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Abstract 

Background:  This study aims to construct a reliable diagnostic model for coronary artery disease (CAD) patients and 
explore its potential mechanism by consensus molecular subtypes of ferroptosis-related genes.

Methods:  GSE12288 and GSE20680 were downloaded from Gene Expression Omnibus database. CAD patients were 
divided into different molecular subtypes according to the expression level of ferroptosis-related genes. Then, the dis-
tribution of differentially expressed genes, functional annotations and immune infiltration cells between the two sub-
types were compared. Finally, a prognostic model of ferroptosis-related genes in CAD was constructed and verified.

Results:  Two different molecular subtypes of CAD were obtained according to the expression level of ferroptosis-
related genes. Then, a total of 1944 differentially expressed genes (DEGs) were found, among which, 236 genes were 
up-regulated and 1708 genes were down-regulated. In addition, 43 DEGs were ferroptosis-related genes. Functional 
enrichment analysis showed that these DEGs between two subtypes of CAD were mainly enriched in immune-related 
pathways and processes, such as T cell receptor, mTOR, NOD-like receptor and Toll-like receptor signaling pathways. 
We also found that 21 immune cells were significantly changed between two subtypes of CAD. The LASSO method 
was performed to identify and construct the 16 ferroptosis-related genes-based diagnostic signature. Diagnostic 
efficiency of diagnostic signature measured by AUC in the training set and validation cohort was 0.971 and 0.899, 
respectively.

Conclusions:  This study contributes to a more comprehensive understanding of the mechanism of ferroptosis-
related genes in CAD.
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Background
Coronary artery disease (CAD), a multifactorial and 
complex disease, is considered to be one of the most dan-
gerous cardiovascular diseases. Based on the epidemio-
logical studies, the number of CAD patients will rapidly 
increase over the next decade [1]. At present, diagnosis 

means of CAD are mainly coronary artery contrast CT 
and cardio-angiography [2]. Nonetheless, these diagnos-
tic techniques require specialized medical centers and 
experienced cardiologists, limiting their routine use in 
clinical practice. Thence, the development of new bio-
markers for early diagnosis of CAD is urgently needed. In 
recent years, mRNA expression in peripheral blood has 
been reported to be associated with multiple diseases, 
such cancer [3], hypertension [4] and diabetes [5]. How-
ever, the diagnostic value of mRNA in peripheral blood 
sample in CAD patients is still unclear.
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Iron is a basic nutrient element in the human body and 
is essential for biological processes, including cell metab-
olism, growth and proliferation. Iron-induced oxidative 
stress is associated with a variety of pathological condi-
tions, such as CAD, heart failure, cardiomyopathy and 
atherosclerosis [6, 7]. Ferroptosis is an iron-dependent 
programmed cell death process that different from other 
forms of cell death. Recently, the mechanism of ferropto-
sis has been the focus of researchers. Studies have shown 
that ferroptosis plays an important role in the pathogen-
esis of various tumors, including lung cancer, breast can-
cer, colorectal cancer, bladder cancer and hepatocellular 
carcinoma [8]. It has also been suggested that ferroptosis 
is associated with the mechanism of cell death in cerebral 
hemorrhage and ischemia–reperfusion injury [9, 10]. 
Recently, a study has reported that ferroptosis is a signifi-
cant form of cell death in cardiomyocytes [11]. However, 
the role of ferroptosis in CAD remains largely unknown.

With the development of microarray technology and 
high-throughput sequencing technology, it provides an 
opportunity to further understand the genetic and molec-
ular basis of CAD [12, 13]. However, most of the current 
studies focus on the differences between CAD and nor-
mal controls, and less attention is paid to the differences 
between different subtypes of CAD. In cancer research, 
tumor samples are usually divided into several molecu-
lar subtypes according to gene expression patterns, which 
can reveal the heterogeneity between tumors and predict 
clinical endpoints [14, 15]. CAD has clinical heteroge-
neity, and the identification of CAD molecular subtypes 
based on gene expression pattern may also provide a new 
way for the diagnosis and treatment of CAD.

