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Abstract 

Background: Patients with severe acute pancreatitis (SAP) have a high mortality, thus early diagnosis and interven‑
tions are critical for improving survival. However, conventional tests are limited in acute pancreatitis (AP) stratifica‑
tion. We aimed to assess AP severity by integrating the informative clinical measurements with cell free DNA (cfDNA) 
methylation markers.

Methods: One hundred and seventy‑five blood samples were collected from 61 AP patients at multiple time points, 
plus 24 samples from healthy individuals. Genome‑wide cfDNA methylation profiles of all samples were character‑
ized with reduced representative bisulfite sequencing. Clinical blood tests covering 93 biomarkers were performed 
on AP patients within 24 h. SAP predication models were built based on cfDNA methylation and conventional blood 
biomarkers separately and in combination.

Results: We identified 565 and 59 cfDNA methylation markers informative for acute pancreatitis and its severity. 
These markers were used to develop prediction models for AP and SAP with area under the receiver operating char‑
acteristic of 0.92 and 0.81, respectively. Twelve blood biomarkers were systematically screened for a predictor of SAP 
with a sensitivity of 87.5% for SAP, and a specificity of 100% in mild acute pancreatitis, significantly higher than existing 
blood tests. An expanded model integrating 12 conventional blood biomarkers with 59 cfDNA methylation markers 
further improved the SAP prediction sensitivity to 92.2%.

Conclusions: These findings have demonstrated that accurate prediction of SAP by the integration of conventional 
and novel blood molecular markers, paving the way for early and effective SAP intervention through a non‑invasive 
rapid diagnostic test.
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Background
Acute pancreatitis (AP) is one of the most common gas-
trointestinal emergency conditions [1, 2]. Its clinical 
severity is stratified into three categories according to 
Revised Atlanta Classification (RAC): mild, moderately 
severe, and severe [3]. While both mild (MAP) and severe 
AP (SAP, including moderately severe and severe cases) 
patients suffer from pancreatic inflammations, SAP 
patients are further characterized by failure on one or 
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more organs, and local or systemic complications. Com-
pared to MAP, SAP patients have a much worse progno-
sis: on average they require significantly longer hospital 
stay, more frequent re-admissions, and most notably, sig-
nificantly higher mortality rate [4].

Existing widely used AP severity stratification systems 
during the early phase of AP are either imaging-based 
(for example, Balthazar CT-enhanced scoring system and 
the computed tomography severity index (CTSI)) [5], or 
clinical test-based (Ranson’s score [6], the Acute Physi-
ology and Chronic Health evaluation (APACHE-II) [7], 
the bedside index of severity of AP (BISAP), etc. [8]), or 
based on a combination of both clinical tests and patient 
self-reporting (pancreatic activity scoring system (PASS) 
[3, 9].

However, while generally useful, so far all of them 
have been shown to predict SAP with moderate accu-
racy between 0.6 to 0.8 [10, 11], some of which perform 
better at specificity over sensitivity in diagnoses, or vice 
versa [12]. Some systems, such as APACHE-II, which 
requires 16 tests to complete to predict AP severity, are 
complicated and hard to implement in typical clinical 
settings. Some, such as Ranson’s scores, require a mini-
mum of 48 h after hospitalization to predict SAP, limit-
ing the time window to initiate medical intervention [13]. 
Furthermore, imaging-based systems are less objective 
because interpretation relies on inspectors’ personal 
experiences [5], and enhanced CT, which is essential to 
identify localized pancreas complications, may actually 
complicate treatment by causing deterioration in pancre-
atic microcirculatory disturbance [14].

Given the limitations of the current AP severity pre-
diction systems, we sought to identify novel biomarkers 
and establish a scoring system to accurately and objec-
tively predict SAP during the first 24 h of hospitalization. 
To this end, we selected peripheral blood as the source 
for markers discovery: AP severity has been shown 
to be assessed by the levels of several different types of 
molecules in blood: damage-associated molecules such 
as HMGB1 [15], cell-free DNA [16], nucleosomes [17] 
and histones [18] that signal tissue damages; proinflam-
matory cytokines such as IL-6 [19] or IL-10 [20], which 
correlate with inflammation responses; levels of small 
molecules such as glucose,  Ca2+, C reactive protein [21], 
triglycerides [22], etc. While each of these molecules 
may capture only one or a few aspects of the complica-
tions, organ damages or risk factors of SAP, we reasoned 
that integrating multiple measurements though machine 
learning might lead to a more accurate prediction of SAP.

