectin in normal insulin sensitivity is



unclear [62, 63], it does, however, appear to augment insulin
secretion during insulin resistance [63]. Several studies report
that adiponectin has antiapoptotic effects on beta cells, both
in cell culture and islet preparations [64, 65].

Leptin. Leptin is a 16kDa protein hormone that plays a key
role in regulating energy intake and energy expenditure,
including appetite and metabolism. It is one of the best
known hormone markers of obesity, and in humans, the
leptin gene is located on chromosome 7 [66]. So far, six
types of receptors have been recognized for leptin (Ob-Ra-
f). Ob-Re does not encode a transmembrane domain and
is secreted and circulates in human plasma and represents
the major leptin-binding activity [67]. Janus-activated kinase
(JAK), signal transducers and activators of transcription
(STAT), insulin receptor substrate, and the mitogen-activated
protein kinase (MAPK) pathways are important leptin intra-
cellular signaling mechanisms [68]. The binding of leptin
to its receptor leads to the formation of the Ob-R/JAK2
complex and activation of STAT3, which is phosphorylated
and migrates to the nucleus to presumably effect changes in
gene expression [69]. Binding of leptin receptors to JAK2
also results in JAK2 autophosphorylation [70], which in
turn phosphorylates insulin receptor substrate proteins, and
involvement of phosphatidyl inositol 3-kinase to activate
downstream signals [71].

During pregnancy leptin is produced by maternal and
fetal adipose tissues, as well as by placental cells [72]. Plasma
levels of leptin increase by 150% to 200% in the second and
third trimesters over those occurring in the first trimester.
Many physiological functions have been attributed to leptin,
including regulation of food intake and energy balance
through central hypothalamic pathways, signaling to the
reproductive system (stimulating secretion of GnRH from
hypothalamus, FSH and LH from pituitary gland), inhibition
of insulin secretion from pancreatic beta cells, stimulation
of glucose transport and utilization, glycogen synthesis, and
fatty acid metabolism [73, 74]. Reduction of insulin secretion
from pancreatic beta cells can result from the effect of leptin
on the ATP-sensitive potassium channels. It has been pro-
posed that leptin prevents beta cell stimulation by blocking
cAMP signaling. Furthermore, leptin may hinder insulin
secretion through cAMP-dependent protein kinase A (PKA)
and protein kinase C (PKC). Leptin also regulates endocrine
function, inflammation, immune response, and angiogenesis.
Weight loss, fasting, and starvation reduce leptin concen-
trations, while weight gain and hyperinsulinemia have the
opposite effects [75-79]. Plasma levels of leptin in pregnant
women are 2- to 3-fold above nonpregnant levels and result
from an upregulation of adipocyte synthesis in the presence
of insulin resistance and hyperinsulinemia [79]. The origin of
pregnancy-induced increases in leptin levels remains unclear
[80]. Some evidence implies that the placenta, instead of
adipose tissue, is the main site of leptin production; for
instance, increased leptin levels precede increases in maternal
weight [81]. The human placenta also has high leptin mRNA
content [82]. Furthermore, maternal leptin levels drop after
delivery. More than 90% of placental leptin is released to the
maternal circulation [81]. Leptin also has many functional
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roles in the human fetus, including embryonic implantation,
developmental growth, and organogenesis. For instance lep-
tin plays critical roles in the development of the fetal skeletal
and lung development.

Many studies document increased maternal leptin levels
in GDM [83-86] and hyperleptinemia in early pregnancy,
which may have predictive implications. In a study of 823
pregnant women in early pregnancy (13 weeks), Qiu et al.
found a strong linear association between maternal plasma
leptin concentration and the risk of GDM later in pregnancy.
After adjusting for maternal prepregnancy adiposity and
other confounders, those subjects with leptin concentration
of 31.0 ng/mL had a 4.7-fold increased risk of GDM compared
to those who had concentrations of 14.3 ng/mL or less [87].
Increases in leptin levels before the development of overt
GDM have also been reported by others [88]. Moreover,
increased leptin levels also occur in the amniotic fluid of
pregnant women who subsequently progress to GDM. A
1ng/mL increase in amniotic leptin levels raises the risk of
GDM development by 4%. Amniotic fluid leptin levels and
amniotic insulin concentration are directly correlated [89].
In spite of all this evidence, unchanged [90] and decreased
levels [91] of leptin were reported in patients with GDM.
Differences in disease severity or ethical variations may
partially explain these discrepancies.