In this study, ferroptosis-related genes in CAD were 
obtained and analyzed. Then, CAD samples were 
clustered into two molecular subtypes based on the 
expression of ferroptosis-related genes. In addition, dif-
ferentially expressed genes (DEGs), functional enrich-
ment analysis and characteristics of immune cell 
infiltration between two subtypes of CAD were analyzed. 
Furthermore, a ferroptosis-related diagnostic model 
was established based on mRNA expression profiles of 
CAD patients from GSE12288 dataset and validation in 
GSE20680 dataset. This study may provide a theoretical 
basis for further studies in this field.

Materials and methods
Data acquisition
Two datasets (GSE12288 and GSE20680) were down-
loaded from Gene Expression Omnibus (GEO) database 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/). In total, 110 CAD 
and 112 normal controls peripheral blood samples were 
enrolled in GSE12288 dataset (platform: GPL96 [HG-
U133A] Affymetrix Human Genome U133A Array). 

This dataset was selected according to Duke CAD index 
(CADi). CADi is a validated angiographical measure 
of the extent of coronary atherosclerosis that correlates 
with outcome. GSE20680 was based on the platform of 
GPL4133 Agilent-014850 Whole Human Genome Micro-
array 4 × 44  K G4112F and contained peripheral blood 
sample from 143 CAD and 52 normal controls. This data-
set included 3 condition samples: Cases (2) are patients 
with ≥ 70% stenosis in > 1 major vessel or ≥ 50% stenosis 
in > 2 arteries; intermediates (1) are patients with luminal 
stenosis > 25% but less than 50%; controls (0) have lumi-
nal stenosis of ≤ 25%. All data processing was performed 
using R software (version 3.5.3). The GSE12288 dataset 
was used as the training set and the GSE20680 dataset 
was used as the verification dataset.

Acquisition of ferroptosis‑related genes
Ferroptosis-related genes were first downloaded from the 
FerrDb website (http://​www.​zhoun​an.​org/​ferrdb/​index.​
html). The confidence levels of genes involved in fer-
roptosis were assigned to 4 degrees including validated, 
screened, predicted, and deduced. The species involved 
humans, mice, rats, and drosophila. Then the genecard 
database (https://​www.​genec​ards.​org/) was searched 
with the keyword “ferroptosis” to supplement the ferrop-
tosis-related genes list. A total of 156 ferroptosis-related 
genes were identified after removal of non-coding RNA 
(Additional file 4: Table S1).

Consensus molecular subtyping with non‑negative matrix 
factorization (NMF)
Afterwards, ferroptosis-related genes were performed in 
non-negative matrix factorization (NMF) clustering [16, 
17]. R package NMF (version 0.21.0) was used to decom-
pose gene expression matrix A. Matrix A was factorized 
into 2 nonnegative matrices W and H (i.e., A≈WH). 
Repeated factorization of matrix A was performed and its 
outputs were aggregated to obtain consensus clustering 
of CAD samples. The optimal number of subtypes was 
selected according to cophenetic, dispersion, and silhou-
ette coefficients [18]. Wilcoxon’s rank sum test was used 
to examine the difference between CAD indexes and age 
among different subtypes.

Identification of differentially expressed genes (DEGs) 
in different subtypes
In order to explore the biological differences between dif-
ferent subtypes, we used the "limma" R package to iden-
tify DEGs between different subtypes. False discover rate 
(FDR) value < 0.01, and |log2fold change| (|log2FC|) > 0.3 
was considered statistically difference. At the same time, 
the "limma" R package was used to calculate the P value. 
P value represents the significance of gene expression 
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differences between different subtypes. Subsequently, 
ggplot2 was used for volcanic maps. Heat maps were 
used to visualize DEGs.

Functional enrichment analysis
Gene Ontology (GO) and Gene Set Enrichment Analy-
sis (GSEA) were applied to disclose the biological func-
tion of DEGs. GO analysis of DEGs was performed using 
David 6.8 (https://​david.​ncifc​rf.​gov/​tools.​jsp). FDR < 0.05 
was considered statistically significant. Then, GSEA was 
used to investigate the pathways enriched in the different 
subgroups utilizing the “clusterProfiler” R package. c2.cp.
kegg.v7.0.symbols.gmt was selected as the gene set data-
base. The cutoff criteria were set at FDR < 0.05.