Another type of biomarkers we considered was cfDNA 
methylation. cfDNA derives from genomic DNA released 
during cell death (apoptosis or necrosis), and thus carries 
cell-type specific epigenetic signatures from its source 

tissues [23]. cfDNA methylation profiles have been shown 
to be informative for detecting cancer in plasma, but 
for non-cancer diseases its clinical applicability has just 
begun to be explored, such as detecting acute myocar-
dial infarction [24], type I diabetes and multiple sclerosis 
[23]. We reasoned that complications and organ failures 
that characterize SAP cause inflammatory responses, 
cell deaths and tissue damages, which lead to substantial 
releases of cfDNA species from damaged tissues that are 
normally at a very low level in heathy individuals’ blood, 
and thus generating different cfDNA methylation profiles 
in AP patients from healthy individuals. Moreover, MAP 
and SAP patients are likely to have distinct cfDNA meth-
ylation profiles due to much higher degree of complica-
tions and/or organ damages in SAP than in MAP. The 
signature differences in the cfDNA methylation profiles 
for MAP and SAP could be informative for classifying AP 
based on severity.

In this study, we first pursued cfDNA methylation 
markers that accurately classified AP or SAP in our study 
cohort of AP patients. We further screened conventional 
clinical measurements that have been performed on our 
study cohort and identified a subset that predicted SAP 
cases at an accuracy comparable to RAC. By further 
integrating the informative clinical measurements with 
cfDNA methylation markers, we derived an expanded 
model with a significantly improved sensitivity and over-
all accuracy, providing a new strategy to identify SAP 
cases.

Results
Patient characteristics and sample description
Sixty-one patients diagnosed as AP were included in 
current study. Median age was 46.2  years (ranged from 
22 to 65), and 62.3% were men. There were 17 patients 
with MAP, 7 with MSAP and 37 with SAP in the cohort 
according to the revised Atlanta classification (Fig.  1, 
Additional file 2: Table S1 and Table S2), respectively. For 
all patients, on day 1, − 3, and − 7 after hospital admis-
sion, whole blood samples were drawn to identify DNA 
methylation markers when AP may be rapidly advancing; 
additionally, patients with CT grades indicating signifi-
cant pancreas pathology also had blood drawn on day 14 
and − 21 to monitor the changes on methylation markers 
after initial treatment.

To discover tissue-specific DNA methylation mark-
ers of organs injury, we first generated genome-wide 
DNA methylation profiles from 120 cfDNA samples col-
lected from multiple time points of the 45 AP patients. 
We also mapped DNA methylation profiles from cfDNA 
samples of 24 age- and sex-matched normal individu-
als as controls to minimize the interference of random 
background DNA methylation signals on AP diagnoses. 
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cfDNA samples were extracted from both AP patients 
and healthy individual’s plasma samples and were pre-
pared into DNA methylation library and sequenced on 
Illumina HiSeq X10 platform. The sequencing informa-
tion is listed in Additional file 2: Table S3.

Identify DNA methylation markers in plasma that detect 
acute pancreatitis
We reasoned that MAP and SAP may share similar DNA 
methylation features, but SAP samples likely have higher 
levels because of more damages on internal organs or 
tissues in SAP cases, which leads to increased release of 
cfDNA into blood than MAP. Therefore, we stand a bet-
ter chance to identify general AP markers by first con-
trasting DNA methylation profiles of SAP samples with 
those of healthy individuals in the training phase. To 
improve the power of detecting subtle methylation differ-
ences in plasma DNA, we focused on a set of Methylation 
Haplotype Blocks (MHBs) in which local CpG methyla-
tion status are coordinated along single DNA molecules, 

such that tissue-specific signals are easier to detect with a 
haplotype-based scoring scheme [25].

To this end, we randomly assigned half of healthy con-
trol cases (12 cases) and half of SAP cases (22 cases, 69 
samples) to a training set for marker discovery. The rest 
of the samples of either class were assigned to an inde-
pendent test set for validation, as well as all MAP cases 
(17 cases, 39 samples). After filtering out poorly covered 
MHBs, a total of 43,358 MHB were used for following 
analysis.