GDM is considered an aggravation of the inflammatory
state that occurs in normal pregnancy and is associated with
increased placenta expression of TNF-« and IL-6 [92]. These
inflammatory cytokines increase the expression of placental
leptin mRNA [93]. On the other hand, leptin increases
production of TNF-« and IL-6 by monocytes. Thus, a vicious
cycle develops which perpetuates the inflammatory state and
intensifies insulin resistance.

Resistin. Resistin is a cysteine-rich peptide hormone that has
been detected mostly in tissues involved in the inflammatory
processes [94]. Cellular origins of resistin include adipocytes,
monocytes, and macrophages [95]. The physiologic role of
resistin in obesity and type 2 diabetes mellitus has been
the subject of much controversy. Several studies have shown
increased expression of resistin in abdominal adipose tissue
of obese individuals [96-98] which correlates with the sever-
ity of obesity [99] and insulin resistance [100], while others
failed to confirm any impact of obesity and insulin resistance
on the concentrations of resistin [101, 102]. The detection of
a high resistin expression in immune cells [103, 104] implies
that it could possibly play a role in the establishment of insulin
resistance through effects on inflammation.

Serum resistin levels in the first and second trimesters of
normal pregnancy are similar to those found in nonpregnant
women, but levels significantly increase in the third trimester
[105]. Additionally, resistin gene expression in term placental
tissue is significantly greater than that in chorionic villous
tissue in the first trimester [106]. The increased third trimester
resistin levels, along with other placental-derived hormones,
might contribute to the insulin resistance and postprandial
hyperglycemia in the second half of pregnancy. Physiologic
concentrations of resistin (10 ng/mL) promote trophoblast
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glucose uptake, while higher concentrations (50-100 ng/mL)
significantly impair it [107].

The precise physiologic role of resistin in human preg-
nancy remains to be determined. Studies of resistin levels
during pregnancy complicated with GDM have produced
inconsistent results; elevated [43, 108, 109], lower [46, 110],
or even unaltered values [45] have all been reported. Lappas
et al. showed a biphasic effect of insulin on the release of
resistin [111]. Low concentrations of insulin greatly enhance
the release of resistin, while it returns to basal levels when the
placenta is exposed to higher insulin concentrations, possibly
by a downregulation of resistin expression in the presence of
high insulin concentration. This biphasic effect of insulin may
explain the low resistin levels reported in GDM [110].

TNF-a. Normal pregnancy is accompanied by a proinflam-
matory environment. TNF-«, which is correlated with insulin
resistance in obesity, could also play similar roles in GDM
and preeclampsia as well. The placenta is the main site of
TNF-« (and interleukin-6, another inflammatory mediator)
production during pregnancy and levels of TNF-« peak in
late gestation. The vast majority of the TNF-« synthesized by
the placenta is delivered to maternal circulation with only a
small amount to the fetal compartment [26]. The rise in TNF-
« levels may be related to pregnancy-associated increases
insulin resistance [26, 112]. There is strong evidence linking
TNF-« to downregulation of insulin receptor signaling in
cultured adipocytes [113], hepatocytes [114], and skeletal
muscles [115]. Importantly, increased TNF-« is associated
with insulin resistance in obesity [116], aging [117], sepsis
[118], and after muscle damage [119]. Studies made in vitro
report that placental tissues from women with GDM release
greater amounts of TNF-« in response to a glucose stimulus
than those from women with normal glucose tolerance [120].
In this regard, TNF-a has been hypothesized to exert an
inhibitory effect on insulin secretion and insulin-regulated
glucose uptake in GDM, thus contributing to the sustained
hyperglycemia [121]. Furthermore, TNF-« has been shown to
be a significant independent predictor of insulin resistance in
GDM [26].

