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Abstract: Nitrite concentrations can reach high levels in indoor aquaculture systems, thus it is vital to
determine the nitrite tolerance of aquaculture fish species. Here, juvenile hybrid groupers (Epinephelus
lanceolatus ♂× Epinephelus fuscoguttatus ♀, Family: Serranidae) were exposed to waterborne nitrite
at 0, 10, 20, 40, and 80 mg NO2

−/L for 2 weeks. Nitrite exposure caused significant reductions in
hematocrit and hemoglobin levels, significant increases in plasma calcium and plasma ALP levels,
but had no significant effects on magnesium and total protein levels. Of the antioxidant responses
investigated, SOD activity increased significantly in the liver and gills, but GST activity and GSH
levels were significantly inhibited by nitrite exposure. Stress indicators, such as plasma cortisol
and HSP 70 levels, were significantly stimulated by nitrite exposure. In brief, nitrite exposure over
20 mg NO2

−/L had toxic effects and affected the hematological properties, antioxidant responses,
and stress indicators of juvenile hybrid groupers.

Keywords: hybrid grouper; nitrite exposure; hematological properties; antioxidant response; stress
indicator

1. Introduction

Nitrite is a critical toxic substance for organisms in the aquatic environment that is gen-
erated in the process of bacterial nitrification of ammonia or the denitrification of nitrate [1].
Generally, nitrite presently occurs at low concentrations in the aquatic environments, but
can significantly increase in high-density aquaculture or eco-friendly aquaculture systems,
such as Recirculating Aquaculture Systems (RAS) and bio-floc technology (BFT) [2,3]. Im-
balance in nitrification activity of bacteria, such as Nitrosomonas and Nitrobacter species,
results in nitrite accumulation in the aquaculture environment [4]. Exposure to elevated
levels of nitrite exposure in the aquatic environments leads to the accumulation of nitrite in
the body of aquatic animals, which can have adverse toxic effects [5].

Nitrite toxicity in fish is caused by the competitive inhibition of chloride uptake, which
reduces the extra- and intra-cellular chloride levels [6]. Nitrite in the body of fish affects
the exchange of Cl−/HCO3

− ions in the chloride-secreting cells of the gill tissue. Since
nitrite ions compete with chloride ions, fish in environments with low salt concentrations
are more susceptible to nitrite exposure [7]. Nitrite exposure affects the osmo-regulatory
functions, ionic homeostasis, and metabolism in various fish species [8,9]. In addition,
the increase in nitrite disturbs various physiological functions, such as growth, nitrogen
excretion, ion regulation, and can cause reproduction retardation, endocrine disruption,
respiratory problems, and ultimately increased mortality rates [10].

Upon exposure, nitrite from the aquatic environment accumulates in the circulatory
system as well as in tissues, such as those of the gill, liver, spleen, muscle, and brain, and
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affects the fish blood physiology [11]. Nitrite anions can accumulate in the plasma via the
circulating blood from the branchial epithelial cells [12]. Nitrite exposure to fish directly
affects their hematological properties of fish by oxidizing hemoglobin and affects the
cardiovascular functions [13]. The mechanism for cellular nitrite absorption is not yet been
precisely defined, but nitrite is known to enter red blood cells (RBCs) primarily by diffusion
of nitrous acid (HNO2) through the lipid bilayer, conductive transport channels, or nitrite
anion (NO2

−) diffusion via the RBC anion exchange [12]. The extracellular nitrite entering
the RBC membrane reacts with active deoxyhemoglobin, and reduces NO by oxidizing
ferrous heme to ferric heme, resulting in the formation of dysfunctional methemoglobin [14].
Exposure to high nitrite concentration induces an increase in methemoglobin and disturbs
physiological functions in fish species [15]. Hematological parameters are a sensitive and
reliable indicator of the health status of fish. Considering that nitrite exposure causes an
increase in methemoglobin and affect blood properties, which are important indicators for
evaluating physiological health, hematological properties can be important indicators for
determining the toxic effects of nitrite exposure on fish.

