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Universal patterns in passenger 
flight departure delays
Yanjun Wang1,2,9, Yakun Cao3,9, Chenping Zhu3 ✉, Fan Wu1,4, Minghua Hu1, Vu Duong5, 
Michael Watkins6, Baruch Barzel   7 & H. Eugene Stanley8 ✉

Departure delays are a major cause of economic loss and inefficiency in the growing industry of 
passenger flights. A departure delay of a current flight is inevitably affected by the late arrival of the 
flight immediately preceding it with the same aircraft. We seek to understand the mechanisms of 
such propagated delays, and to obtain universal metrics by which to evaluate an airline’s operational 
effectiveness in delay alleviation. Here we use big data collected by the American Bureau of 
Transportation Statistics to design models of flight delays. Offering two dynamic models of delay 
propagation, we divided all carriers into two groups exhibiting a shifted power law or an exponentially 
truncated shifted power law delay distribution, revealing two universal delay propagation classes. 
Three model parameters, extracted directly from dual data mining, help characterize each airline’s 
operational efficiency in delay mitigation. Therefore, our modeling framework provides the crucially 
lacking evaluation indicators for airlines, potentially contributing to the mitigation of future departure 
delays.

Millions of passengers worldwide routinely suffer from flight delays, which not only constitute a common incon-
venience, but are also a source of tremendous economic loss and potential chaos in air traffic. To further exacer-
bate the issue, the interconnected nature of airports and carriers, where the arrival of planes and crews depends 
on the the punctuality of incoming and outgoing flights, leads to the potential spread of delays from one destina-
tion to another, in comparison with information spreading1–3. Hence, to alleviate the impact of such delays, we 
seek to understand the underlying rules that govern their propagation by uncovering their recurring statistical 
patterns4,5. This is made possible thanks to the collection of big data6–9 on flights, leading in recent years to signifi-
cant advances in our understanding of the delay dynamics5,10–19. Still, most current analyses are limited to just one 
or few airlines, or to a restricted time-span, limiting the scope of their potential insight, and inevitably overlook-
ing universal patterns that can only be observed by comparisons across airlines or over many years. Here we use, 
for the first time, a comprehensive dataset, capturing flight records extracted from 14 United States carriers over 
the course of 20 years. Focusing on such a broad dataset, we are able to observe universal statistical patterns across 
different carriers, providing us with direct insight into their operational functionality towards delay mitigation.

The US Bureau of Transportation Statistics (BTS) classifies the causes of passenger flight delays into five cat-
egories20: (i) The carrier; (ii) extreme weather; (iii) the national aviation system; (iv) security; (v) late-arriving 
aircrafts; where category (v) is the factor directly causing propagated delay (PD) in which the departure delay of 
the current flight is inevitably caused by the late arrival of the immediately preceding flight with the same air-
craft. We call it the PD factor, while we call categories (i) to (iv) non-propagation factors. Such downstream delay 
propagation5,10–16,21–26 begins with a last departure delay that may result from any one or more in the five causes 
(i) - (v), but then leads to an ensuing delay via PD, i.e. specifically cause (v). To understand the rules of this prop-
agation we obtain the functional link between an immediately preceding delay and the resulting current PD with 
the same aircraft, namely we find out the probability density for a delay to propagate. We find that the observed 
propagation rules across the 14 carriers condense around two distinct functional forms. Together, they provide a 
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direct insight into the operational efficiency of the airlines in mitigating and absorbing the potential propagation 
of departure delays.

Results
We collected data on flight delays from the BTS20, as detailed in Table S1 of the Supporting Material (SM), together, 
covering the activity of 14 US carriers over a period of 20 years. To quantify departure delays we calculate the differ-
ence l (minutes) between the actual versus the scheduled departure time of each flight, hence the greater is l the more 
severe is the delay. We characterize the delay patterns through the probability density p(l) to observe a delay of mag-
nitude l, as shown in Fig. 1. We find that the 14 airlines condense around two distinct Groups, 1 and 2. To observe 
this we present in Figs. 3A and 4A the complementary cumulative distribution functions (CCDF)27–29.