Visfatin. Visfatin is another adipokine which is mainly
expressed in visceral adipose tissue. It shows insulin-like
effects on cultured cells and decreases plasma glucose levels
in mice [122]. Its pathophysiological role, along with other
adipokines, is largely unknown. Plasma level rises in visfatin
increase during obesity, type 2 diabetes, and the metabolic
syndrome [122-124] and fluctuate in normal weight pregnant
women with peak levels between 19 and 26 weeks and a nadir
between 27 and 34 weeks [109]. Some investigators have not
observed a relationship between visfatin and visceral fat mass,
BMI, or insulin sensitivity [123, 125]. Visfatin expression
occurs in human fetal membranes and placenta [126], which
is related to mRNA expression of TNF-« and IL-6 [127].
Visfatin is also secreted from the human amniotic epithelium
and shows antiapoptotic effects on both amniotic epithelial
cells and fibroblasts, where it protects them from apoptosis
induced by chronic distension, labor, or infection [128].
Increased expression levels of visfatin mRNA in adipose

tissue of both pregnant human [126] and animal [129] suggest
its participation in energy homeostasis during pregnancy to
meet the nutritional demands of fetal growth [130].

There are no consistent results on the plasma levels of
visfatin in GDM, as both increased [131-133] and decreased
[127, 134-136] concentrations have been reported. Mas-
torakos et al. reported that visfatin concentrations in the
first trimester positively predict insulin sensitivity during
the second trimester in nonobese, nondiabetic white women
[137]. Furthermore, the immune-modulatory properties of
visfatin can significantly affect insulin resistance. Treatment
of human fetal membranes with recombinant human visfatin
significantly increases levels of some inflammatory cytokines
such as IL-183, TNF-«, and IL-6, all of which influence insulin
sensitivity [138].

Apelin. Apelin is another adipokine secreted from adipocytes
[139] and several other tissues [140]. Even though its role in
normal physiology has not been described precisely, several
functions have been named for this bioactive peptide. Apelin
participates in both normal and pathologic angiogeneses
[141] which may help in the growth of adipose tissue [142].
Insulin increases apelin synthesis in adipocytes and plasma
apelin level rises in obesity associated with insulin resistance
[143]. Apelin also reduces blood pressure by enhancing
endothelium dependent vasodilation [144].

Apelin expression has been demonstrated in human
placental tissue [145] and is thought to be required for
endothelial cell proliferation and growth of blood vessels
[146]. A recent human study reported increased apelin levels
in maternal serum of women with GDM [147]. However,
further studies are needed to clarify the role of this novel
adipokine in normal and complicated pregnancy.

Chemerin. Chemerin is another protein that is highly
expressed in human adipose tissue, liver, and lung and has
a role in adaptive and innate immunity [148]. Chemerin
boosts inflammation by stimulating chemotaxis [149]. IL-f
increases chemerin mRNA expression and secretion from
3T3-L1 derived adipocytes [150]. Since chemerin plays a role
in adipocyte differentiation and glucose metabolism, it is also
considered an adipokine [151]. Adenoviral small hairpin RNA
targeted knockdown of chemerin (or its receptors) impairs
differentiation of 3T3-L1 preadipocytes and decreases the
expression of lipid and glucose metabolizing genes in adipose
tissue [151]. Chemerin level in humans correlates with BMI,
plasma lipids, and blood pressure [151]. Increased serum
concentration of chemerin occurs in individuals with type 2
diabetes [152]. However, studies aimed at evaluating the role
of chemerin in GDM did not demonstrate a clear association
between metabolic dysregulation and chemerin levels during
GDM (153, 154].

3. Role of Exercise in GDM Management

Even though some studies were inconclusive on the benefits
of exercise in preventing GDM [155, 156], there is overwhelm-
ing evidence suggesting that women who exercise have a con-
siderably lower chance of developing GDM [81, 82, 93, 157].



The Canadian Diabetes Association (CDA) recommends that
“Physical activity should be encouraged, with the frequency;,
type, duration, and intensity tailored to individual obstetric
risk” [1]. The American Diabetes Association also suggests
“Women without medical or obstetrical contraindications
are encouraged to start or continue a program of moderate
exercise as part of treatment for GDM” [2]. Participating in
any physical activity during the first 20 weeks of pregnancy
leads to an approximately 50% risk reduction for GDM [158].
In a prospective cohort study among 21,765 women in the
Nurses’ Health Study II, Zhang et al. showed that physical
activity before pregnancy is associated with a risk reduction
in GDM. It is interesting to note that subjects not performing
intense exercise but instead engage in brisk walking also
enjoy a similar risk reduction [159]. Women who engage in
intense physical activity before pregnancy have a 44% and
24% risk reduction for GDM and abnormal glucose tolerance,
respectively [160]. In a case controlled study of physical
activity in 155 pregnant women with GDM compared with
386 healthy pregnant controls, physical activity before and
during pregnancy was associated with a reduced incidence of
GDM [158].