Nitrite exposure generates reactive oxygen species (ROS) and adversely affects the
DNA damage in fish via nitrite toxicity, by oxidative damage involving DNA, proteins,
and lipids with inflammatory response stimulation [16]. Antioxidant defense systems in
aquatic animals are effective mechanisms to deal with the oxidative stress induced by
nitrite exposure [17]. Of the various antioxidant enzyme responses, superoxide dismutase
(SOD) is the first defense mechanism against oxidative stress, and SOD activity stimulates
the change from superoxide anions to oxygen (O2) and hydrogen peroxide (H2O2) [18].
Glutathione (GSH) systems play a critical role in controlling the redox state of the cells,
and GSH and GSH-S-transferases (GST) are major components of these systems [19]. GSH
plays a key role in controlling the activity of antioxidant enzymes against oxidative stress
induced by nitrite exposure, and in enhancing the growth performance [20]. GST plays a
role in free radical removal by oxidizing GSH into GSSG to protect cells from oxidative
injury [21]. Exposure to nitrite in aquatic environment can lead to oxidative stress induced
by excessive ROS in fish, and confirmation of the antioxidant reaction should be a major
indicator of oxidative stress from nitrite exposure.

Exposure to high concentrations of nitrite can induce stress in aquatic animals due to
physiological changes and tissue damage [22]. Considering that nitrite exposure acts as an
environmental stressor for fish inducing a direct stress response to the toxic exposure, stress
indicators can be sensitive indicators of the toxic effects of nitrite exposure [5]. Of the many
stress indicators used, cortisol is a general corticosteroid that is used to evaluate quantitative
stress in teleosts from environmental stressors, because cortisol receptors control proper
immune function, physiological metabolism, and homeostasis [23]. In addition, cortisol is
a sensitive indicator used to distinguish between stressed and normal states with a marked
response to acute stress [24]. Heat shock proteins (HSPs) in fish are major stress-associated
proteins that activate various stress factors, and these proteins are reliable indicators for
evaluating the stress status in fish exposed to nitrite [11]. HSP 70 functions as a molecular
chaperone to control protein homeostasis, preventing aggregation, and the refolding of
misfolded proteins, and is a reliable indicator of fish stress from nitrite exposure [16,25].

The hybrid grouper (Epinephelus lanceolatus ♂× Epinephelus fuscoguttatus ♀, Family:
Serranidae) is a hybrid fish species created by the Golden Seed Project for the development
of high-quality seed. It is a fast-growing, disease-resistant, and high-water-temperature
(25–35 ◦C)-tolerant fish species. Because fish losses are greatly attributed to high temper-
atures in summer, the high-water-temperature resistance of the hybrid grouper makes
it a potentially excellent alternative aquaculture fish species. In contrast to the high-
water-temperature tolerance of this species, the hybrid grouper is vulnerable to low water
temperatures; therefore, it is necessary to breed hybrid groupers in indoor aquaculture
systems, such as RAS and BFT, in the winter season. However, nitrite concentrations
can reach high levels in RAS and BFT aquaculture systems. Although nitrite tolerance
in hybrid groupers is essential, investigations of this aspect are currently limited. This
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study aimed to determine the physiological resistance limit of the hybrid grouper to nitrite
exposure by investigating certain blood properties, antioxidant levels, and stress responses
following nitrite exposure. Such knowledge can be used to guide future hybrid grouper
breeding standards.

2. Materials and Methods
2.1. Pre-Acute Nitrite Exposure Experiment

Hybrid grouper (Epinephelus fuscoguttatus ♀× E. lanceolatus ♂) (mean weight: 36.3 ± 3.9 g,
mean length: 13.0 ± 0.5 cm) were exposed to different nitrite concentrations at 0, 100,
200, 400, 800, and 1600 mg NO2

−/L. The mortality at 1600 mg NO2
−/L increased rapidly,

resulting in 100% mortality. The mortality at 800 mg NO2
−/L at 96 h was 33.3%. The

lethal concentration for 50% (LC50) of hybrid grouper for nitrite exposure was 856.79 mg
NO2

−/L, and the 96 h LC50 of hybrid grouper is demonstrated in Table 1 [26].

Table 1. Lethal concentration (LC50) of hybrid grouper (Epinephelus fuscoguttatus ♀× E. lanceolatus ♂)
exposed to the different concentration of waterborne nitrite for 96 h.

