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Impulse propagation in biological tissues is known to be modulated by struc-

tural heterogeneity. In cardiac muscle, improved understanding on how this

heterogeneity influences electrical spread is key to advancing our interpret-

ation of dispersion of repolarization. We propose fractional diffusion models

as a novel mathematical description of structurally heterogeneous excitable

media, as a means of representing the modulation of the total electric field

by the secondary electrical sources associated with tissue inhomogeneities.

Our results, analysed against in vivo human recordings and experimen-

tal data of different animal species, indicate that structural heterogeneity

underlies relevant characteristics of cardiac electrical propagation at tissue

level. These include conduction effects on action potential (AP) morphology,

the shortening of AP duration along the activation pathway and the pro-

gressive modulation by premature beats of spatial patterns of dispersion of

repolarization. The proposed approach may also have important implications

in other research fields involving excitable complex media.
1. Introduction
Excitable biological tissues, such as neural, cortical, gastric muscle or cardiac

cells, are characterized by the generation and spread of timed electrical

impulses that regulate their function, such as vision or contraction. The action

potential (AP) represents changes over time in the electric potential of these

cells that are the result of currents flowing across the membrane via the move-

ment of ions. However, the extent to which electrical propagation is influenced

by the highly complex, and heterogeneous nature of these tissues remains

unclear. The spatial complexity of a medium can impose geometrical con-

straints on transport processes on all length scales that can fundamentally

alter the laws of standard diffusion [1,2]. However, conventional modelling

techniques represent these tissues as continuum media with spaced averaged

properties, assuming a negligible contribution of their composite microstruc-

ture in modulating electrical conduction. In the particular case of cardiac

muscle, and while many mechanistic findings have been obtained using these

traditional approaches, their limitations to characterize tissue structure are

well acknowledged [3]. New mathematical modelling techniques are thus

needed to capture and explain the influence of tissue heterogeneity on cardiac

wavefront propagation.

The fundamental modelling unit in understanding the propagation of elec-

trical excitation is the cable equation. It describes the electrical propagation of

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2014.0352&domain=pdf&date_stamp=2014-06-11
mailto:alfonso.bueno@cs.ox.ac.uk
http://orcid.org/
http://orcid.org/0000-0002-1634-3601


(b)(a)

Figure 1. Transverse sections of cardiac muscle, illustrating multiple levels of structural heterogeneity. (a) Components of the extracellular space, including capillaries
(Xbv), empty space (Xe), connective tissue (Xf ) and collagen (Xc), embedded in ground substance (Xg). Scale bar, 1 mm; Ncl, nucleus (7500�). Reproduced with
permission from [5]. (b) Distribution of microvasculature in canine ventricular muscle (arrows), producing multiple indentations along the perimeter of each myocyte.
The markedly heterogeneous distribution of interstitial space surrounding capillaries and myocytes is also appreciated. Left bar, 50 mm; right bar, 10 mm.
Reproduced with permission from [6].
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an axial current along a thin fibre consisting of a homo-

geneous collection of excitable cells connected via gap

junctions [4]. The model is constructed via an electrical circuit

representation of a small path of the cellular membrane and

the principle of homogenization to derive a continuous

equation of the form

r � (srVm) ¼ x(Cm@tVm þ Iion � Istim),

where Vm is the cellular transmembrane potential, and Iion

and Istim the total transmembrane and stimulus currents,

respectively. Model parameters are the tissue conducti-

vity tensor, s, the cell surface-to-volume ratio x and the

membrane capacitance, Cm.

Through electric potential theory, it is known that an

excitable membrane will induce electric fields through all

components of the surrounding tissue [4]. This forms the

basis for the bidomain model of cardiac electrophysiology

r � (sirfi) ¼ x(Cm@tVm þ Iion � Istim,i), in Vi

and

r � (serfe) ¼ �x(Cm@tVm þ Iion þ Istim,e), in Ve,

where the tissue is assumed to consist of two overlapping

spaces: the intracellular, Vi, and the extracellular, Ve,

domains, respectively, characterized by their corresponding

conductivity tensors, si and se. Electrical propagation is

described by the scalar potentials in Vi and Ve, fi and fe,

where Vm ¼ fi 2 fe.

Discontinuities and heterogeneities in myocardial struc-

ture exist on several levels, as clearly evidenced by figure 1.