P l l p l dl( ) ( ) , (1)l
0 ∫> =

∞

which capture the probability to observe a delay in excess of duration l. Group 1 (Fig. 3A). In 6 of the airlines (AA, 
MQ, F9, DL, HA, AS) the CCDF is best captured by a shift power law (SPL)30–32 of the form P(l0 > l):(l + β)−α. 
Group 2 (Fig. 4A). For the remaining 8 airlines we observe an exponentially truncated shift power law (ETSPL)33, 
in which the tail exhibits an exponential cutoff. Below we show that these two classes represent two distinct mod-
els of propagated delays, providing a window into the airlines’ operational efficiency in delay mitigation.

Decreased type of propagated delay.  The effects of propagation are not readily discernible from the 
primary data34. On the one hand, given two successive delayed flights carried by the same aircraft, delay time of a 
current departure may be not merely attributed to the late arrival of the flight immediately preceding it, but also 
be attributed to one or more other factors, e.g., extreme weather on arrival airport. On the other hand, the role of 
non-propagation factors is likely diminished in the cases where the current departure delay is shorter than the 

Figure 1.  The probability density p(l) to observe the departure delays of length l per delay interval near l, 
obtained from the BTS data collected for 14 US airlines in 2014. Airlines are divided into two groups: (a) 6 
airlines, AA, MQ, F9, DL, HA and AS, exhibit a shift power law distribution; (b) the remaining 8 airlines, 
B6, VX, UA, US, WN, EV, FL and OO, exhibit an exponentially truncated shift power law distribution. Time 
intervals are set to Δl = 10 min.
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one immediately preceding it with the same aircraft. This decrease of delay time expresses the efforts of the air-
line’s operational staff in countering PD, hence characterizing the carrier’s ability to absorb delays. Therefore, we 
concentrate below on decreasing type of propagated delays (DTPD), in which a propagated delay of an aircraft at 
j was shorter than its immediately preceding one at i.

Model 1 — Flight delay distributions with shift power law.  The conception of a PD is rooted in an 
immediately preceding departure delay, caused by any of the aforementioned reasons, from category (i) to (v), 
which then propagates to cause a current delay l with the same aircraft. In the case of DTDP, the initial delay can 
be of any length longer than l, here we seek the probability per delay interval near l, q(l), that a delay in the range 
(l, ∞) propagates to cause a delay of length l. Denoting by nB(l) the total number of DTPD instances per delay 
interval near l, we write

=n l q l N l( ) ( ) ( ), (2)B

where

∫ ∆=
∞

N l n l l( ) ( ) (3)l

represents the total number of departure delays with a lag greater than l; the delay number density n(l) is the 
number of delays per delay interval near l. The transfer function q(l) captures the probability density for longer 
delays with number N(l) to generate a DTPD - hence providing the contribution of N(l) that transfers into nB(l). 
The reasoning behind Eq. (2) is analogous to the classic mean-field approach of statistical physics, where current 
delays are assumed to be affected by all previous delays, via the l-dependent transfer density function q(l). We 
obtain the density function q(l) directly from data mining, by comparing the ratio of DTPD number density nB(l) 
and the total number of delays N(l) with the delayed intervals longer than l. We find that the probability of a flight 

Figure 2.  The transfer density function q(l) vs. l obtained from the empirical BTS data. This function captured 
the intensity of all the previous departure delays that propagated to cause a DTPD. Data covers the statistics 
from Year 2014’s primary records over the 14 US airlines. (a) Airlines AA, MQ, F9, DL, HA and AS in Group 1; 
(b) Airlines B6, VX, UA, US, WN, EV, FL and OO of Group 2. Δl = 10 min.

https://doi.org/10.1038/s41598-020-62871-6


4Scientific Reports |         (2020) 10:6890  | https://doi.org/10.1038/s41598-020-62871-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

having a delay l by DTPD decreases with l (Fig. 2), and therefore the observed transfer density functions q(l) can 
be effectively approximated by

q l
l

( ) ,
(4)

α
+ β

=

an inverse linear function, in which the parameters α and β represent airline - specific phenomenological 
parameters.