95% Confidence Limits

Probability Estimate (mg/L)

0.01 538.39
0.10 681.39
0.20 741.60
0.30 785.02
0.40 822.11
0.50 856.79
0.60 891.46
0.70 928.56
0.80 971.97
0.90 1032.19
0.99 1175.18

2.2. Experimental Fish

Juvenile hybrid grouper, E. lanceolatus ♂× E. fuscoguttatus ♀ (mean weight: 36.8 ± 4.2 g,
mean length: 13.1 ± 0.6 cm) were obtained from a local fish farm in Korea. Fish used in
this experiment were kept in a lab environment for 3 weeks with feeding twice a day for
fish health status before the experiment, and the seawater components are as shown in
the Table 2. Nitrite exposure was made in a standard stock solution of 40,000 mg NO2

−/L
using NaNO2 (Sigma Chemical, St. Louis, MO, USA), followed by concentrations of 0, 10,
20, 40, and 80 mg NO2

−/L in each 150 L circular tank. A number of 60 fish (6 fish/tank ×
5 concentrations × 2 periods) were used to evaluate nitrite toxic effects on fish. The water
tank for each concentration was completely changed once every 2 days, and then prepared
using a standard stock solution. The actual nitrite concentration was measured using a
nitrite analysis kit (Merck & Co., Inc., Kenilworth, NJ, USA) as shown in Table 3. At the
1 and 2 weeks, the blood and tissues were collected after sufficient anesthesia for 30 s at
5 ppm using MS-222 (Sigma Chemical, St. Louis, MO, USA).

Table 2. The chemical components of seawater and experimental condition used in the experiments.

Item Value (Mean ± SD)

Temperature (◦C) 24.8 ± 0.5
pH 8.38 ± 0.11

Salinity (‰) 31.9 ± 0.3
Dissolved Oxygen (mg/L) 7.48 ± 0.24

Ammonia (mg/L) 0.58 ± 0.13
Nitrite (mg/L) 0.06 ± 0.02
Nitrate (mg/L) 1.12 ± 0.15
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Table 3. Analyzed waterborne nitrite concentration (NO2
− mg/L) from each source.

Waterborne Nitrite Concentration (NO2− mg/L)

Waterborne nitrite levels 0 10 20 40 80
Measured nitrite levels 0.07 10.5 21.2 43.9 83.3

2.3. Blood Physiology

Blood was collected using a disposable syringe treated with heparin in the tail vein of
the fish. Hematological parameters such as hematocrit and hemoglobin were measured
immediately after blood sampling. Hematocrit value was centrifuged after placing blood in
the capillary tube to confirm the value through a hematocrit measuring plate. Hemoglobin
concentration was determined using the Cyan-methemoglobin technique (Asan Pharm.
Co., Ltd., Seoul, Korea). After analyzing the blood properties, blood was separated from
the plasma by centrifugation at 10,000 rpm for 5 min at 4 ◦C. The plasma components
such as calcium, magnesium, total protein, and ALP (alkaline phosphatase) were measured
using an Asan clinical kit according to the methods of Kim et al. [27].

2.4. Antioxidant Responses

Liver and gill tissues were collected to assess antioxidant responses. The sampled liver
and gill tissues were homogenized by diluting 10-fold using 0.1 M PBS buffer immediately
after collection. The supernatant was collected by centrifugation at 10,000 rpm for 30 min
at 4 ◦C, and used for antioxidant analysis. The SOD (superoxide dismutase) and GST
(glutathione S-transferase) activities and GSH (glutathione) level were analyzed by the
methods of Kim et al. [28].

2.5. Stress Indicators

Plasma cortisol concentration was measured with a monoclonal antibody enzyme-
linked immunosorbent assay (ELISA) quantification kit (Enzo Life Sciences, Inc., Farming-
dale, NY, USA). Liver and gill tissues were homogenized by diluting 10-fold using 0.1 M
PBS buffer immediately after collection. The supernatant was collected by centrifugation at
10,000 rpm for 30 min at 4 ◦C, and used for HSP 70 (Heat shock protein 70). HSP 70 in the
liver and gills was measured using the ELISA assay kit (MyBioSource, Inc., San Diego, CA,
USA). The plasma cortisol and HSP 70 were measured by the methods of Kim et al. [27].

2.6. Statistical Analysis

We performed statistical analysis using the SPSS/PC+ statistical package (SPSS Inc.,
Chicago, IL, USA) based on the results of this study. Multiple comparisons evaluated the
significance between groups using the Tukey’s test using one-way analysis of variance
(ANOVA), with a significance level of p < 0.05.

2.7. Ethics Approval and Consent to Participate

This study was conducted with the research ethics approval of the Institutional Animal
Care and Use Committee of the National Institute of Fisheries Science (2019-NIFS-IACUC-29).
In addition, all researchers have completed animal protection, animal welfare, and animal
experimentation conducted by the National Institute of Fisheries Science.