Such a structural heterogeneity at different spatial scales

may therefore pose possible limitations on both the mono-

domain and bidomain models as conclusive representations

of cardiac tissue. First, the reasoning behind these models

is that cardiac myocytes form collections of thin fibres that

are arranged into sheet-like structures [3,5]. Gap junctions

between the myocytes would preserve the cytosolic continu-

ity, and so at a larger scale, this structure can be viewed from

some aspects as a homogeneous domain. However, large

differences in diffusion scales have been reported in the cyto-

plasm of mammalian cells [7], and gap junctions are known

to have a much larger resistance compared with cytoplasm,
which may be a source of discontinuous propagation on a

local scale [8]. Furthermore, the brick wall structure of the

myocyte sheets has a marked effect on propagation, and

conduction delays depend on the number of adjacent cells

connected to any given myocyte [9]. Thus, the argument

for treating the intracellular domain as homogeneous is

questionable at least, as also evidenced by the anomalous

diffusion demonstrated in single particle-tracking exper-

iments in cells, further supporting the high complexity of

this medium [10–12].

In the case of the extracellular space, even more doubts

can be raised. The extracellular domain is a complex mix of

different tissue types, including fibrous tissue, blood vessels,

collagen, fat and interstitial pores [5]. As a particular case

in point, it is known that functional fibroblasts–myocytes

coupling allows fibroblasts to transduce activity between

otherwise unconnected myocytes [13]. Ephaptic coupling in

the narrow extracellular regions between cells may also

cause large changes in ionic concentrations that vary the elec-

trical potential and can induce an electrical signal [14].

Additional factors such as the relative volumes of intra-

cellular and extracellular space are also known to affect the

resistance and distribution of cell-to-cell coupling [15].

Therefore, complex heterogeneous structures exist at a

wide range of spatial scales in cardiac tissue. Under the above-

mentioned conditions, and even from a mathematical point of

view, the applicability of a standard homogenization process

to cardiac tissue can be questioned. In this type of settings,

fractional (non-integer) models have been proposed as an

alternative modelling framework (see appendix). Fractional

spatial differential operators have been shown to incorporate

the multi-scale effects of transport processes taking place in

heterogeneous media. Applications include the filtration of

solutes in porous soils [16], diffusion of water molecules in

brain tissue [17], receptor-mediated transport of morphogens

in developing tissues [18] or electrical charge transport in poly-

mer networks [19]. Moreover, rigorous mathematical analysis

on advanced homogenization techniques has established the

connection between Brownian motions on disordered or com-

plex structures and anomalous diffusion, as described by

fractional diffusion models [20–22]. It is in this context of

extended structures with spatially intricate patterns that
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fractional models can offer insights that traditional approaches

do not offer. In particular, the structural characteristics of

cardiac tissue suggest fractional diffusion as an appropriate

modelling framework.

In this paper, we propose a family of fractional diffusion

models to describe electrical propagation in heterogeneous

excitable media, analysing their application to cardiac mus-

cle as a representative case of composite biological tissue.

More precisely, these models represent the modulation of

the electrical field of a homogeneous conductor by the second-

ary electrical sources associated with its inhomogeneities

(see §2). For the ease of presentation of these novel ideas, we

concentrate on the case of isotropic conduction in a fractional

monodomain formulation

@tVm ¼ �Da(�D)a=2Vm �
1

Cm
(Iion � Istim), 1 , a � 2,

(1:1)

where Da is the diffusion coefficient and (2D)a/2 is the frac-

tional Laplacian. These results can easily be extended to the

anisotropic case by considering the fractional generalization

of the standard diffusion operator, 2(2r . (srVm))a/2, so

that, for a ¼ 2, it recovers the standard monodomain formu-

lation. The propagation model given by equation (1.1) for the

transmembrane potential Vm is coupled to the system of

ordinary differential equations

@ty ¼ f(Vm, y) and Iion ¼ g(Vm, y), (1:2)

describing the cellular electrophysiological dynamics. Finally,

given that a ¼ 2 describes the perfectly homogeneous case

(see §2), we focus our analysis on the upper part of the 1 ,

a � 2 range, because we hypothesize this represents a tissue

with a moderate-to-medium level of structural heterogeneity.

The outline of this paper is as follows. Section 2 presents

the biophysical justification of our fractional diffusion descrip-

tion of cardiac tissue based on potential theory. Simulation

results using our fractional models of electrical propaga-

tion are compared in §3 with in vivo human recordings and

experimental data of different animal species. The agreement

between simulations and experimental recordings offers

novel insights into clinically relevant mechanisms of electrical

wavefront propagation, namely conduction effects on myocar-

dial depolarization, AP shortening along the pathway of

activation and the modulated dispersion of repolarization.

Hence, as discussed in §4, our results indicate the use of

fractional diffusion models as a powerful tool to promote our

current interpretation of the role of tissue inhomogeneities in

modulating cardiac electrophysiology. The proposed approach

may have, as well, important implications in unravelling the

many facets of structural heterogeneity in other research

fields where electrical propagation is highly influenced by

complex media, such as soft muscle or neural tissue.
2. Biophysical justification of the fractional
diffusion model

Both the monodomain and the bidomain formulations of the

cable equation are well-accepted methodologies to describe

the spread of electrical activity in excitable media [3]. The

only difference between these modelling approaches and

our proposed fractional diffusion models for heterogeneous

excitable media is the replacement of the diffusive term
(which describes tissue coupling) in equation (1.1) by the

fractional Laplacian, (2D)a/2. None of the remaining terms

is subjected to additional changes or affected by any

spatial-dependence. Here, we aim to provide a biophysical

interpretation for this new coupling term, which captures

the degree of structural heterogeneity in the tissue.