Next, we assume that DTPD represents a constant fraction k of all delays, allowing us to write

= .n l kn l( ) ( ) (5)B

Substituting (5) into Eq. (2) we obtain

=kn l q l N l( ) ( ) ( ), (6)

which using (3), or alternatively, = = −− +n l dN dl( ) /N l N l dl
dl

( ) ( )  since N(l) is proportional to CCDF P(l0 > l), 
provides us with

Figure 3.  (A) The complementary cumulative distribution functions (CCDFs) P(l0 > l) of empirical data 
extracted for Group 1 (airlines AA, MQ, F9, DL, HA and AS (filled colored circles). Fitting to each of them with 
a shifted power law in the form of Eq. (9), we obtain parameters β, α0 and c0. We denote such β by β1 in each 
panel. (B) The empirically obtained F(l) from Eq. (10) vs. the shifted time interval l + β2 based on Model 1 for 
the 6 airlines (circles). The shift parameter β2 is tuned to obtain the best fit of F(l) with the integrated q(l), as 
taken from Eq. (4) (solid red lines). The resulting estimator β2 appears in each panel. In all panels we used time 
intervals of Δl = 10 min.
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α
β

= −
+

dN
dl k l

N l
( )

( ),
(7)

where we used (4) to express q(l). We, therefore, obtain

N l c l( ) ( ) , (8)0β= + α−

where α0 = α/k, and c is an integration constant. As a result, the analytical CCDF of departure delays is found to follow

P l l N l
N

c l( ) ( ) ( ) ,
(9)0

0 0
0β> = = + α−

where N0 is the yearly total number of flights of an airline, and the constant c0 is defined as c0 = c/N0 (see Table S1 
in the SM). This, indeed, represents the SPL30–32 form of P(l) observed in Fig. 1a for the six airlines in group one.

To further examine the relevance of Model 1 above, in Fig. 3A we fit the CCDFs(red lines) from Eq. (9) to the 
real data from BTS (colored filled circles) for the six airlines (Group 1) in Fig. 3A (for Year 2014). At least in three 
decades, in the form of shift power-law, red lines fit well to empirical data which are independent of Model 1. As 
the result, a unique pair of parameters β and α0 are obtained for each airline. Hence, while the form of the CCDF 
is universal, across all six airlines, the fitted parameters β and α0 represent airline specific phenomenological val-
ues, whose meaning we discuss below. Results of the remaining 19 years of data are shown in Figs. S1–S10 of SM.

The relevance of our assumptions, as expressed in Eqs. (2–5), can be reexamined by refitting the parameter β2, 
this time from the transfer density function q(l). This will provide us with two fitted evaluations of β: β1 extracted 
above from the CCDF, i.e., integrated p(l) of Fig. 1, and β2 extracted from Eq. (2). Their consistency, as well as any 

Figure 4.  (A) The CCDF P(l0 > l) as obtained from empirical data in Group 2 (8 airlines: B6, VX, UA, US, WN, 
BV, FL and OO) (filled colored circles). Fitting (13) (red solid lines) to them, we extract the fitted parameters 
c2, λ, β1 and r (listed in each panel). (B) F(l) vs. l as obtained from empirical data (circles) based on Eqs. (2) 
and (10). To obtain the compensation interval m we fit the observed F(l) with the the integrated q(l) with 
compensation m (solid red lines). By appropriately tuning m we obtain the best fit in which the estimator β2 
approaches its CCDF-based counterpart β2. In all panels we set Δl = 5 min.
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discrepancies between these two fits, can gain us an additional validation and insight pertaining to our model 
analysis. Hence, in Fig. 3B we present the integrated function .. versus the shifted delays l + β2 for all six airlines 
classified in model 1. Using Eq. (4) we write