We quantified DNA methylation patterns on MHBs 
using several metrics, such as methylation haploid load 
(MHL), average methylation frequency (AMF), etc. as 
classifiers for AP diagnosis [25]. Eventually we deter-
mined that uMHL, a metric that quantifies the degree 
and linkage disequilibrium of unmethylated CpG sites 
in each MHB, is the most appropriate metric to derive 
a classifier: indeed, we identified 565 MHBs that are 
hypermethylated (uMHL scores < 0.1) in over 50% of 
training healthy samples and also methylated to a lesser 

Fig. 1 Flowchart of study design, predictive model construction and validation



Page 4 of 12Sun et al. Clinical Epigenetics          (2021) 13:223 

degree (uMHL scores ≥ 0.1) in more than 40% of SAP 
training samples (Fig.  2A, Additional file  2: Table  S4). 
An AP-predicting model was further formulated using 
the aggregated uMHL scores on these MHBs to quan-
tify each training sample. By plotting the scores of 
healthy and SAP samples separately, we demonstrated 
that these markers can accurately separate these two 
classes of plasma samples (p = 0.00085, Welch’s t-test) 
(Fig.  2B). The accuracy of classification was quantified 
using receiving operational characteristic (ROC) curve, 
which achieved an AUC of 0.91 (sensitivity 95.7%; 
specificity 83.3%) (Additional file 1: Figure S1A) on the 
training samples. To validate these markers, we applied 
the AP prediction model on the test samples using 
the same cutoff, 0.215 as on the training samples, and 
achieved accurate prediction of AP (sensitivity 97.2%; 
specificity 75%), confirming the robustness of our 
uMHL-based model in AP diagnosis (Fig. 2C).

To investigate the potential biological functions of 
these methylation markers, especially whether and how 
they are involved in the pathology of AP, we annotated 
these 565 MHBs using GREAT, a web portal for Gene 
Ontology (GO) annotation of regulatory regions [26]. We 
observed significant enrichments in several GO terms 
that are closely connected to AP pathology (Fig.  2D, 
Additional file 2: Table S5), including regulation of cellu-
lar response to insulin stimulus and regulation of peptide 
hormone secretion that are associated with normal pan-
creas functions; or regulation of metanephros develop-
ment and foregut morphogenesis that are associated with 
non-pancreas organs that are often damaged during SAP 
(kidney and upper digestive track, respectively). We also 
found enrichments in genes involved in myeloid differen-
tiation and leukocyte degranulation, which are potentially 
related to SAP-caused local or systematic inflammatory 
responses. Overall, these enriched GO categories are 
consistent with the known pathology of AP, especially 

Fig. 2 Acute pancreatitis‑predicting MHBs were identified based on their uMHL scores in cfDNA samples. A 565 MHBs that were hypermethylated 
in healthy individuals’ cfDNA samples but relatively hypomethylated in APs’ samples were identified as classifiers for AP plasma. Heatmap visualizes 
the differences in the uMHL scores of those MHBs between healthy controls and AP samples in the training set; samples were arranged by each 
patient and by days; B swarm plot of the aggregate uMHL scores of the 565 MHB sites shows that they robustly separated healthy and AP plasma 
samples of either training or test set; C AP prediction accuracy by the (aggregated) uMHL scores of the 565 MHBs on test set AP samples over 
healthy controls; D Genes associated with the 565 identified AP markers are enriched in pancreas‑ and kidney‑related Gene Ontology categories. AP, 
acute pancreatitis; cfDNA, cell free DNA; MHB, methylated haplotype block; uMHL, unmethylated haplotype load
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SAP. Furthermore, we compared our AP (N = 565) and 
SAP markers (N = 59) with markers reported by Guo 
et al. [27] or the Type-I markers (tissue-specific markers) 
identified by Sun et al. [28] to find overlapping markers 
which might be tissue-specificity. Indeed, we found 46 
markers by Guo et al. and 2 by Sun et al. that overlapped 
with our markers, respectively. The 46 markers from Guo 
et al. were from several organs, including pancreas, liver, 
lung, kidney, and GI track, all of which were known to be 
damaged in acute pancreatitis. The 2 overlapping mark-
ers from Sun et al. were from colon and liver, respectively. 
However, they did not overlap with Guo et al.’s markers. 
Which was not surprising considering Guo et al. and Sun 
et al. used different experimental methods in identifying 
their respective markers (NGS vs. methylation micro-
array) and different analytic approaches in quantifying 
methylation status (metrics on methylation haplotypes 
vs. average methylation levels on individual CpGs).

Identify cfDNA methylation markers to classify MAP or SAP 
cases
We next sought to identify SAP-specific DNA methyla-
tion markers in order to assess the severity and distin-
guish SAP from MAP, which has an immediate clinical 
utility. To this end, we randomly assigned roughly half 
of the MAP cases (9 cases, 18 samples) and half of SAP 
cases (22 cases, 72 samples) to a training set for marker 
discovery, and the remaining cases (8 MAP cases, 21 
samples, and 22 SAP cases, 64 samples) to an independ-
ent test set for validation. Based on the results from AP-
specific markers discovery, we also chose uMHL as the 
quantitative metric for SAP marker discovery and pre-
dictive model building. MHBs were filtered based on 
sequencing coverage to ensure statistical robustness.