3. Results
3.1. Blood Physiology

Hematological properties of hybrid grouper, E. lanceolatus ♂× E. fuscoguttatus ♀exposed
to waterborne nitrite are shown in Figure 1. Hematocrit values was significantly decreased
in the 80 mg NO2

−/L at 1 week and over 40 mg NO2
−/L at 2 weeks. Hemoglobin concen-

tration was significantly decreased over 20 mg NO2
−/L at 1 week and over 10 mg NO2

−/L
at 2 weeks.
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Plasma calcium was significantly decreased in the 80 mg NO2
−/L both at 1 and

2 weeks. However, there was no significant change in the plasma magnesium and total
protein. Plasma ALP was significantly increased over 40 mg NO2

−/L both at 1 and 2 weeks.
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Figure 1. Changes of blood physiology in hybrid groupers, Epinephelus lanceolatus ♂× Epinephelus
fuscoguttatus ♀exposed to waterborne nitrite for 2 weeks. Vertical bar denotes a standard error. Values
with different superscript are significantly different (p < 0.05) as determined by the Tukey’s multiple
range test.

3.2. Antioxidant Responses

Antioxidant responses of hybrid grouper, E. lanceolatus ♂× E. fuscoguttatus ♀exposed to
waterborne nitrite are shown in Figure 2. The liver SOD activity was significantly increased
over 40 mg NO2

−/L at 1 week and over 20 mg NO2
−/L at 2 weeks. A significant increase

in the gill SOD activity was observed over the 10 mg NO2
−/L both at 1 and 2 weeks.

The liver GST activity was significantly decreased in the 80 mg NO2
−/L at 2 weeks,

whereas no significant change was observed at 1 week. The gill GST activity was signifi-
cantly decreased over 40 mg NO2

−/L at 1 week and over 10 mg NO2
−/L at 2 weeks.

The liver GSH level was significantly decreased over 10 mg NO2
−/L both at 1 and

2 weeks. In the gill GSH level, a significant decrease was observed in the 80 mg NO2
−/L at

1 week and in the 20 and 80 mg NO2
−/L at 2 weeks.
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Figure 2. Changes of antioxidant responses in hybrid groupers, Epinephelus lanceolatus ♂× Epinephelus
fuscoguttatus ♀exposed to waterborne nitrite for 2 weeks. Vertical bar denotes a standard error. Values
with different superscript are significantly different (p < 0.05) as determined by the Tukey’s multiple
range test.

3.3. Stress Responses

Plasma cortisol of hybrid grouper, E. lanceolatus ♂× E. fuscoguttatus ♀exposed to
waterborne nitrite are shown in Figure 3. The plasma cortisol was significantly increased
over 20 mg NO2

−/L at 1 week. At 2 weeks, the plasma cortisol was also significantly over
20 mg NO2

−/L.
HSP 70 in the liver and gills of hybrid grouper, E. lanceolatus ♂× E. fuscoguttatus

♀exposed to waterborne nitrite are shown in Figure 4. In the liver HSP 70, a significant
stimulation was observed over 40 mg NO2

−/L at 1 week and over 10 mg NO2
−/L at

2 weeks. The gill HSP 70 was significantly stimulated over 40 mg NO2
−/L at 1 week and

over 20 mg NO2
−/L at 2 weeks.
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Figure 3. Changes of plasma cortisol in hybrid groupers, Epinephelus lanceolatus ♂× Epinephelus
fuscoguttatus ♀exposed to waterborne nitrite for 2 weeks. Vertical bar denotes a standard error. Values
with different superscript are significantly different (p < 0.05) as determined by the Tukey’s multiple
range test.
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Figure 4. Changes of HSP 70 in hybrid groupers, Epinephelus lanceolatus ♂× Epinephelus fuscoguttatus
♀exposed to waterborne nitrite for 2 weeks. Vertical bar denotes a standard error. Values with
different superscript are significantly different (p < 0.05) as determined by the Tukey’s multiple
range test.