In spite of these studies, there remain many long-
standing myths on the harms of exercise during pregnancy.
For instance, some believe that women who are unused to
exercise before pregnancy should not start when pregnant,
while others suggest that pregnancy means eating for two. Ina
study of pregnant women in Norway, 55% were recognized as
nonexercisers (<20 minutes of vigorous recreational physical
activity at least once a week) in the third trimester and 66.5%
reported walking <30 minutes per day [161]. Unfortunately,
many women reduce their physical activity during pregnancy,
resulting in gaining more weight than is recommended. Age,
education, working status, health condition, and psychosocial
factors such as social modeling and knowledge all determine
likelihood of weight gain and a sedentary lifestyle during
pregnancy [162].

Aerobic exercise is the recommended type of exercise to
prevent excessive weight gain and maintain cardiovascular
fitness. A recent study suggests that the amount of exercise for
pregnant women should be equivalent to energy expenditure
of 16 (ideally 28) metabolic equivalent tasks (METs) per week.
This can be achieved by walking 5.1 kilometers every day
or using a stationary bicycle for 45 min each day [163]. It
is advised that activities such as contact sports be avoided
and attention paid to adequate hydration and avoidance of
exercising in uncomfortably hot and humid environments
[164]. When starting an aerobic exercise program, careful
consideration should be given to the intensity of exercise.
Most experts suggest exercising to 60%-70% of maximal
heart rate for those who were sedentary before pregnancy
and 60%-90% of maximal heart rate for those who are well
trained. Borg’s rating of perceived exertion is another method
to assure an ideal intensity of exercise when it is performed
on a self-paced base. Scales from 6 to 11 are considered mild,
12 to 14 moderate (or somewhat hard), and 15 to 20 are hard
exercises. “Talk test” or physical activity at relaxed strength
that allows one to keep up conversation is another method to
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confirm that intensity of exercise is appropriate and women
are not overexerting [82] (Table 1).

3.1. Suggested Exercise-Induced Benefits in GDM. There are a
few studies of the mechanisms of exercise-induced benefits in
GDM. However, because of the similarity between GDM and
type 2 diabetes, most of the suggested mechanisms in diabetes
can be extrapolated to GDM.

3.11.  Increased Insulin Sensitivity. At least two distinct
pathways are involved in glucose transport; one is stimulated
by insulin or insulin mimetics and the other activated by con-
traction or hypoxia [165-167]. Phosphatidylinositol 3 kinase
(PI3-kinase) is involved in the insulin activated (but not
contraction activated) pathway [168], while 5AMP-activated
protein kinase (AMPK) participates in contraction activated
reactions [169]. Insulin stimulated tyrosine phosphorylation
of insulin receptor substrate (IRS), activity of PI3 kinase, and
insulin stimulated Axt kinase activity are all diminished in
skeletal muscle of obese, diabetic, and GDM patients [92,
170]. Therefore, exercise can provide an alternative way to
bypass the impaired insulin signal transduction in muscles
of diabetic patients [171]. Regular physical activity improves
insulin function and glucose tolerance in healthy individuals
[172], patients with obesity [173], insulin resistance [174], and
diabetics [175, 176]. Molecular mechanisms for improved glu-
cose clearance and insulin sensitivity following exercise are
related to the increased expression and activity of signaling
proteins and enzymes that are involved in skeletal glucose
and fat metabolism [177, 178]. The biogenesis of glucose
transporter isoform 4 (GLUT4), a key enzyme in insulin
stimulated glucose uptake by muscle, is increased by exercise
training [179, 180]. Biopsies of the vastus lateralis muscle
in pregnant women show increased GLUT4 expression in
mildly exercise-trained women [181]. The transcriptional fac-
tor peroxisome proliferator-activated receptor y coactivator-
1 (PGC-1) stimulates GLUT4 expression in addition to
stimulating mitochondrial biogenesis and promoting muscle
remodeling to a fiber type composition that has greater
oxidative capacity and less glycolytic metabolism in nature
(182, 183].