We performed multiple rounds of exploratory marker 
screenings on these MHBs and their uMHL values. Ini-
tial attempts using a single uMHL score to identify MHBs 
that are differentially methylated in MAP and SAP sam-
ples did not yield desired results. We then turned to an 
alternative strategy by looking for MHBs with mean 
uMHL values different between SAP and MAP samples. 
After evaluating multiple cutoffs for the average uMHL 
values and the cutoffs of maximal or minimal uMHL 
values, we discovered 59 MHBs, which are more meth-
ylated (max. uMHL < 0.7, mean uMHL < 0.5) in over 65% 
of MAP cases and less methylated (min. uMHL > 0.3, 
mean uMHL > 0.5) in over 65% of SAP cases, to diagnose 
MAP and SAP plasmas (Fig.  3A). We plotted the arith-
metic average of uMHL values of these MHBs for both 
MAP and SAP training samples for comparison (Fig. 3B), 
and the results showed that SAP samples have signifi-
cantly higher average uMHL scores than MAP cases 
(p = 2.83 ×  10–11, Welch’s t-test), demonstrating that 

these MHBs (Additional file 2: Table S6) are less methyl-
ated in SAP samples than in MAP samples, and that the 
average uMHL scores can be used to differentiate MAP 
and SAP plasma samples. Then, 565 (SAP + MAP vs 
Control) and 59 (SAP vs MAP) markers were intersected, 
by which only 1 overlapping marker was found (PTPN1 
(− 317,389), CEBPB (+ 2126)). Indeed, we used the aver-
age uMHL scores to classify MAP and SAP training sam-
ples. With a cutoff of 0.532, we were able to classify SAP 
with area under the receiver operating characteristic 
(AUC) = 0.97 (sensitivity 87.5%; specificity 94.4%) on the 
training samples. We then applied the MHB classifiers 
on the independent test samples for validation. Using the 
same cutoff as in the training set, we were able to clas-
sify MAP and SAP samples at an AUC of 0.81 (sensitiv-
ity 85.9%; specificity 85.7%) (Fig. 3C). Such an accuracy is 
comparable to the performance of several clinically used 
stratification systems for early assessment of AP severity, 
including APACHE-II, BISAP and Ranson’s score [29].

Identify optimal clinical blood tests to predict SAP
We have demonstrated that a set of cfDNA methylation 
markers can predict the severity of AP at a comparable 
accuracy as several commonly used clinical AP strati-
fication systems. To further improve the accuracy of 
predicting severity, we sought to integrate conventional 
biomarkers from body fluids to the cfDNA methylation-
based SAP prediction model. A number of traditional 
biomarkers have been routinely used by clinicians to 
either diagnose AP (such as level of blood amylase or 
lipase) or have been used to monitor AP patients’ physi-
ological conditions (blood electrolytes, etc.), inflamma-
tory responses (levels of white blood cells, etc.) or organ 
damages (indicators for kidney, liver and lung functions, 
etc.). We tried to identify a small subset of these markers 
that are most indicative for SAP symptoms, which can be 
combined with the cfDNA methylation SAP markers to 
improve the overall SAP prediction accuracy. Further-
more, we aimed to select markers that can be measured 
during the first 24  h of AP patients’ hospitalization, in 
order to inform treatment decisions in a timely manner.

We surveyed 93 non-invasive clinical tests (Addi-
tional file 2: Table S1), which were performed on 61 AP 
cases and a total of 175 samples. Samples from all col-
lection dates were used in the analyses, therefore they 
provided a comprehensive and dynamic measurement 
of key biomarkers to assess the temporal progresses 
in AP pathology and severity. The types of body fluids 
used in these tests included venous and arterial blood, 
and urine. We also included vital signs such as body 
temperature in our analyses. For benchmarking the 
performance, a RAC grade was given to each case to 
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evaluate the prediction accuracy of SAP prediction by 
selected clinical tests’ results.

We first performed a proof-of-principle prediction of 
SAP samples using all available clinical test results. We 
trained the all-markers model using a training set (9 
MAP cases, 18 samples; 22 SAP cases, 72 samples), and 
detected SAP cases at a reasonable level of accuracy 
(AUC = 0.8) in the test set (8 MAP cases, 21 samples; 
22 SAP cases, 64 samples) (Fig. 4A). This suggested that 
a significant number of clinical tests in this all-tests 
SAP prediction model are informative of pathologies 
that define SAP, so even without any marker selection, 
the all-test model was still capable of predicting SAP 
with moderate accuracy. We reasoned that by removing 
underperforming measurements with regard to detec-
tion accuracy, we should be able to further simplify and 
improve the predictor to an accuracy comparable to 
RAC. Meanwhile the large number of tests also allowed 
us to choose the ones that can be completed within 

24  h after the collection of body fluids, thus enable 
early SAP diagnosis.