In a statistical sense, the fractional diffusion process given by

equation (1.1) without the reaction term can be viewed as

describing the probability density function of an ensemble of

particles undergoing a Lévy ( jump) process, leading to a

space–time scaling of the form x � t1/a, that is, intermediate

between normal and ballistic motion [1,2]. The closer a is to

the value one, the more pronounced the heavy tailed distri-

bution becomes, and the more likely that there is a huge range

of spatial scales as to where these diffusing particles can lie.

However, a further biophysical motivation is needed for frac-

tional diffusion models in the context of excitable media. In

order to make our justification beyond Lévy walks, we resort

to potential theory. Consider a homogeneous domain in three-

dimensional space with conductivity s and a source I at point

(x, y, z). Then, the electrical potential f satisfies the solution of

� Df ¼ I
s

,

which at a field point (x0, y0, z0) is given by

f(x0, y0, z0) ¼ 1

4ps

ð
V

I
r

dV,

where r ¼ [(x 2 x0)2 þ (y 2 y0)2 þ (z 2 z0)]21/2. Thus, in a homo-

geneous tissue, the electrical potential associated with a point

source I¼ I0d(r) (monopole) is given by

fm(r) ¼ I0

4psr
: (2:1)

Equivalently, the electric potential associated with a dipole (two

adjacent monopoles of equal and opposite sign, separated by a

small distance d) is for r� d

fd(r) ¼ I0

4ps

d cos u

r2
, (2:2)

where u is the polar angle between the dipole and the field point.

It is known that biological tissues give rise to volume con-

ductors that are inhomogeneous in essence. This includes a

variety of discontinuities in conductivity at multiple scales,

from intracellular differences in diffusion, gap junctions

connecting cardiomyocytes, to the presence of vasculature,

fibrous, connective and adipose tissue or interstitial pores

in the extracellular domain. As discussed in the classical text-

book by Plonsey & Barr [4], continuity of the potential and

the normal component of the current must be satisfied at

the interface between regions of different conductivities.

This corresponds to an equivalent double-layer source

(see [4, §8.3.4]), which generates a field

fp(r) ¼ 1

4psp

X
i

þ
Si

fi � dsi
ar � dS

r2
, (2:3)

where Si denotes the ith surface on which a discontinuity in

conductivity, dsi, occurs. Here, ar is the unit radius vector

from source to field and
Þ

Si
represents the integral over sur-

face Si. The above equivalent source is considered a

secondary source, because it arises only when a primary

source has established a field and current flows across the

interface separating the regions of different conductivities.

Furthermore, and quoting the above-mentioned authors: ‘this
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view provides a conceptual (and possibly a computational)

approach to considering the effect of inhomogeneities. In this

approach, one finds the primary source field as if the

volume conductor were uniform and infinite and then adds

the fields generated by the secondary sources’.

Therefore, the total electrical field of a heterogeneous

tissue can be approximated as the monopole component

associated with a uniform conductor plus the perturbations

that arise owing to tissue inhomogeneities

f(r) ¼ fm(r)þ fp(r):

These secondary sources can actually be seen as a dipole

modulation of the monopole given by equation (2.1), as by

letting the dsi go to zero in equation (2.1), we recover the

original monopole, but at the other extreme, we retrieve a

dipole. This suggests a dependence on r ranging from 1/r
to 1/r2. This insight allows us to make the connection to

fractional models in terms of Riesz potential theory [23,24].

In RN , the fractional Laplacian can be written as

(�D)a=2f ¼ Ca

ð
RN

f(r)� f(r0)
k r� r0kNþa dr0,

on a bounded domain with zero Dirichlet boundary con-

ditions, whereas the case of reflecting boundary conditions

can be also considered. Now, the solution of

(�D)a=2f ¼ f ,

under the assumption that f is sufficiently regular and

has compact support (so that it vanishes at infinity), can be

written as

f(r) ¼ (�D)�a=2f ¼ 1

Ca

ð
RN

f(r0)
k r� r0kN�a dr0, (2:4)

where 0 , a , N and

Ca ¼
pN=2 2a G(a=2)

G(N � a=2)
(2:5)

and G(.) denotes the Gamma function. So, for N ¼ 3 and f¼
I0d(r)/s, then for a ¼ 2, Ca ¼ 4p and f(r) � 1/r, which is

consistent with the monopole described in equation (2.1).