However, exercise-induced improvement in insulin sig-
naling is not exclusively restricted to increased GLUT4
protein expression, as its concentration is similar in sedentary
diabetics and insulin-sensitive control subjects [184, 185].
While exercise increases GLUT4 protein and mRNA in dia-
betic patients [186], increased postreceptor insulin signaling,
especially at the distal step of the insulin PI3-kinase cascade
(which results in GLUT4 translocation and glucose uptake),
is the main mechanism [178, 187, 188]. Atypical protein
kinase C (aPKC) and Akt substrate of 160 kDa (AS160) are
among newly characterized insulin signaling molecules [189,
190]. AS160 in the basal nonphosphorylated state acts as an
inhibitor for GLUT4 translocation. Insulin stimulates AS160
phosphorylation by Akt on five of six phosphor-Akt substrate
motifs, leading to increased GLUT4 membrane trafficking
events [191]. The exact mechanisms of aPKC in controlling
GLUT4 translocation are still not clear, but some reports
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TaBLE 1: Important facts about recommending exercise to pregnant women [82, 163, 164].

Key points

(i) Exercise is part of healthy lifestyle which should be continued during pregnancy.

(ii) The goal of aerobic exercise in pregnancy is to maintain or improve overall fitness (not training for athletic competitions).

(iii) Contact sports or activities with risks of falling or trauma (snow and water skiing, horseback riding, etc.) should be avoided.

(iv) Exercise does not increase adverse outcomes during pregnancy.

(v) Pregnant women previously unaccustomed to exercise should start gradually and not overexert themselves.

(vi) Women should have self-monitoring exertion. “Easy talk” can be helpful for detection of overexertion.

(vii) Exercise in uncomfortably hot and humid weather should be avoided.

(viii) Achieving 16 MET h/w is a reasonable goal of energy expenditure for those who were previously sedentary.

suggest that parallel to Akt, activation of aPKC is essential
in both the process of translocation and docking/fusion of
GLUT4 to the plasma membrane [192].

There are many changes in exogenous insulin require-
ment and glycemic control after a 4-8-week period of
exercise in the last trimester of pregnancy [193-195]. For
example, there are reduced levels of glycosylated hemoglobin,
fasting, and 1-hour plasma glucose following a six-week arm
ergometry in pregnant women with GDM [193]. This exercise
protocol was significantly milder, in terms of duration and
frequency, than those which have been suggested for diabetic
or gravid subjects [196, 197]. In another study of GDM
patients unresponsive to dietary therapy, 8 weeks of super-
vised exercise (50% of VO2max/3 times a week) maintained
euglycemia without the need for insulin therapy [195]. It is
important that exercise is performed on a chronic basis so as
to have a sustained impact on glycemic control, since several
studies report a decline in postprandial plasma glucose upon
cessation of exercise [198, 199].

3.1.2. Adipokine Changes. Weight reduction in obese subjects,
via exercise, results in a lower loss of muscle (compared to
fat) than weight loss through diet [200]. Maintaining lean
body mass is essential for better glucose transport and fat
metabolism. A reduction in fat mass is helpful in increasing
adiponectin levels and improving cytokine profiles. Con-
trolling the release and activity of at least two cytokines,
TNF-« and IL-6, could contribute to the natural protective
effects of physical activity. Interleukin-6 (IL-6) is the first
cytokine to be released into the circulation during exercise,
and its levels increase in an exponential fashion in response
to exercise [201]. IL-6 mRNA is upregulated in contracting
skeletal muscle [202] and the transcriptional rate of the IL-6
gene is also markedly enhanced by exercise [203]. IL-6 acts
as both a proinflammatory and anti-inflammatory cytokine:
when secreted by T cells and macrophages, IL-6 stimulates
the immune response and boosts inflammatory reactions,
while muscle-produced IL-6 exerts anti-inflammatory effects
through its inhibitory effects on TNF-a and IL-18 and
activation of interleukin-1 receptor antagonist (IL-1ra) and
IL-10 [204]. Exercise-induced increases in plasma IL-6 cor-
relate with the muscle mass involved in exercise activity and
also with the mode, duration, and especially the intensity
of exercise [205]. Exercise also confers protection against
TNF-induced insulin resistance [206]. IL-6 enhances lipid
turnover and stimulates lipolysis as well as fat oxidation