4. Discussion

Nitrite exposure in aquatic animals directly affects their blood physiology by altering
their blood acid–base homeostasis (Madison and Wang, 2006). In addition, nitrite exposure
decreases the oxygen affinity of hemoglobin as a result of the conversion of Fe2+ to Fe3+ in
the heme group [29], which results in hypoxia. Methemoglobin in fish exposed to nitrite is
formed by oxygenated RBC and methemoglobin reductase in the hepatocytes [30]. Nitrite
exposure was shown to induce a significant decrease in the hematocrit and hemoglobin
levels of Amazonian fish, Colossoma macropomum, because of RBC shrinkage, hemolysis,
and RBC life-cycle reduction [31]. These authors suggested that the methemoglobin re-
ductase system is generally activated to convert methemoglobin to hemoglobin under
nitrite exposure stress, and the resulting high metabolic energy requirement affects the
life span of RBCs. Avilez et al. [32] reported a significant decrease in the hematocrit and
hemoglobin levels of neotropical teleost matrinxã, Brycon cephalus, exposed to environmen-
tal nitrite, and suggested that these decreases were due to blood cell lysis. Yildiz et al. [33]
also reported significant decrease in the hematocrit and hemoglobin levels of Nile tilapia,
Oreochromis niloticus, by nitrite exposure. In this study, hematological parameters, such
as hematocrit and hemoglobin levels, were significantly decreased in the hybrid grouper,
E. lanceolatus ♂× E. fuscoguttatus ♀. These significant reductions indicated that nitrite
exposure caused structural damage to the erythrocytes, thus resulting in hemolytic anemia.

Nitrite exposure affects plasma components because it actively enters plasma as ni-
trite ions with chloride ions via the Cl−/HCO3

− exchange mechanism of the branchial
epithelium [29]. Nitrite exposure in fish can affect the electrolyte balance in the plasma,
and serveral studies have demonstrated a significant change in the ionic composition



Antioxidants 2022, 11, 545 8 of 12

of plasma of fish exposed to nitrite [34]. Among inorganic plasma components, plasma
calcium and magnesium are critical indicators of ion regulation and homeostasis, as well as
constant cellular maintenance and enzymatic activity [35]. Kim et al. [36] reported signifi-
cant alterations in the plasma calcium and magnesium levels of juvenile olive flounders,
Paralichthys olivaceus, by waterborne zinc exposure. In this study, the plasma calcium level
of the hybrid grouper was significantly decreased, whereas no change was detected in the
plasma magnesium level, which indicated that nitrite exposure impaired ion regulation in
this species.

Plasma protein is an important plasma component and a reliable indicator of fish
health status [27]. A significant decrease in plasma protein levels in various fish species
following nitrite exposure has been reported, which suggests that protein depletion is
induced by protein leakage into peripheral fluids, in addition to protein proteolysis by
nitrite exposure stress [11,37,38]. However, in this study, nitrite exposure did not cause a
significant change in the total protein levels in plasma of the hybrid grouper.

Plasma alkaline phosphatase (ALP) is considered to be a critical indicator of tissue
damage in fish exposed to various environmental stressors, and this activity in fish is
influenced by nitrite exposure. Jia et al. [39] reported that nitrite exposure caused a sig-
nificant increase in the plasma ALP of juvenile turbot, Scophthalmus maximus, as a result
of hepatic necrosis induced by the toxic effects of nitrite exposure. The plasma ALP level
of the hybrid grouper was significantly increased by nitrite exposure, and this significant
increase may have been induced by tissue injury. Nitrite exposure led to blood toxicity, and
had various effects on the hematological properties and plasma components of juvenile
hybrid groupers.

Nitrite exposure causes oxidative stress in aquatic animals, and can increase the
oxygen free radicals in the body, which induce free radical accumulation and result in
multiple oxidative stress-induced toxic effects in animals [40]. Teleosts have developed
antioxidant defense systems to protect the tissues from oxidative damage caused by the
overproduction of free radicals in fish [41]. SOD is a fundamental component of the early
defense system and antioxidant response to oxidative stress due to nitrite exposure, and
Kim et al. [42] reported a significant increase in the SOD activity of P. olivaceus exposed to
nitrite. Guo et al. [43] also reported a significant increase in the SOD activity of red swamp
crayfish, Procambarus clarkii, by nitrite exposure, and suggested that the increase in SOD
activity was due to the activation of the antioxidant system to prevent oxidative stress by
ROS overproduction. In the present study, the SOD activity of the hybrid grouper was
significantly increased by nitrite exposure, and this significant increase was presumedly
indicative of an increase in enzyme activity to remove excess free radicals induced by
stress exposure.