Single‑sample gene set enrichment analysis (ssGSEA) 
in GSE12288 dataset
The ssGSEA algorithm was carried out to quantify the 
relative abundance of immune cell infiltration in each 
CAD sample. Enrichment score calculated by ssGSEA 
analysis was used to represent the relative abundance of 
immune infiltrating cells in each tissue sample. The wil-
coxon test was used to calculate the significance of dif-
ferences in immune cell infiltration between different 
subgroups. Heat map and box plot were used to compare 
the differences in the level of immune cells infiltration in 
different sample tissues.

Development and validation of diagnostic models
Least absolute shrinkage and selection operator (LASSO) 
regression method was introduced to select the key genes 
for establishing diagnostic model for CAD. The “glmnet” 
package was used in LASSO regression analysis. This 
method shrinks coefficients toward zero, and eliminates 
unimportant terms entirely, thus reducing prediction 
error and minimizing overfitting. Then, diagnosis-asso-
ciated DEGs with nonzero coefficients were elected to 
establish a diagnostic gene signature. The receiver oper-
ating characteristic (ROC) analysis was performed using 
R package pROC (version 1.15.3), and the area under the 
curve (AUC) was calculated to evaluate the accuracy of 
the model.

Statistical analysis
R package (version 3.6.3; https://​www.R-​proje​ct.​org) was 
used for all statistics. The wilcoxon test was used to cal-
culate the significance of differences in immune cell infil-
tration, ferroptosis-related genes expression, CADi and 
age between clusterA and clusterA groups. Fisher accu-
rate test was used to compare the proportion of Cases 
(2) patients in different subtypes. P < 0.05 was statistically 
significant.

Results
Characterization of two ferroptosis‑related molecular 
subtypes
According to the expression of 156 ferroptosis-related 
genes, 110 CAD samples were divided into subgroups 
by consensus clustering analysis of NMF package. The 
optimal k value was obtained based on the comprehen-
sive correlation coefficient. When starting from k = 2, 
comprehensive correlation coefficient started to decrease 
(Additional file  1: Fig. S1 and Fig.  1A). The heat map 
showed a clear and sharp boundary, suggesting stable 
and robust clustering for the samples (Fig. 1B). Therefore, 
110 CAD samples were clustered into two molecular sub-
types clusterA (n = 77) and clusterB (n = 33). Further-
more, Wilcoxon test results showed that the CADi and 
age of patients in clusterB subgroup were significantly 
higher than those in clusterA subgroup (Fig. 2A, B). The 
above results showed that there were two different dis-
ease subtypes in CAD. Compared with clusterA, patients 
with clusterB subtype were older and more severely ill.

Identification of DEGs and functional enrichment analysis 
between two subtypes of CAD
In order to explore the differences between the two sub-
types of CAD, we conducted a differential expression 
analysis in GSE12288 dataset. The "limma" R package was 
used to identify DEGs between different subtypes. A total 
of 1944 DEGs were found, among which, 236 genes were 
up-regulated and 1708 genes were down-regulated. Addi-
tionally, 43 DEGs were ferroptosis-related genes (Addi-
tional file 5: Table S2). The volcanic maps and heat maps 
is displayed in the Fig.  2C, D, respectively. GO enrich-
ment analysis showed that these DEGs were mainly 
enriched in immune and inflammatory processes, includ-
ing T cell receptor signaling pathway, NIK/NF-kappaB 
signaling, positive regulation of I-kappaB kinase/NF-kap-
paB signaling and immunoglobulin mediated immune 
response (Fig.  3A and Additional file  6: Table  S3). The 
GSEA analysis revealed that DEGs were mainly enriched 
in B cell receptor signaling pathway, Chemokine signaling 
pathway, Leukocyte transendothelial migration, mTOR 
signaling pathway, Natural killer cell mediated cytotoxic-
ity, Neurotrophin signaling pathway, NOD-like receptor 
signaling pathway, T cell receptor signaling pathway, Th1 
and Th2 cell differentiation, Toll-like receptor signaling 
pathway (Fig. 3B and Additional file 7: Table S4).