α
β

β
=






+ 




F l l( ) ln ,
(10)

2

2

allowing us to extract β2 directly from the data, and thus yielding the desired independent evaluation of β in Eqs. 
(4) and (9). The obtained values for β2 appear in Fig. 3B, showing similar trends to the β1 values obtained from fit-
ting Eq. (9) (red lines) to real data (colored filled circles) in Fig. 3A. Results of the remaining 19 years are shown in 
Figs. S30–S39 in the SM. These further support the relevance of our model and their analyses to the PD statistics.

When we fit Eq. (9) to practical distributions CCDFs, i.e., P(l0 > l) integrated from p(l) of Fig. 1a, we are cali-
brating the contributions from all five categories of delaying factors into DTPD assumed by Eq. (2), which yields 
parameters (α1, β1) for each airline (shown in Table S2 of SM for year 2014). On the other hand, β2, is extracted 
from the transfer density function q(l) capturing only the propagation instances that had a decreasing effect with 
l, i.e. DTPD. Such decreases in delay time are likely the results of all efforts from airlines, airports, air controllers, 
and so on. to overcome the PD. Hence the ratio of these two estimators, β2/β1, can help us characterize an airline’s 
operational effectiveness, quantifying how effectively that airline absorbs delays and attenuates their propagation.

Taken together, Model 1 is validated in Fig. 3 upon approximately three orders of magnitude, covering delay 
scales over several hundreds of minutes. Beyond that, all empirical curves (colored symbols) are truncated, deviating 
from the CCDF of Eq. (9) (red lines), indicating that the effects of non-propagation factors begin to dominate the 
delay dynamics. The empirically obtained F(l) curves saturate in the limit of large l, as q(l) approaches zero. In such 
cases, F(l) begins to deviate from the Eq. (10), as our approximate assumptions in Eq. (2) no longer hold.

Model 2 — Flight delay distributions with exponentially truncated shift power law.  We now 
turn to analyze the remaining 8 airlines (Group 2), whose CCDF features an exponential truncation in the limit 
l → ∞. Such behavior can arise from Eq. (7) if we assume the appropriate dependence of k on l, i.e. substitute the 
constant k by k(l). Such generalization of Model 1 relaxes the assumption that decreasing type of propagation 
delays (DTPD) occupy a constant fraction k of whole numbers of delays, and rather introduces an l-dependence, 
where, e.g., longer delays are less likely to be of the DTPD. Hence, we now replace k in Eq. (7) by

=
+

k l 1
gl h

( ) ,
(11)

which approaches a constant (1/h) in the limit of small l, but tends to zero as l → ∞. Model 2, therefore, converges 
to Model 1 in the limit where g is vanishingly small. As above, the parameters g and h represent phenomenological 
constants, extracted for each airline from the data. Using (11) in (7), we obtain

β= +λ
− −N l c e l( ) ( ) , (12)1

l r

where λ = 1/gα, r = h − αβg and c1 is an integration constant. Consequently, the CCDF of departure delays now 
takes the form

P l l N l
N

c e l( ) ( ) ( )
(13)

l r
0

0
2 β> = = +λ

− −

where c2 = c1/N0. Unlike the SPL of Eq. (9), the 8 airlines in group 2 follow an exponentially truncated shift power 
law (ETSPL)33, as exactly we observe in Fig. 4A. The CCDF in Eq. (13) is characterized by four independent 
parameters, c2, λ, β and r, that can all be obtained by fitting Eq. (9) to the empirical distributions, as we show in 
Fig. 4A with data obtained from Year 2014 (see also Table S2 in SM), since CCDF obtained from data mining are 
independent of any model. Results of the remaining 19 years are shown in Figs. S11–S29 of SM.

Performance metrics for delay mitigation.  Our analysis allows us to extract three empirically accessible 
parameters with direct relation to an airline’s treatment of PD.