We then focused on 66 tests that measure biomarkers 
in venous blood. This was mainly because venous blood 
contains the majority of measurable biomarkers, and 
is safe and easy to collect, and many of venous blood-
based tests return results within 24  h after blood col-
lection. Body temperature was also included due to the 
convenience for measurement. We filtered 66 clinical 
tests based on data availability. This resulted in keeping 
57 tests for marker discovery. Using the Recursive Fea-
ture Elimination algorithm of python package “sklearn” 
and the training set samples, we screened those 57 
venous blood-based tests by recursively and gradually 
pruning off tests that contributed the least to the accu-
racy of SAP diagnosis, and identified the top 20 tests 
that formulated an SAP prediction model with an AUC 
of 0.99 (Additional file  1: Figure  S1B and Additional 

Fig. 3 Severe acute pancreatitis‑predicting MHBs were identified based on their average uMHL scores in cfDNA samples. A 59 MHBs whose 
average uMHL scores were lower in MAP samples than in SAPs’ samples were identified as SAP classifiers. Heatmap visualizes the differences in 
the uMHL scores of those MHBs between MAP and SAP samples in the training set; samples were arranged by each patient and by days; B swarm 
plot of the aggregate uMHL scores of the 59 MHB sites robustly separate MAP and SAP plasma samples of either training or test sample set; C SAP 
prediction accuracy by the aggregated uMHL scores of the 59 MHBs on test set samples. SAP, severe acute pancreatitis; cfDNA, cell free DNA; MAP, 
mild acute pancreatitis; MHB, methylated haplotype block; uMHL, unmethylated haplotype load
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file 2: Table S1), which is nearly as high as that by RAC 
classification (1.0 by definition).

However, this model underperformed in the test set 
(ACU = 0.78) (Additional file  1: Figure  S1C), possibly 
due to overfitting. To improve the prediction model, we 

proceeded by first keeping tests in the 20-test model that 
contribute the most to prediction accuracy and whose 
targets were known to be associated with the risk (for 
example, triglyceride level) or symptoms of AP (urea 
nitrogen caused by kidney damage and dysfunction, etc.). 

Fig. 4 Blood levels of biomarkers measured by routine clinical tests can be used to accurately diagnosis SAP during its early stage. A SAP prediction 
accuracy by undiscriminatingly using 75 available measures from 93 body fluids‑measuring clinical tests; B 12 venous blood‑based tests identified 
from the training set built an SAP model that classified test set MAP and SAP samples with high accuracy; C members of the 12‑biomarker model 
may either positively or negatively predict SAP. D When being incorporated to SAP prediction model using aggregate uMHL scores of cfDNA, the 
12 venous biomarkers significantly improved its overall prediction accuracy. SAP, severe acute pancreatitis; cfDNA, cell free DNA; MAP, mild acute 
pancreatitis; uMHL, unmethylated haplotype load
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We also added 5 additional tests to the prediction model 
based on their clinical significances on AP. Among them 
globulin level represents inflammatory response, creati-
nine, uric acid and estimated glomerular filtration rate 
all indicate kidney damage and dysfunction, and serum 
chloride has been reported to be indicative of SAP [30].

We then rebuilt a logistic regression model (python 
package “statsmodels”) using the 25 tests and recursively 
removed least-contributing tests to SAP prediction accu-
racy based on performances on the training set. The final 
model (Additional file 2: Table S7) contains 7 tests from 
the original 20, and all 5 new ones. It classified MAP and 
SAP samples in the training set with an AUC of 0.95 (sen-
sitivity: 95.82%; specificity: 83.33%). We proceeded to 
validate the 12-biomarker SAP prediction model on the 
validation set, which predicted SAP samples at an AUC 
of 0.97 (sensitivity: 87.5%; specificity: 100%) (Fig.  4B). 
Such an accuracy is nearly as high as that of RAC, there-
fore we believe this model is likely sufficient for routine 
clinical diagnosis of SAP during the first 24  h of AP 
patients’ hospitalization.