Equivalently, for a ¼ 1, the dipole dependence f(r) � 1/r2 in

equation (2.2) is recovered. Intermediate values 1 , a � 2 can

thus be interpreted as a smooth transition between these two

types of electric potentials, representing a biological tissue

with increasing degree of inhomogeneities as a approaches

its ballistic lower limit. Note that this theory can be generalized

to cope with anisotropy using the operator (2r . sr)a/2.

Analogous continuity arguments have been used in other

applications of fractional calculus to electrostatic theory

[25,26]. Similarly, fractional models have been effectively

applied to describe the presence of impurities in semiconduc-

tor heterostructures [27], where the generalization of fractal

conductance, depending on restrain conditions in charge

movement, has been also proposed [28,29].

It is important to recall that our interpretation of the fractional

Laplacian is based on potential (electric field) theory, and not on

reaction–diffusion theory. Thus, the appropriate case is N¼ 3

owing to the three-dimensional nature of the electric field associ-

ated with any charge distribution, regardless of their particular

space distribution. Hence, our results also hold for one- and

two-dimensional tissues, where a monopole/dipole charge dis-

tribution still generates a three-dimensional electrical field in the
surrounding space, with the confined and outer components

of this field subjected to different conductivities (or air per-

mittivity). This is, in fact, the same principle underlying the

computation of the pseudo-electrocardiogram signal [4,30]

in any point outside the integration domain when using the

standard cable equation.

However, this mathematical framework also holds with

N ¼ 2, as long as 0 , a , 2, and also in the case N ¼ 1

under a simple modification [23]. For example, with N ¼ 2

and a ¼ 1, (2.4) and (2.5) lead to Ca ¼ 2p and f(r) � 1/r,
which corresponds to the well-known dipole formulation in

two spatial dimensions. As a approaches 2, there is a transition

to the monopole corresponding to f(r) � log r and hence, as

in the N ¼ 3 case, the fractional model again represents a

transition between the dipole and monopole distributions.
3. Role of tissue inhomogeneities on cardiac
propagation

3.1. Conduction effects on myocardial depolarization
The depolarization of a cardiomyocyte is characterized by an

initial deviation from its resting membrane potential, known

as the AP foot, then followed by the rapid AP upstroke. Prob-

ably, the most comprehensive experimental study to date on

the effects of tissue structure in this AP phase is still the work

of Spach et al. [6], where the authors investigated the impact

of wavefront propagation on the depolarization of canine

cardiac tissue.

Figure 2a illustrates the depolarization wavefront presented

in [6] during longitudinal propagation (dashed line), compared

with simulated waveforms using a biophysically detailed

canine AP model [31]. Standard diffusion (a ¼ 2) yields the

narrowest AP foot, with increasing foot width for decreasing

fractional powers. In particular, the value of a ¼ 1.75 nicely

replicates the observed experimental AP foot of this ventricular

preparation, whereas standard diffusion underestimates its

width and morphology. Furthermore, fractional diffusion

induced only a small decrease in AP amplitude when com-

pared with standard diffusion (�2.4 mV for both a ¼ 1.75

and a ¼ 1.5).

Spach et al. further characterized the role of wavefront

conduction in depolarization by analysing the Vm 2 dVm/dt
phase-plane trajectories (figure 2b, inset). During longitudinal

propagation, the majority of their ventricular and atrial impa-

lements exhibited concave trajectories in the phase portrait

(n ¼ 40, 80%), indicating a deviation of the AP foot from expo-

nential growth (i.e. a linear Vm 2 dVm/dt relationship). The

rest of the preparations displayed mixed concave/convex tra-

jectories, but all deviated from linearity. Figure 2b shows the

phase-plane trajectories in the canine model obtained for

different a. While standard diffusion produces a completely

linear phase portrait (a ¼ 2), fractional diffusion yields profiles

with increasing degree of concavity for decreasing a. The

mean experimental deviation of maximum dVm/dt from line-

arity was 215.1 V s21 in ventricular muscle. This separation

was quantified for the fractional diffusion models, resulting

in 214.5 V s21 for a ¼ 1.75 and 234.9 V s21 for a ¼ 1.5.

These results indicate that the depolarization of this particular

experiment can be very well approximated by a fractional

power close to a ¼ 1.75. Moreover, although the actual range

of deviation from linearity was not provided in their study,
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the authors classified their ventricular impalements as exhibit-

ing ‘minor’, ‘moderate’ and ‘considerable’ concavity degrees

(respectively, 9%, 27% and 64% of ventricular preparations,

n ¼ 22). This classification suggests that fractional powers

a , 1.75 (resulting in more pronounced concavities) can also

be viable in healthy myocardium. In this regard, newborn tis-

sues, richer in microvasculature and discontinuities, exhibited

even larger degrees of concavity than adult myocardium [6].