Compensation parameter m.  Consider the parameter β in (4). We can evaluate it through two independent 
empirical functions: the CCDF in (13), as done in Fig. 4A, yielding the estimator β1; or, alternatively, the cumu-
lative function F(l) in (10), providing the estimator β2 (Fig. 4B). While both are aimed at evaluating the same 
parameter β, these two estimators are naturally inconsistent. In the CCDF, since we cannot distinguish the effects 
of these two kinds of delay factors34, all types of delays, including even cancelations35,36, are intermixed. In con-
trast, F(l), based on q(l) from Eq. (2), is constructed exclusively from DTPD. Therefore, we expect an inevitable 
discrepancy between the two estimates β1 and β2. To correct for this discrepancy we re-evaluate F(l), to include 
the impact of increasing type of propagation delays (ITPD), thus bringing it closer to the observed CCDF. We 
achieve this by redefining nB(l) in Eq. (2) to include also contributions of ITPD, namely it now counts the number 
density of flights with delay around l, whose immediately preceding delay l′ ≥ l − m. The compensation parameter 
m allows us to include ITPD and impacts of non - propagation factors in our PD analysis. Therefore, in the limit 
m → 0, nB(l) is restricted to just DTPD, i.e. l′ ≥ l, reverting back to its original definition in Eq. (2). However, for a 
larger m, nB(l), and hence also q(l) and F(l), account for a growing contribution of ITPD. By tuning the parameter 
m we can now force the estimated β2 to become consistent with β1, as we demonstrate in Fig. 4B. For example, for 
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airline B6 we set m = 15 to reach β2 = 8.70, a value that is within 0.3% of the estimated β2, which is evaluated at 
8.73; Fig. 4A(a),B(a).

The parameter m characterizes the impact of ITPD together with that of DTPD in shaping the delay distribu-
tion P(l). Indeed, a small m indicates a dominant role of DTPD, while for a larger m, a greater factor of ITPD is 
introduced in order to reconcile F(l) with P(l0 > l). Therefore, large m characterizes an airline in which ITPD plays 
a significant role, that is to say, a poor performance in mitigating PD. Consequently, m offers an inverse metric 
of the performance to evaluate an airline’s success in absorbing delays and attenuating their propagating impact.

shift parameter β.  A crucial quantity in the context of DTPD is the average flight delay absorption time L = lp − lc 
(minutes), capturing the level of decrease in delay time between the preceding departure delay (lp) and the current 
propagated delay (lc) with the same aircraft37,38. A successful delay mitigation is captured by a large L, i.e. a signifi-
cant decrease in delay from preceding to current flight. We find, from the data, that L can be directly related to the 
shift parameter β1 through an approximate linear relationship (Fig. 5A)

β β= +L Q K( ) , (14)1 1

capturing a negative correlation between β1 and L. For the 6 airlines within Group 1, we observe that 
K ≈ −0.13(Q = 33.94), while for the 8 airlines of Group 2 we estimate K ≈ −1.32(Q = 33.83), roughly an order of 

Figure 5.  (A) (a) The average absorption time L vs. the estimated shift parameter β1 as obtained from empirical 
data pertaining to the 6 Model 1 airlines (circles). We observe a linear relationship of the form (14) with a slope of 
K = −0.13 (solid red line). Airline HA is excluded from the fit, due to its distinctive operation style, as compared to 
the other five airlines (see main text). (b) L vs. β1 for the 8 Model 2 airlines, exhibiting a slope of K = −1.32. Here 
VX is an outlier, likely due to the fact that it has fewer data points compared to all other airlines. (B) Number 
distributions NB1(l) of delayed flights in 8 airlines are biased to the side with l < λ. Histograms are assigned with 
equal width ∆ λ=l 1