The 12-biomarker model mainly measured markers 
indicative of organs that are known to be frequently dam-
aged in SAP, especially kidney (urea nitrogen, creatinine, 
etc.), or markers informative on inflammatory responses 
(levels of neutrophils, lymphocytes, erythrocytes, etc.), 
both categories are intimately connected to the main 
pathologies of SAP and may explain their capacity to col-
lectively predict SAP. Among them two measurements 
on red blood cell level and volume have the highest over-
all weight in the prediction model (Fig.  4C), followed 
by markers indicative of inflammation (neutrophil and 
lymph levels), and then by those of kidney functions.

Finally, we built an expanded SAP prediction model 
by combining average uMHL scores of the predefined 
59 cfDNA methylation markers with the 12 clinical 
tests and performed logistic regression on these mark-
ers using training set (9 MAP cases, 18 samples; 22 SAP 
cases, 72 samples). The expanded model (Additional 
file  2: Table  S8) was able to classify an indepedent test 
set comprising of 8 MAP cases (21 samples) and 22 SAP 
cases (64 samples), achieving an AUC of 0.96 (sensitiv-
ity 92.2%; specificity 90.5%) (Fig. 4D). While the AUC is 
almost identical to that of the 12-biomarker only model, 
the shape of the ROC curve is slightly different, such that 
the sensitivity was improved from 87.5 to 92.2%. This is 
significant in the pancreatitis clinics, because a minor 
reduction of specificity from 100 to 90.5% is manage-
able since it does not lead to adverse outcomes. In con-
trast, identifying SAP more sensitively and early allows 
for timely adjustment of the treatment options, such as 
fluid resuscitation, enteral nutrition, interventional endo-
scopic, continuous regional arterial infusion and surgical 

treatments, which have been well documented for reduc-
ing the mortality of SAP patients.

Discussion
Early detection of SAP symptoms remains a challenge 
in the emergency care of AP patients, and is key to SAP 
patients’ immediate survival and long-term prognosis. 
RAC, being the gold standards of AP diagnosis, requires 
more than 48 h to assess the severity of AP cases, which 
limits its utility to SAP diagnosis. Other diagnostic pro-
tocols either requires longer-than-48  h to perform, or 
are challenging to perform and score, hence are similarly 
limited in SAP diagnosis.

We approached this challenge by first identifying 
cfDNA methylations as molecular classifiers for AP over 
healthy individuals, and for SAP over MAP cases, respec-
tively. To our knowledge, this is the first set of epige-
netic markers reported for AP and SAP diagnosis. Our 
results showed that methylation markers for AP predic-
tion achieved a high degree of accuracy (AUC = 0.92) 
that is comparable to that of RAC, and markers for SAP 
prediction has a sensitivity and specificity comparable to 
several most commonly used clinical SAP diagnosis pro-
tocols. Therefore, cfDNA methylation markers alone are 
at a similar level of prediction accuracy to their equiva-
lent clinical protocols. The usage of SAP cases naturally 
will introduce markers derived from immune cells acti-
vated during systematic inflammatory response syn-
drome (SIRS), which is one of the hallmarks of SAP. Thus, 
it’s understandable that the most discriminating markers 
for AP and SAP are from cell sources, such as immune 
cells activated during SIRS. Moreover, it should be noted 
that the results indicated that most of the markers had 
not shown tissue-specificity according to present tissue 
methylation databases, though further cell type specific 
methylation data might help elucidate.

We further improved cfDNA methylation-based SAP 
prediction by adding 12 selected venous blood biomark-
ers to build an expanded prediction model. These mark-
ers are highly informative for systematic inflammatory 
responses, and/or damages on organs such as kidney. 
An SAP prediction model build solely based on these 12 
markers has an SAP prediction accuracy (0.97) in our 
test cohort, nearly identical to RAC (1.0). Because the 
selected tests are routinely performed in the majority of 
hospitals, the number of tests to perform is reasonably 
manageable, and neither their costs nor the required 
volume of blood is prohibitively high, we believe that 
our SAP diagnostic protocols can be implemented very 
widely.

Practically, measuring methylation status on the set of 
59 methylation markers depends on targeted methyla-
tion sequencing, which may take 2–3  days to complete. 



Page 9 of 12Sun et al. Clinical Epigenetics          (2021) 13:223  

However, it is worth exploring the possibility of short-
ening the turnaround time to fit into a 48-h detection 
window: for example, gradually reducing the 59 cfDNA 
methylation SAP markers by the RFE algorithm may 
reach a point where the number of remaining markers 
(for example, 10 or fewer) may accommodate a PCR-
based detection while simultaneously maintaining accu-
racy. So even when cfDNA extraction and processing 
steps are included, SAP detection by PCR can be com-
pleted within 48  h. Additionally, detection of cfDNA 
methylation markers requires performing only a single 
assay, instead of multiple clinical tests, to diagnose SAP, 
therefore it might require fewer instruments and a sim-
pler workflow.