Peak value distributions for the three principal currents

during depolarization are depicted in figure 3 for human

[32] and canine [31] cell models. Despite model-specific
magnitudes, almost constant profiles are found for all

currents in the case of standard diffusion (a ¼ 2), only influ-

enced by the stimulus and distal boundary sites. However,

the effects of fractional diffusion on the AP foot yield a wider

range of influence for these regions. Peak magnitudes of the

fast sodium, INa, and the transient outward current, Ito, were

reduced in both cellular models, thus leaving upstroke ampli-

tude almost unaffected through the tissue. These results were

also consistent with those in the description of rabbit electro-

physiology [33]. Conversely, the behaviour of the L-type

calcium current, ICaL, was model-dependent, exhibiting a
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modest decrease in dog, whereas a small increase in human

and rabbit models. No significant changes were observed in

the rest of transmembrane currents.
3.2. The inverse AT – APD relationship
A compelling mechanism of the intact heart, reported in

multiple studies and different species, is the shortening of

AP duration (APD) during propagation, also known as

the inverse AT–APD relationship. To better illustrate this

aspect, the left column of figure 4 provides representative

experimental data for in vivo human [34], dog [35] and

isolated rabbit hearts [36].

The contribution of tissue inhomogeneities, as modelled by

fractional diffusion, to APD dispersion (DAPD) was investi-

gated in tissue cables for biophysically detailed models of

human [32], dog [31] and rabbit [33], as shown in the right

column of figure 4. Standard diffusion (a¼ 2) yields moderate

DAPD values, regardless of cell type. More remarkable is the

fact that, for all cell models, DAPD distributions turn into

nearly constant profiles once the domain size becomes compar-

able to the AP wavelength [37]. On the other hand, DAPD

increasingly grows for decreasing fractional power, more

closely resembling the DAPD profiles reported experimentally.
In the absence of regional gradients in the expression of

ionic currents, the main mechanism contributing to APD dis-

persion in cardiac tissue is cell-to-cell electrotonic coupling.

As elegantly discussed in [37], the electrotonic current is

large and positive within the stimulated region (figure 5a,b),

which lengthens APD, whereas it is large and negative at

the boundaries (figure 5e,f ), thus contributing to APD short-

ening at distal locations of the tissue. As illustrated in figure 5

for the human and canine cellular models, cell-to-cell electro-

tonic load during repolarization is substantially larger at

all sites for fractional compared with standard diffusion,

hence amplifying tissue coupling effects on APD disper-

sion. Electrotonic currents are also larger for cell models

with a sharper repolarization phase (see individual APs in

figure 4), in agreement with previous results [37]. Despite

specific AP morphology, the influence of fractional diffusion

in increasing repolarization effects was consistent for all the

studied cell models.
3.3. The modulated dispersion of repolarization
Another important characteristic of cardiac tissue, owing

to its implications in arrhythmogenesis, is the nonlinear

response referred to as APD restitution. Among existing
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protocols, the most clinically relevant is the standard or

S1–S2 restitution. For steady-state conditions at a fixed S1

pacing cycle length, this protocol relates APD at any tissue

point as a function of their preceding diastolic inter-

val, APDn ¼ f (DIn 2 1), under a premature S2 stimulus.

Here, DIn 2 1 ¼ CI–APDn 2 1 and CI is the coupling interval

(time difference between S1 and S2 stimulations), whereas

superscripts refer to the beat number.

Owing to the shortening of APD during propagation, a

range of restitution profiles may also exist along the path of

activation. Such an effect in APD restitution has been

reported in human [34] and animal [38,39] studies. Exper-

imental evidence for one patient with healthy ventricles is

presented in figure 6a. For each coupling interval, local

APDs from numerous ventricular sites are plotted against

their preceding DIs, and a local regression line is drawn.

For test beats close to the basic cycle length (figure 6b), the

regression line has a slope of 21. As the coupling interval

is shortened, DIs decreased, and the restitution curve acted

to reduce APD dispersion. This results in the progressive flat-

tening of regression lines known as modulated dispersion of

repolarization, with electrode sites having shorter DIs exhi-

biting a larger APD reduction compared with electrodes

sites with longer DIs [34].

The ability of the different propagation models in repro-

ducing the modulated dispersion of repolarization was

inspected for human electrophysiology [32]. Figure 6b
shows results for standard diffusion (a ¼ 2). The APD differ-

ence between early and late activating sites is small in this

case, owing to the minimum role of standard diffusion in

the inverse AT–APD relationship. More intriguing is the

rapid inversion of DI–APD regression lines at medium and

short coupling intervals, not observed in the in vivo data.
Results for fractional diffusion models are also presented,

for a ¼ 1.75 (figure 6c) and a ¼ 1.5 (figure 6d ). As the

fractional order a is decreased, not only does the APD differ-

ence between early and late activating sites increase, but the

progressive flattening of regression lines is also recovered.