Characteristics of immune cell infiltration in two subtypes 
of CAD
Heat map of immune infiltration cells between two sub-
types of CAD is shown in Fig.  4. SsGSEA results indi-
cated that except for Natural killer cell and Natural 
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killer T cell, 21 other immune infiltration cells were sig-
nificantly changed between two subtypes of CAD (Addi-
tional file  8: Table  S5). Of which, Eosinophil, Type 2  T 
helper cell, Mast cell, Activated CD8 T cell, CD56bright 
natural killer cell, Activated B cell, Activated CD4 T cell, 
Activated dendritic cell, Gamma delta T cell, Immature 
B cell, Immature dendritic cell, MDSC, Monocyte, Neu-
trophil, Plasmacytoid dendritic cell, T follicular helper 
cell, Type 1  T helper cell were decreased between clus-
terB and clusterA, and Macrophage, Regulatory T cell, 
CD56dim natural killer cell, Type 17  T helper cell were 
markedly increased in clusterB compared with clusterA. 
These results revealed that changes of immune infiltra-
tion cells may be involved in the progression of CAD.

Verification of two molecular subtypes
To further support our findings, we performed NMF 
clustering on 143 CAD patients in the validation set. 
When starting from k = 2, comprehensive correlation 
coefficient started to decrease (Additional file  2: Fig. S2 
and Fig.  5A). The heat map showed a clear and sharp 
boundary, suggesting stable and robust clustering for 
the samples (Fig.  5B). Clustering results showed that 
there were also two different subtypes in the validation 
cohort. Subsequently, Fisher accurate test was used to 
compare the proportion of Cases (2) patients in different 
subtypes, and it was found that the percentage of Cases 
(2) patients in ClusterB was significantly higher than that 
in ClusterA (Additional file  3: Fig. S3A). Patients with 
the clusterB subtype had more severe coronary artery 

stenosis than those with the clusterA subtype. Moreover, 
CADi was significantly higher in ClusterB than in Clus-
terA (Fig.  2A). These results suggest that differences in 
the molecular subtypes of CAD are primarily driven by 
the severity of CAD. Gene set variation analysis (GSVA) 
results showed that immune-related pathways (such as 
the T cell receptor and B cell receptor pathways) were 
significantly changed in two subtypes of CAD (Fig. 5C). 
The above results suggest that the occurrence and devel-
opment of these two subtypes in CAD patients may be 
related to immune cell infiltration. In addition, to further 
study the differences in the signaling pathways between 
control and different subtypes, GSVA heat map of con-
trol, clusterA and clusterB was drawn (Additional file 3: 
Fig. S3B). The result showed that each pathway had 
noticeable differences among control, clusterA and clus-
terB, which provide potential research directions for us 
to further study the pathological mechanism of CAD.

Development and validation of diagnostic signature model
CAD were divided into two subtypes based on ferrop-
tosis-related genes. Two subtypes differed in disease 
progression or severity. Therefore, in order to diagnose 
different subtypes of CAD, LASSO regression method 
was used. 16 ferroptosis-related genes (Additional 
file 9: Table S6) among the 43 differentially expressed 
ferroptosis-related genes were identified as potential 
diagnostic markers (Fig. 6A). This diagnostic signature 
acquired from the training cohort was applied to build 
the following formula: risk score = (− 1.03*ACSL1) + (

Fig. 1  Identification of consensus clusters by ferroptosis-related genes. A The relationship between cophenetic and silhouette coefficients with 
respect to the number of clusters. B Consensus matrix heat map for k = 2
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− 0.71*ATP5MC3) + (− 0.40*BACH1) + (− 0.39*CASP
8) + (− 0.59*FTH1) + (− 1.37*HIF1A) + (− 1.47*MAP
1LC3B) + (− 0.52*MIF) + (− 1.47*MTDH) + (− 1.47*P
CBP1) + (− 0.15 *PIK3CA) + (− 0.43*RPL8) + (− 0.40*
SCP2) + (− 1.20*TNFAIP3) + (− 0.14*VDAC2) + (− 0.
67*ZFP36). Next, this model was built in the training 
cohort to validate its performance. The AUC of this 
model was 0.971, and the specificity and sensitivity of 
the model were 97.4% and 90.9%, respectively (Fig. 6B). 
The expression level of these ferroptosis-related genes 
between two subtypes of CAD is listed in the Fig. 6C. 