Our efforts on cfDNA methylation marker screening 
are just the beginning of identifying cfDNA signatures 
for AP and SAP, which in future may lead to discover-
ing organ- and/or tissue-specific markers in cfDNA and 
results in molecular diagnoses of damages of specific 
organs.

Conclusions
In this study, we developed a novel predictive model 
for AP severity based on the DNA methylation patterns 
of plasma DNA, a type of molecular markers that have 
never been explored for this clinical problem. With DNA 
methylation signatures alone, we demonstrated a sensi-
tive separation of AP patients from healthy controls, as 
well as accurate classification of MAP versus SAP. Fur-
thermore, using a machine learning approach, we derived 
an expanded model with a significantly improved sen-
sitivity and overall accuracy by further integrating the 
informative clinical measurements with cfDNA methyla-
tion markers, providing a new strategy to detect clinical 
SAP cases.

Methods
Study design and participants
This study was based on a case–control design with 
participants randomly selected from the AP cohort 
organized by the Pancreatitis Unit of the First Affiliated 
Hospital of Wenzhou Medical University, a university-
affiliated tertiary-care public hospital. The study was 
preformed according to Standards for the Reporting of 
Diagnostic Accuracy Studies guidance for observational 
studies. The patients diagnosed with acute pancreatitis 
(AP) were prospectively recruited from the First Affili-
ated Hospital of Wenzhou Medical University between 
July 2017 and November 2017. The research protocol of 
the study was approved by the Ethics Committee of the 
First Affiliated Hospital of Wenzhou Medical University 
(2017-136) and written informed consent was obtained 
from each patient or their next of kin included in the 

study. The study was registered in Chinese Clinical Trial 
Registry (ChiCTR-DDD-17012200).

AP was defined as two or more of the following con-
ditions: characteristic abdominal pain; serum amylase 
and/or lipase levels three or more times the upper limit 
of normal; and/or an imaging study (computed tomog-
raphy (CT) or magnetic resonance imaging) demon-
strating changes consistent with AP. Inclusion criteria 
were: first episode of acute pancreatitis as defined by the 
revised Atlanta classification; 18 years and older; male or 
female; and availability of blood samples within 24  h of 
admission. Patients were excluded with following crite-
ria: advanced pulmonary, cardiac, renal diseases (chronic 
kidney disease stage 4–5), liver cirrhosis (Child–Pugh 
grade B-C) or malignancy; pregnancy, chronic pancrea-
titis or trauma as the etiology; nonpancreatic infection or 
sepsis caused by a second disease; or duration of abdomi-
nal pain before admission exceeding 24  h. Twenty-
four healthy volunteers matched with sex and age were 
included as control subjects. The severity of AP stratified 
as mild AP or moderately/severe AP according to revised 
2012 Atlanta criteria [3]. MAP and SAP cases were ran-
domly selected from the pool of qualified patients to 
match age and sex.

The primary outcome of this retrospective study was to 
identify the most effective predictive blood markers for 
SAP; The secondary outcome was to compare the new 
model to current existing models being run in clinics, 
including Ranson’s score, APACH-II and BISAP.

The demographic, clinical, and laboratory data (Addi-
tional file 2: Table S1) of all patients with AP at 1st-day, 
3rd-day and 7th-day of admission was prospectively 
collected and maintained in an electronic database in 
accordance with protocol for this study, including age, 
sex, vital signs, physical exam findings, serum levels of 
aspartate transaminase, alanine transaminase, alkaline 
phosphatase, gamma-glutamyl transferase, total biliru-
bin, lactate dehydrogenase, amylase, lipase, C-reactive 
protein, urea nitrogen (BUN) and white blood cell, etc. 
The severity of AP was classified by the standard RAC 
protocol.