Two factors are involved in the recovery of this gradual

flattening. First, the APD decreases along the activation

pathway, and, second, there is an increased dispersion of

local DIs in the tissue, as can be observed by comparison of

figure 6b–d. Both factors are interrelated, because DIn 2 1 ¼

CI 2 APDn21. Thus, the larger the APD dispersion in the

basic beat, the bigger the resulting dispersion of DIs

preceding the premature stimulus.

An additional property known to interact with APD res-

titution in the modulation of APD patterns is conduction

velocity (CV) restitution [40,41]. Equivalent to APD restitu-

tion, this relates CV as a function of their preceding DIs,

CVn ¼ f(DIn 2 1). Fractional diffusion effects on CV restitution

are investigated in figure 7. Only slight modifications in CV

restitution profiles are observed at short DIs for decreasing

a, owing to the increased dispersion of local DIs for the frac-

tional diffusion models. Therefore, fractional diffusion allows

the reproduction of key properties in the dispersion of repo-

larization in cardiac tissue, without altering other important

properties of cardiac conduction.
4. Discussion
The new modelling framework presented in this contribution

aims to probe mathematical descriptions of cardiac tissue

with the macroscopic effects of structural heterogeneity on

impulse propagation. Our findings, analysed in cellular
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models of human, dog and rabbit electrophysiology, indicate

that the secondary electrical sources created by tissue inho-

mogeneities (as modelled by fractional diffusion) play a

significant role in explaining a number of relevant character-

istics observed during myocardial excitation. These include

conduction effects on the AP foot during depolarization,

the inverse AT–APD relationship, and the modulated

dispersion of repolarization. Furthermore, the resulting

approach provides a unified framework that allows for the

joint interpretation of all these factors, solely based on the

intrinsic heterogeneous nature of cardiac tissue. In fact,

both clinical, experimental and theoretical studies have pre-

viously suggested that structural heterogeneity may actively

modulate the course of impulse propagation and recovery

of excitability in cardiac tissue [6,15,42]. However, limitations
of conventional modelling techniques hamper our ability to pro-

vide novel insights into the influence of tissue microstructure

in these regards.

Shortening of APD along the activation path has been

reported in human and different animal species [34–36,38].

Importantly, this inverse AT–APD relationship is considered

a natural protective mechanism of the intact heart [34],

because, as APD shortens, so does dispersion of repolarization,

which is widely accepted as being arrhythmogenic [35,43].

However, this property of wavefront propagation is not accu-

rately reproduced by standard cable equation models of

cardiac tissue, which yield almost entirely constant AT–APD

distributions (figure 4). Our results suggest that tissue

inhomogeneities assert a crucial role in the mode of action

of electrotonic current flow, thus explaining the inverse
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AT–APD coupling and highlighting its implications as the

underlying mechanism regulating the modulated dispersion

of repolarization. They also indicate a tissue modulation of

ionic currents acting during AP depolarization. Moreover,

experimental evidence indicating a structural role of the tissue

on membrane currents and on the morphology of the initial

part of the depolarizing phase has been also reported [6,15].

On the other hand, several guinea pig studies have

suggested that regional differences in the expression of ionic

currents may underlie APD shortening during propagation

[38,39]. Whereas we cannot exclude their possible contribution

to total APD dispersion, or the combined effect of both factors,

other experimental studies have shown electrotonic modu-

lation of APD dominates the effects of intrinsic differences

in cellular repolarization characteristics [44]. Although

the main goal of this work was to characterize how tissue

microstructure influences electrical function in an otherwise

homogeneous condition, it will be interesting to analyse

how fractional diffusion modulates existing ionic gradients in

cardiac tissue, and their contribution, for instance, to the

body-surface electrocardiogram.

In the past, traditional approaches to understand the role of

tissue heterogeneity in cardiac conduction have been based on

the combination of standard diffusion models with high

resolution anatomical reconstructions of tissue structure. The

level of anatomical detail obviously depends on mesh resol-

ution, and current discretizations suffice to capture from

localized fibrotic patches [42] to medium-sized vessels [45,46].

Finer anatomical features, such as capillaries or intercellular

cleft spaces, would imply, however, the use of anatomical

models at submicrometre resolution (figure 1), which are

currently intractable even with the most advanced high-

performance facilities. Some novel methods have been recently

proposed to overcome some of these limitations, such as the use

of discontinuous finite-elements to represent fibrotic clefts [47].

Furthermore, measuring the heterogeneity at these microscales

and then estimating appropriate conductances imposes

additional difficult challenges. As an alternative, the proposed

fractional diffusion models represent a flexible approach to

characterize the role of cardiac microstructure in electrical

propagation in terms of computational tractability, because

spatial discretization is retained at a mesoscopic and not subcel-

lular scale. However, their numerical resolution can impose a

number of constraints when compared with standard diffusion,

because the fractional Laplacian yields full, instead of sparse,

matrices. Nevertheless, new efficient techniques, that avoid

the explicit calculation of the fractional operator, have been

recently proposed for these types of systems [48,49]. In par-

ticular, and for sufficiently regular geometries, the methods

presented in [49] achieve the same computational cost as

associated with standard diffusion.