Results showed that these 16 ferroptosis-related genes 
were significantly down-regulated in clusterB com-
pared with clusterA. To validate the diagnostic value 
of the signature in the training cohort, the equation 
above was used to compute risk score with the gens 
to gene expression. In the training cohort, the AUC of 
this model was 0.899, and the specificity and sensitiv-
ity of the model were 84.4% and 79.2%, respectively 
(Fig. 7A). In the training cohort, except for CASP8, the 
other 15 ferroptosis-related genes were significantly 
down-regulated in clusterB compared with clusterA 

Fig. 2  Characterization and DEGs of two ferroptosis-related molecular subtypes of CAD. A The difference of CADi between two subtypes of CAD. B 
The difference of age between two subtypes of CAD. (C) Volcanic maps between two subtypes of CAD. (D) The heat maps between two subtypes 
of CAD
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(Fig. 7B). These results suggested that these ferropto-
sis-related genes had high diagnostic value between 
two subtypes of CAD. In addition, to further analyze 
the robust of the model in predicting CAD, ROC anal-
yses were performed for different CAD subtypes and 
normal control (Fig.  8). Results showed that all AUC 

values were more than 0.7. These results indicate that 
the diagnostic model can distinguish clusterA and 
clusterB from the control.

Fig. 3  Functional enrichment analysis between two subtypes of CAD. A GO enrichment analysis. B GSEA analysis

Fig. 4  Heat map of immune infiltration cells between two subtypes of CAD
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Discussion
CAD is a heart disease with high morbidity and mortal-
ity caused by atherosclerosis [19]. Normally, molecular 
abnormalities in cardiovascular disease occur before 
tissue abnormalities [20]. In this study, we obtained 
156 ferroptosis-related genes in CAD. Then, CAD sam-
ples were clustered into two molecular subtypes based 
on the expression of 156 ferroptosis-related genes. In 
addition, DEGs and functional enrichment analysis 
between two subtypes of CAD were analyzed. Further-
more, except for Natural killer cell and Natural killer 
T cell, 21 other immune infiltration cells were signifi-
cantly changed between two subtypes of CAD. Finally, 
we established a ferroptosis-related diagnostic model 
based on mRNA expression profiles of CAD patients 
from GSE12288 dataset and validation it in GSE20680 

dataset. On the basis of these analyses, we identified 
the signature of the 16 ferroptosis-related genes, sug-
gesting that ferroptosis-related genes had high diagnos-
tic value between two subtypes of CAD. To the best of 
our knowledge, this is the first study to investigate the 
molecular subtypes of CAD based on the expression of 
ferroptosis-related genes.

Functional enrichment analysis showed that these 
DEGs between two subtypes of CAD were mainly 
enriched in immune-related pathways and processes, 
such as T cell receptor, mTOR, NOD-like receptor 
and Toll-like receptor signaling pathways. It has been 
reported that T cell receptor signaling regulates the dif-
ferentiation, maintenance and function of T cells, affect-
ing their gene expression, metabolism, cell adhesion and 
migration [21]. The T cell receptor signaling pathway is 
significantly up-regulated in CAD patients with heart 

Fig. 5  Verification of consensus clusters by ferroptosis-related genes. A The relationship between cophenetic and silhouette coefficients with 
respect to the number of clusters. B Consensus matrix heat map for k = 2. C GSVA analysis
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Fig. 6  Development of diagnostic signature model. A Identification of a 16-gene risk signature by LASSO regression analysis. B ROC curves analysis 
of the training set. C The expression levels of these ferroptosis-related genes between two subtypes of CAD

Fig. 7  Validation of diagnostic signature model. A ROC curves analysis of verification set. B The expression levels of ferroptosis-related genes 
between two subtypes of CAD
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failure compared with CAD patients without heart fail-
ure [22]. It has been reported that mTOR signaling 
pathway plays an important role in monocyte proinflam-
matory response in patients with CAD [23]. The Toll-like 
receptor signaling has been shown to be involved in the 
pathogenesis of CAD [24, 25]. Recently, Toll-like recep-
tor signaling pathway, and NOD-like receptor signaling 
pathway associated with inflammation may be involved 
in regulating the progression of CAD [26]. Meanwhile, 
ssGSEA results indicated that 21 immune infiltration 
cells were significantly changed between two subtypes 

of CAD. Based on the above results, we speculate that 
changes of immune infiltration cells may be involved in 
the progression of CAD.