via activation of AMP-activated protein kinase [207]. The
lipolytic effect of IL-6 on fat metabolism was confirmed in
two clinical studies of healthy and diabetic subjects [207,
208]. During exercise, IL-6 also increases hepatic glucose
production. Glucose ingestion during exercise reduces IL-6
production by muscles, suggesting that IL-6 is released due
to the reduction in glycogen levels during endurance exercise
and the consequences of adrenergic stimulation of IL-6 gene
transcription via protein kinase A activation [209].

The study of Clapp III and Kiess is one the few exper-
iments that evaluated the effects of exercise on metabolic
markers during pregnancy [152]. They measured the concen-
trations of TNF-a and leptin in a control group of physically
active women and compared this with groups of active
and nonactive pregnant subjects. In this experiment, regular
weight bearing exercise suppressed the pregnancy-associated
changes normally seen in both TNF-« and leptin. The authors
inferred that leptin reduction is a reflection of decreased fat
accretion, and changes in TNF-« could be evidence of altered
insulin resistance [152]. Even though exercise-induced TNF-
« changes have been reported by other investigators in both
pregnant and nonpregnant subjects [210, 211], there is no
consistency in the case of exercise-induced leptin changes.
For example, Hopkins et al. [212] reported an increase in
maternal leptin from mid to late pregnancy following aerobic
exercise. This discrepancy in leptin levels has been observed
in nonpregnant individuals as well [213-215].

3.1.3. Oxidative Stress and Antioxidant Effect of Exercise on
GDM. One characteristic of pregnancy is the early accu-
mulation of fat depots, followed by increased adipose tissue
lipolysis and increased levels of plasma free fatty acids (FFAs)
which all enhance insulin resistance [216]. Intramyocellular
accumulation of diacylglycerol and subsequent activation
of protein kinase C are thought to mediate FFA-stimulated
insulin resistance in skeletal muscles. Insulin resistance
leads to reduction of tyrosine phosphorylation of the IRS-
1 and inhibits activation of PI3 kinase [217]. Increased
intramyocellular lipids increase cellular oxidative stress with
subsequent generation of ROS, stimulating lipid membrane
peroxidative injury of mitochondrial membranes. Oxidative
stress inhibits expression of adipokines [218]. Increase in
TNF-a and IL-6 during diabetes may be due to hyperglycemia
related to oxidative stress and inflammation [83]. One of
the cornerstone effects of exercise training is to augment
the oxidative capacity of skeletal muscles, so that there is



an improvement in the rate of whole body fat oxidation
[219]. This increase in fat oxidation capacity is partly due to
increases in fatty acid transport proteins, leading to increased
removal of plasma FFAs [220]. Plasma membrane-associated
fatty acid binding proteins (FABPpm) and fatty acid translo-
case/CD36 (FAT/CD36) are among several key proteins that
have been identified as fatty acid transporter proteins in
human and animal muscles [221]. Exercise also activates
AMPK, which stimulates fatty acid oxidation, glucose uptake,
and mitochondrial biogenesis.

There are many studies which have evaluated the role
and importance of oxidative stress in pathogenesis of type
2 diabetes; however, this role of oxidative stress in GDM
has received much less attention. The term oxidative stress
indicates a shift towards a prooxidant environment in the
balance between oxidant species formation and antioxi-
dant defenses. Chemical compounds capable of producing
potential toxic reactive oxygen species (ROS) are known
as prooxidants and antioxidants are compounds detoxifying
ROS. Free radicals are reactive chemical species having a
single unpaired electron in an outer orbit. This unstable
configuration provides energy which is released through
reactions with adjacent molecules such as proteins, lipids,
carbohydrates, and nucleic acids. The majority of free radicals
that damage biological systems are oxygen-free radicals [222].