Therefore, fractional diffusion models may have potential

implications in advancing our understanding on the mechan-

isms of dispersion of repolarization and its modulation by

premature beats. Our findings indicate that fractional

powers a , 2 reproduce many interesting tissue properties

in a variety of human and animal cellular models. Although

we have concentrated our analysis in the upper part of its

allowable range, lower values of a are nevertheless admissi-

ble, and a rigorous methodology needs to be developed to

properly estimate these values. Different imaging modalities

have been recently proposed to characterize fractional diffu-

sion transport in neural tissue [17,50], and they might be
extended as well for their application to cardiac tissue.

Importantly, we are not suggesting that there should be a

unique value to represent heterogeneities. Rather, we suggest

that there are ranges of suitable values of a in different

settings (such as healthy or diseased states), and this is con-

sistent with important new modelling approaches centred

on the concept of populations of models to represent biologi-

cal variability [51–53]. Indeed, although a constant value of a

is associated with the average level of tissue inhomogeneity

that is spatially distributed, more localized inhomogeneities

(such as the epicardial layer being richer in vasculature

than the endocardium) can be considered through space-

varying fractional powers, whereas larger anatomical defects

(such as main blood vessels) could still be incorporated in the

mesh generation process. All these points will be addressed

in future work.
5. Methods
5.1. Models and simulations
Simulations were conducted in one-dimensional fibres of cardiac

tissue of length as specified in the main text, using AP models of

canine [31], human [32] and rabbit [33] ventricular electrophysi-

ology. All models provide biophysically detailed descriptions of

the main transarcolemmal currents, calcium handling and ion

homeostasis in the considered species.

At the tissue level, macroscopic properties such as CV must

be captured by the specific propagation model, regardless of its

mathematical description. The diffusion coefficient, Da, in

equation (1.1) was thus adjusted for the fractional models to

match the CV in standard diffusion (a ¼ 2), as measured in the

centre of tissue cables of 2 cm length. For standard diffusion, dif-

fusion coefficients of 1.2, 1.0 and 1.4 cm2 s21 were used for

human, dog and rabbit models, respectively, to yield a CV of

70, 58 and 67 cm s21, as experimentally reported.
5.2. Protocols for validation against experimental data
Tissue models were initialized with single-cell steady-state con-

ditions at the specified cycle lengths, and paced as indicated in

the main text until the relative difference in DAPD was less

than 0.5% in two consecutive heart beats. Activation time was

determined at the steepest upstroke of the AP, whereas repolar-

ization time was quantified at 90% of repolarization, matching

reported experimental conditions. APD was measured as the

difference between the repolarization and activation times.

Dispersion in any of these values was measured as the difference

between the maximum and minimum values obtained over the

entire domain.

APD restitution curves were calculated in one-dimensional

cables of 4 cm length. The cable was paced until steady-state at

one end with a stimulus of strength 2 � diastolic threshold and

a cycle length of 1000 ms, then introducing test pulses over a

range of different coupling intervals. The resulting DI–APD

pairs were computed for all points in the tissue.
5.3. Numerical techniques
All models were integrated with a temporal resolution of Dt ¼
0.0025 ms, with spatial discretization of Dx ¼ 1/64 cm �
150 mm. Simulations were performed using a semi-implicit Four-

ier spectral method as described in [49,54], with non-flux

boundary conditions to ensure conservation of charge. In brief,

given a complete set of orthonormal eigenfunctions {wj} for the

Laplacian satisfying the boundary conditions in the interval of
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length L, with corresponding eigenvalues lj, i.e. (2D)wj ¼ ljwj,

then the fractional Laplacian is given by

(�D)a=2u ¼
XN�1

j¼0

ûj l
a=2
j wj, (5:1)

where N is the number of discretization points, and coeffi-

cients ûj are computed by the discrete cosine transform.

Using a backward Euler stencil for the time derivative, and

after rearrangement of terms, the time–space discretization

for the jth Fourier mode of equation (1.1) simply becomes

ûnþ1
j ¼ 1

1þDal
a=2
j Dt

[ûn
j �Dt ĥj (un, yn)], (5:2)

where lj ¼ ( jp/L)2, and u ; Vm, h(u, y) ¼ 1/Cm (Iion(u, y) 2

Istim) have been used to simplify notation. The remainder of

state variables y is updated using an explicit Euler scheme.
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Appendix A. Multi-scale modelling in
heterogeneous media
Here, we briefly discuss different approaches for multi-scale

modelling in the presence of heterogeneity.

Diffusion in heterogeneous media can sometimes be well

approximated by a homogeneous standard diffusion medium

whose diffusive properties are close to that of the real medium.