Interestingly, we built diagnostic risk signatures based 
on 16 ferroptosis-related genes (ACSL1, ATP5MC3, 
BACH1, CASP8, FTH1, HIF1A, MAP1LC3B, MIF, 
MTDH, PCBP1, PIK3CA, RPL8, SCP2, TNFAIP3, 
VDAC2 and ZFP36) through LASSO regression method, 
which could accurately predict the diagnosis of CAD. 
Acyl-CoA synthetase long-chain family member 1 
(ACSL1) is a member of long-chain acyl-CoA synthetase 

Fig. 8  ROC analysis of model between clusterA/clusterB and normal control in GSE12288 and GSE20680 datasets. A ROC analysis of model 
between clusterA and normal control in GSE12288 dataset. B ROC analysis of model between clusterB and normal control in GSE12288 dataset. C 
ROC analysis of model between clusterA and normal control in GSE20680 dataset. D ROC analysis of model between clusterB and normal control in 
GSE20680 dataset
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and plays a key role in the synthesis of triglycerides, 
phospholipids and cholesterol esters and the oxidation of 
fatty acids [27]. A study has shown that ACSL1 deficiency 
helps reduce fatty acid oxidation and increase glucose 
utilization in the heart [28]. BTB and CNC homology 
1 (BACH1) is heme-binding transcription factors that 
regulate oxidative stress and heme and iron-related meta-
bolic pathways [29]. BACH1 is involved in the aggrava-
tion of various oxidative stress-related diseases, including 
ischemic heart disease [30], and whether it is related to 
ferroptosis remains unclear. Caspase 8 (CASP8) is key 
regulator in both extrinsic and intrinsic apoptotic path-
ways. CASP8 is reported to be decreased in patients 
with stable angina pectoris compared to controls [31]. It 
is reported that CASP8 polymorphism variation can be 
used as a biomarker of CAD susceptibility [32]. Ferritin 
heavy chain 1 (FTH1), a major intracellular iron storage 
protein, is a substrate of ferroptosis, which emerges to 
play vital roles in coronary atherosclerotic heart disease 
[7]. Li et al. have reported that FTH1 is significantly up-
regulated in blood samples of coronary atherosclerotic 
heart disease patients [33]. HIF1A rs2057482 polymor-
phism is related to the occurrence of coronary heart dis-
ease and some metabolic parameters and cardiovascular 
risk factors [34]. Macrophage migration inhibitory factor 
(MIF) is a potent pro-inflammatory cytokine that medi-
ates the inflammatory process in atherosclerosis, and the 
variation of the MIF gene may be related to the occur-
rence of CAD [35]. It has been reported that inflamma-
tory TNF α induced protein 3 (TNFAIP3) can be used as 
a biomarker for the diagnosis of CAD [26]. Although in 
this study we also found that ACSL1, BACH1, CASP8, 
FTH1, HIF1A, MIF and TNFAIP3 were significantly 
changed between two subtypes of CAD, the mechanism 
of their regulation of CAD progression needs to be fur-
ther studied.

However, there are some limitations in this study. The 
function of ferroptosis-related genes in CAD and the 
pathogenesis of two different molecular subtypes of CAD 
are still unclear. Therefore, more clinical samples and ani-
mal model experiments are needed to verify the results of 
this study.

Conclusion
In this study, we divided CAD patients into two dif-
ferent molecular subtypes according to the expression 
level of ferroptosis-related genes. Then, a total of 1944 
DEGs was identified. Among which, 43 DEGs were fer-
roptosis-related genes. Functional enrichment analysis 
showed that these DEGs between two subtypes of CAD 
were mainly enriched in immune-related pathways and 
processes, such as T cell receptor, mTOR, NOD-like 
receptor and Toll-like receptor signaling pathways. 

We also found that 21 immune cells were significantly 
changed between two subtypes of CAD. The LASSO 
method was performed to identify and construct a 16 
ferroptosis-related genes-based diagnostic signature. 
Diagnostic efficiency of diagnostic signature measured 
by AUC in the training set and validation cohort was 
0.971 and 0.899, respectively. This study contributes to 
a more comprehensive understanding of the mecha-
nism of ferroptosis-related genes in CAD, and provides 
valuable information for further research on the patho-
genesis of CAD.
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