An antioxidant stabilizes or deactivates free radicals
before they attach to cells. Humans have evolved highly
complex antioxidant systems (enzymatic and nonenzymatic)
that work synergistically, and in combination with each
other, to protect cells and organ systems against free radical
induced damage. Antioxidants can be endogenously pro-
duced substances or can be obtained from exogenous sources,
for example, as a part of a diet or as dietary supplements.
Endogenous antioxidants play a crucial role in maintaining
optimal cellular functions and thus systemic health and well-
being. However under conditions which promote oxidative
stress, endogenous antioxidants may not be sufficient and
dietary antioxidants may be required to maintain optimal
cellular functions. The most efficient enzymatic antioxidants
involve glutathione peroxidase, catalase and superoxide dis-
mutase. Nonenzymatic antioxidants include vitamins E and
C, thiol antioxidants (glutathione, thioredoxin, and lipoic
acid), melatonin, carotenoids, natural flavonoids, and other
compounds [223].

There are limited data suggesting that oxidative stress
may be involved in progression or pathophysiology of
GDM. Coughlan et al. reported that the release of 8-
isoprostane, along with superoxide dismutase activity and
protein carbonyl from human placental explants, is signif-
icantly increased in GDM compared to normal placental
tissues [224]. They also reported that placentae from women
with GDM display a reduced capacity to respond to oxidative
stress [225]. Markers of ROS, such as 8-isoprostane, are
increased in placenta, subcutaneous adipose tissue, and
skeletal muscle in women with GDM [226]. These data are
consistent with the hypothesis that oxidative stress may be
involved in the progression and/or pathogenesis of GDM.
Other related studies suggest that oxidative stress in GDM
is also related to an altered antioxidant capacity as well. In
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a comparison between healthy pregnant women with two
groups with diabetes (GDM and type 1 diabetes), Peuchant
et al. reported that plasma and erythrocyte free malondialde-
hyde (MDA) levels were significantly higher, while levels of
plasma vitamin E, erythrocyte vitamin A, and glutathione
peroxidase (GPX) were lower, in both diabetic (including
GDM) subjects [227]. Evidence of lipid peroxidation and
protein oxidative damage is also present in the erythrocytes
of both mothers with GDM and their newborn infants
[228]. In a longitudinal study, Toescu et al. showed evidence
for higher serum lipid and lipid hydroperoxide levels and
lower corrected antioxidant capacity throughout pregnancy
in diabetic women (type 1, 2 and GDM) [229].

Exercise training leads to an upregulation of antioxidant
defense mechanisms in various tissues, presumably due to
increased levels of oxidative stress that occurs during exer-
cise. Exercise-induced production of ROS provokes specific
adaptations such as increased antioxidant/oxidative damage
repairing enzyme activity, increased resistance to oxidative
stress, and lower levels of oxidative damage. Physiological
levels of shear stress increase the expression of Cu/Zn SOD
in human aortic endothelial cells [230], while endurance
training mainly induces Mn-SOD expression [231]. In our
experiments with type 2 diabetic mice (db/db) we observed
a specific downregulation of aortic Mn-SOD following dia-
betes. Low-intensity exercise increased Cu/Zn-SOD protein
production, whereas moderate intensity exercise increased
Mn-SOD [232]. Others have also reported such preferen-
tial effects of exercise on antioxidant enzyme regulation.
For instance, Sankaralinqam et al. reported that arteries
from pregnant women involved in low intensity exercise
(stretching) had significantly greater expression of the vas-
cular antioxidant enzyme SOD when compared with those
who performed moderate intensity exercise (walking) [233].
The effect of exercise on raising the levels of glutathione
peroxidase and catalase has also been reported in pregnant
women [234].

4. Summary

Obesity is reaching epidemic proportions in modern society.
Overweight women are at increased risk of several compli-
cations during pregnancy, including GDM. Complications of
obesity further add to the metabolic changes that promote
adipose tissue accretion in early gestation and later onset
of insulin resistance. Recent investigations have focused
on the role of adipokines or adipocytokines as mediators
of insulin resistance. This paper focuses on their role in
insulin resistance during pregnancy. Existing data supports
the notion that exercise increases insulin sensitivity, possibly
by changing the adipokines profile and by upregulating
antioxidant defense mechanisms. It is likely that based on
current knowledge, regular participation in physical activity
could reduce risk profiles for GDM in pregnant women.
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