The key to this homogenization is the nature of the spatial

scales in the underlying heterogeneous media. It is this idea

that underpins the bidomain model. In its simplest form, hom-

ogenization assumes the domain is defined at a macroscopic

scale, L, whereas the characteristic length of the heterogeneities

defines a microscopic scale, 1� L. Given a conductivity tensor

s(x/1), homogenization studies the solution of the underlying

equations as 1! 0 (i.e. as heterogeneities become vanishingly

small), aiming to replace the rapidly oscillating coefficients

s(x/1) by an effective domain characterized by constant coeffi-

cients, ~s. It is possible to apply these ideas to multiple scales

and layered domains, but homogenization becomes increasingly

difficult [55] and assumptions have to be made about the regu-

larity of s. However, when the number of scales becomes

large, without clear separation, homogenization fails.

A classic example in potential theory, going back to the

work of Maxwell and Rayleigh and the so-called Maxwell–

Claussius–Mossotti formula, is the study of the effective

electrical properties of a large sphere of radius R with conduc-

tivity D1 and a number N of spherical inclusions of radius d,

with conductivity D2. Then, the Maxwell–Claussius–Mossotti

formula allows for an effective approximate conductivity for

the whole domain, but only in the case when the relative

volume B ¼ Nd3=R3 � 1. For more heterogeneous situations,

when either the size or the number of inclusions increases

and the relative volume becomes B ¼ O(1), homogenization

by a traditional approach is not possible, and new approaches

are needed [56].
Some recent work on modelling heterogeneity has con-

sidered the behaviour of diffusive particles in random fields

through stochastic differential equations. The fundamental

setting is that of an Itô process driven by additive Wiener

noise, wt, of the form

dx ¼ D(x)dtþ
ffiffiffiffiffi
2k
p

dwt, x [ Rd:

A number of authors [20–22] have shown that a superdiffu-

sive behaviour can arise from the above diffusive process

if D(x) has a large number of spatial scales that are not

well separated (a characteristic of heterogeneity). Essentially,

this is based on considering expansions of the form

D(x) ¼
P1

n¼0 gnhn(x=Rn), where hn(x) are smooth functions

of period one, appropriately rescaled in width and amplitude

by Rn and gn, respectively. For example, if gn ¼ gn and Rn ¼

rn, then the width of the ensemble increases as t (1þ q)/2, q ¼
log g/log r, in contrast to the normal t1/2 case.

An alternative approach for the characterization of trans-

port processes in fields that are non-uniform on multiple

scales is the use of multi-scale diffusivities. The first model

of this type is attributed to Richardson in the mid-1920s

[57], for the study of the diffusion of particles in turbulent

flows including vortices whose size is commensurable to

the distance between particles. The proposed semi-empirical

diffusion equation is

@tp(x, t) ¼ r[D(x)rp(x, t)], (A 1)

where D(x)/ jxjg and coefficient g¼ 4/3, which was later con-

firmed theoretically by Kolmogorov [58]. In fact, the physical

meaning of D(x)/ jxjg is simply that of a continuous diffusive

process at all possible space scales. Solutions to the Richardson

model with g ¼ 4/3 show a superdiffusive process where the

width of a packet increases as t3/2, and the distribution of a

random vector proves to be non-Gaussian at all scales. The

above results have been generalized for arbitrary g in a

very recent paper [59], showing that if D(x)/ jxjg, then the

width of a packet scales as t1/(22g), so that if g [ (0, 2], then

superdiffusivity arises, whereas g , 0 yields subdiffusion.

Monin [60] developed an alternative model to (A 1) by

considering a diffusion operator of the form

@tp̂(k, t) ¼ �k2=3p̂(k, t):

Application of the inverse Fourier transformation leads to the

following equation with a fractional Laplacian for the density

@tp(x, t) ¼ �(� D)a=2p(x, t), (A 2)

where a ¼ 2/3. The analytic solution to this equation can be

obtained in terms of fractional stable radial densities [61],

exhibiting the same t3/2 superdiffusive process than the orig-

inal Richardson model (A 1), and as t1/a for arbitrary a. Note

at this point the equivalence between the multi-scale model

written in the form of (A 1) and the fractional Laplacian rep-

resentation given by equation (A 2), which underlies our

fractional approach to describe cardiac tissue.

The important message here is that, when heterogeneity is

manifested as a very large number of scales that cannot be

separated, superdiffusion can arise from purely diffusive pro-

cesses. However, the characterization of these processes is

one of the very hard problems in statistical physics, and gen-

eral theories are difficult to construct. Nevertheless, it is clear

that superdiffusion can arise in natural ways, and such

characterizations will rely on a combination of theory,

simulation and experiments.

http://models.cellml.org/electrophysiology
http://models.cellml.org/electrophysiology
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