GST is a critical enzyme that is involved in liver detoxification, and it excretes endoge-
nous or exogenous compounds by catalyzing the oxidation of GSH to GSSG [44]. Kim
and Kang [45] suggested that GST is a major bio-indicator of oxidative stress in fish under
environmental stress due to its ability to eliminate and prevent the accumulation of toxi-
cants in the cellular system. Mohamed et al. [46] reported a significant decrease in the GST
activity of Nile tilapia, O. niloticus, after hexavalent chromium exposure, and suggested
that a decrease in GST is induced by the stimulation of the biotransformation process.
In previous studies, oxidative stress caused by toxic exposure to various environmental
stresses increased the GST activity in various fish species [3,27,36]; however, in the present
study, the observed decrease in GST activity is thought to have been due to exhaustion
from the excessive removal of free radicals. In other words, it is judged that the decrease in
GST is due to a functional loss on account of the generation of active oxygen in excess of
the ability of the antioxidant enzyme.

GSH is a major antioxidant response in cells, and a stable balance between GSH
and GSSG is essential to maintain physiological homeostasis and cell function [47]. Lin
et al. [20] reported a significant decrease in the GSH level of bighead carp, Aristichthys
nobilis, by nitrite exposure. These authors suggested that GSH depletion was caused by
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the oxidation of GSH to GSSH to protect the cells from free radicals, which indicates an
activation of the antioxidant function in response to nitrite exposure. Kim et al. [3] also
reported a significant decrease in the GSH level of olive flounders, P. olivaceus, exposed
to nitrite. Lin et al. [48] also reported a significant decrease in the GSH level of zebrafish,
Danio rerio, exposed to nitrite, for the purpose of ROS elimination. In the present study, the
GSH levels of the hybrid grouper were significantly depleted by nitrite exposure, which is
presumedly due to the oxidation of GSH to reduce ROS accumulation and oxidative stress
induced by nitrite exposure. Given that changes in antioxidant responses are considered
reliable biomarkers to evaluate oxidative stress in fish exposed to various environmental
stressors [49], changes in the antioxidant responses of the hybrid grouper in this study
indicate that nitrite exposure induced oxidative stress in this species.

Environmental toxicity causes physiological changes and oxidative stress and acts as a
stress factor for fish [50]. Of the various stress indicators, cortisol is a sensitive indicator of
toxic effects in fish exposed to environmental stressors. Gao et al. [1] reported a significant
increase in the cortisol of puffer fish, Takifugu rubripes, exposed to nitrite, and they suggested
that the stimulation was caused by the activation of the hypothalamic–pituitary–interrenal
axis in response to stress induced by nitrite exposure. Jia et al. [15] also suggested that
nitrite exposure caused a significant increase in the cortisol of juvenile turbot, S. maximus.
Consistently, we previously observed a significant increase in the cortisol of olive flounders,
P. olivaceus, by nitrite exposure, which was induced by the stress-induced stimulation in
lymphopenia of the lymphoid tissues [5]. In the present study, the plasma cortisol of the
hybrid grouper was also significantly stimulated by nitrite exposure, which is presumedly
a result of the stress response induced by nitrite exposure.

HSPs have major functions in protecting newly synthesized protein and proper protein
folding, and HSP 70 is the most conserved HSP that has a critical function in protecting
the cells of fish under oxidative stress conditions [51]. Gao et al. [11] reported a significant
increase in the HSP 70 of pufferfish, T. rubripes, exposed to nitrite, which may represent a
protective mechanism to prevent protein damage and misfolding of proteins. Jia et al. [39]
also reported that nitrite exposure induced a significant increase in the HSP 70 of juvenile
turbot, S. maximus. In the present study, nitrite exposure caused a significant increase in the
HSP 70 of the hybrid grouper, which indicates nitrite-induced stress and protein damage
caused by nitrite exposure. On the other hand, since HSP 70 participates in antioxidant
reactions to catalyze the conversion of free radicals [52], a significant increase in HSP 70 in
this study may indicate an association with an antioxidant reaction.

5. Conclusions

In conclusion, the results of this study indicated that waterborne nitrite exposure
negatively impacted certain hematological parameters, such as hematocrit and hemoglobin
levels, in juvenile hybrid groupers and altered the plasma components, such as plasma
calcium and ALP levels. Oxidative stress from nitrite exposure also caused a significant
increase in SOD activity and a decrease in GST activity and GSH levels in the hybrid grouper.
The levels of stress indicators, i.e., cortisol and HSP 70, were significantly increased by
nitrite exposure. Collectively, the results of this study suggested that subacute exposure to
waterborne nitrite at levels higher than 20 mg NO2

−/L caused physiological changes in
juvenile hybrid groupers due to the toxic effects.
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