4
. Arrows indicate the positions of critical value λ separating the dominant range of the 

propagation factor from those of ITPD and non - propagation factors for airlines B6, VX, UA, US, WN, EV, FL and 
OO, respectively. The functions NB1(l) means the delayed flight number caused by the propagation factor based on 
direct counting of flights with longer delays of immediately preceding flights than the current ones.
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magnitude difference. Therefore, on average, the smaller β1 is, the greater L is, and hence the more effective the 
airline in absorbing delays is. In Fig. 5A we exclude two airlines from the linear fit: in panel (a) the carrier HA is a 
distinctive outlier. This is rooted in its unique point-to-point operation style which is different from the common 
hub-and-spoke style39. Therefore, HA has intrinsically different propagation patterns. In panel (b) VX has a 
smaller flight volume compared to all other carriers (see Table S1 in SM) and it, therefore, falls below the main-
stream statistical line. Equation (14) based on Fig. 5A show that airlines with smaller values β1 are more effective 
in absorbing delays from the immediately preceding ones, which can help us to understand that the majority of 
flights with shorter delays (l < λ in Fig. 5B), where nB(l) in formula (1) are cumulated into histograms of NB1(l) 

∫ ′ ′

 =



( )N l n l dl( )B l

l
B1

1

2  with each width set as λ1
4

, where l is the mean value of l1 and l2. Average absorption time 

L in Group 2 behaves more sensitive than those in Group 1, since L changes over about 10 minutes against the β1 
variation over the range of 50 minutes in Fig. 5A(a) for Group 1, while L changes over about 15 minutes against 
the β1 variation over only about 11 minutes in Fig. 5A(b) for Group 2. The comparison is effective within each 
panel (a) and (b) of Fig. 5A, respectively. For instance, airline AA behaves more effective in absorbing the preced-
ing delays than airline AS in Group 1; while EV behaves more effective in delay - absorption than WN in group 2, 
during 2014. Plots of L(β1) for airlines operated in other 19 years are shown in Figs. S59–S69 of SM.

Critical delay λ.  Now we turn to the role played by parameter λ. It acts as the critical delay of airlines in Group 2. 
CCDFs by Eq. (13) fit empirical data well because they are obtained with the aid of one more phenomenological 
function k(l). However, practical q(l) mined from primary data goes to zero not in the manner assumed by Eq. 
(4). Actually, empirical q(l) often touches zero beyond 240 minutes and fluctuates more or less above it (see Fig. 2). 
Therefore, cumulated q(l), i.e., colored filled circles obtained from data mining shown in Fig. 4B drastically devi-
ate from the integrated transfer density function F(l) (red lines) from Eq. (4) starting at the critical delays (l = λ)
(see panels in Fig. 4B). The exact fitting between analytical and empirical F(l) in the range l < λ indicates that the 
assumption of DTPD is successful; while deviations shown in Fig. 4B mean that F(l) integrated from q(l) becomes 
less effective as l exceeds λ, indicating a gradually increasing impacts of ITPD and non - propagation factors, since 
DTPD becomes less dominant as l increases. Therefore, λ serves as the critical delay separating DTPD dominated 
range from the range dominated by above mentioned two others. Moreover, the growing error effect starting at 
the deviations (l = λ) can be estimated with Fig. 5B. The cumulated flight number NB1(l) often occupies the frac-
tion larger than 90 percent as seen in it, manifesting successful degree of the assumption DTPD. Furthermore, 
we have intuitive results from the comparisons based on simple observations. Comparing panel(a) and (e) in 
Fig. 4B, also, taking the reference of values λ in counterparts of Fig. 4A, we see that red lines from Model 2 deviate 
more from real F(l) (filled colored circle) with larger m but similar values of λ; The same result was concluded 
for panel (d) and (f); While comparing panel (c) with (g),red line deviates more from real data for smaller λ but 
with almost equal values m; Comparing four central panels, ((b) and (f) with (c) and (g)), we see that red lines 
with both larger λ and smaller m from Model 2 fit better with real data of airlines in Group 2. Actually, the effect 
of the exponential factor in Eq. (13) becomes stronger as l grows beyond λ. The larger λ an airline has, the larger 
it has the dominant range of DTPD, which is the positive effect in delay mitigation. In this way, combining the 
observation of behaviours of λ and m in corresponding panels of both Fig. 4A,B, and the observation of the 
behaviors of them in other 19 years shown in Figs. S11–S29, and Figs. S40–S58, we capture an obvious tendency: 
the smaller m and the larger λ an airline has, the better for Model 2 to fit to the results mined from big data, and 
the better it operates, since DTPD governs larger range of delay interval (0, λ) supported by all efforts to counter 
the propagated delays.

Discussion and Conclusions
Discussion of techniques used.  The mean-field approach in temporal regime has not been fully explored 
in previous works. Typically, the mean-field approach is used in the following setting: given a particle, the effect 
of interactions from all surrounding particles is represented instead by an equivalent external spatial field. In this 
paper, we use an analogous approach given in Eq. (9). Specifically, the delay (in l minutes) of a current flight is the 
result of delays transferred from all previous flights with delays longer than l. The phenomenological function q(l) 
acts to transfer intensity. In this way, we model the main stream tendency of air transportation as a DTPD. Note 
that both Model 1 and Model 2 have this main assumption. Moreover, an airline with a better model fit indicates 
a stronger tendency to be DTPD in terms of its operations, and thus its ability to mitigate departure delays. We 
observed this behavior through empirical flight delay data from the US.

We note that assumption 1 (Eqs. (2) and (3)) is only partially correct since we incorporated the impacts 
from four other categories (i–iv) as well as ITPD into that of the DTPD. However, we keep with this assumption 
because admits analytical derivations with good fits to real data. Moreover, we can distinguish airline-specific 
differences between β1 and β2, as well as the emergence of metrics m and λ. Specifically, this allows us to check 
the precision of our models and validation ranges. Note that the CCDFs are model-free; they are obtained purely 
from data.

Conclusions.  Using the large scale data from BTS of US, we exposed two universal patterns of propagated 
departure delays of passenger flights, separating airlines into two distinctive groups — one with an SPL and the 
other with ETSPL CCDF. These groups exhibit two different mechanisms of delay propagation, as captured by 
Model 1 and Model 2. In the majority of cases the airlines remained consistent along this divide, however, few 
exceptions, in which airlines changed classification over the years have been observed (EV, AS, DL)(see SM) – a 
phenomenon that deserves further investigation.

Our analysis, investigating the relative roles of DTPD vs. ITPD, identifies three parameters that can help char-
acterize an airline’s operational performance in avoiding PD. The shift parameter β, which negatively correlates 
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with the average delay absorption time L; the compensation interval m that quantifies the participation of ITPD 
as compared to DTPD; and the critical delay λ that separates the delay interval that is dominated by DTPD from 
that of ITPD and non-propagation factors. Together, they offer quantitative empirically accessible metrics for 
performance evaluation over time and across airlines.

Tracking the temporal behavior of these three metrics over time we can observe the impact of the US insti-
tuted Airline Passenger Protection rules (also known as Passenger Bill of Rights) in 2009, as well as their update 
in 201240. These rules reduced the number of commercial aircraft delays in excess of 240 minutes, prompting the 
carriers to cancel such flights and reroute passengers. This is observed through the enhancement of operational 
performance exhibited by most airlines directly after 2008, and, again, after 2012 (Fig. S69 in SM). This not only 
indicates the positive impact of these US regulations instituted in 2009 and 2012, but also provides independent 
validation for the relevance of our proposed metrics, that were, indeed, able to detect this regulatory shift. Hence, 
we offer these three metrics as a basis for air transportation assessment in both the US and other countries.

In a broader perspective, we believe that our statistical physics inspired approach can advance our under-
standing of systems that are well beyond the realm of standard physical systems41. Indeed, focusing on statisti-
cal properties, and constructing simplified models, we were able to characterize a seemingly unpredictable and 
highly complex phenomenon, such as passenger flight delays, and expose its universally recurring and consist-
ently predictable patterns.
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