Peripheral venous blood samples were obtained from 
each patient and each healthy volunteer. Blood samples 
were transported to the clinical research center at 4  °C 
within 1  h. Plasma was obtained after centrifugation 
(3000 × g, 10 min, 4 °C) and stored at − 80 °C for further 
analysis.

cfDNA methylation sequencing
Cell-free DNA from plasma samples was extracted and 
purified using the QIAamp Circulating Nucleic Acid 
kit (QIAGEN, 55114). The quality of extracted cfDNA 
was determined by DNA NGS 3  K Assay (PerkinElmer, 
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CLS960013). cfDNA samples were prepared into DNA 
methylation libraries for reduced-representation bisulfite 
sequencing (RRBS): briefly, up to 20 ng ctDNA was used 
as input for each preparation. Input DNA was ligated to 
customized adaptors compatible to Illumina sequencing 
platform. CT conversion was performed after ligation 
using MethylCode Bisulfite Conversion Kit (Invitro-
gen, MECOV50). After purification, DNA was amplified 
using PfuTurbo Cx Hotstart DNA polymerase (Agilent, 
600412). Libraries were purified using AMPure Beads 
(Beckman Coulter, A63882), pooled and size-selected 
using 6% TBE gels (Invitrogen, EC6265BOX). The puri-
fied library pools were quantified using the KAPA 
Library Quantification Kit for Illumina (Kapa Biosys-
tems, KK4824), and were sequenced on the Illumina 
HiSeq × 10 platform for paired ends using 2 × 150 cycle 
runs. Sequencing reads were demultiplexed using the 
Illumina bcl2fastq Conversion Software (v2.20) and 
aligned to the bisulfite-converted hg19 reference genome 
using BWA (v0.7.12) for further downstream analyses.

Sequencing data processing
Fastq data are trimmed by trim-galore (http:// www. bioin 
forma tics. babra ham. ac. uk/ proje cts/ trim_ galore/). After 
reads trimming, both paired-end reads were merged to 
a single-end reads. The single reads were mapped using 
Bismark-transformed hg19 genome [31] with bowtie 1 
[32]. The mapped bam files were processed by in house 
scripts extracting the methylation haplotype information.

Quantify DNA methylation patterns on MHB
MHBs are defined as previously described [25] using a set 
of whole genome bisulfite sequencing data from human 
tissues and cell lines. To perform quantitative analysis 
of the methylation patterns within individual MHBs, we 
calculated the Unmethylated Haplotype Load (uMHL), 

which is a measurement of consecutiveness of un-meth-
ylated CpGs within an MHB. Briefly, it sums the fraction 
of consecutively un-methlylated CpG haplotypes of each 
length of haplotype within an MHB.

l is the length of haplotype (the number of CpGs within 
an MHB). Wi stands for weight of each length of haplo-
type (we select l3 putting higher weights to longer haplo-
types). P(UMHi) stands for the fraction of consecutively 
un-methylated haplotype of haplotypes with length i.

Identify DNA methylation markers for AP and SAP
Candidate cfDNA methylation markers for AP diagnosis 
were first screened by selecting MHBs that were hyper-
methylated in the majority of healthy individuals but less 
methylated in the SAP samples of a training set. These 
markers and the prediction model were further validated 
in a test set that have both MAP and SAP samples in 
addition to healthy controls. The sensitivity and specific-
ity of classifications on the test samples were calculated 
using the same cutoff as in the training set.

Candidate methylation markers for SAP diagnosis were 
first screened by identifying MHBs that, as quantified 
based on their uMHL scores, were hypermethylated in 
the majority of MAP training samples but are hypometh-
ylated in the majority of SAP training samples. The pre-
diction model was built by averaging uMHL scores of all 
identified MHBs and tested in the training set to ensure 
sufficient accuracy using the blood samples at 1 day after 
admission. It was further validated in a test set, in which 
the sensitivity and specificity of classifications were cal-
culated using the same cutoff as in the training set.

uMHL =

∑
l

i=1
wi × P(UMHi)
∑

l

i=1
wi

Table 1 Twelve conventional tests used in the severe acute pancreatitis prediction model (SAP) prediction model

Test Unit Mean Min Max Co-efficient

Creatinine level [33] µmol/L 78.189 5 527 0.2109

Estimated glomerular filtration rate [34] mL/min/1.73  m2 105.483 10.5 264.9 0.1430

Globulin level [35] g/L 29.976 17.8 46.9  − 0.0942

Absolute lymphocyte count [28, 36] 109/L 1.318 0.1 3.21 − 1.4145

Mean hemoglobin pg 30.354 20.8 37.6 − 0.3217

Absolute neutrophils count [37] ×  109/L 7.99 0.99 28.16 0.4330

Red blood cell distribution width [38–40] % 13.695 11.9 24 1.9985

Red blood cell count 1012/L 4.174 2.13 6.06 − 3.8955

Serum chloride [30] mmol/L 98.703 82 119 − 0.2569

Triglyceride [41, 42] mmol/L 3.722 0.35 56.25 0.5150

Urea nitrogen [43–46] mmol/L 6.798 1.3 40 0.7063

Uric acid µmol/L 339.56 75 852 − 0.0146

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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Identify clinical tests to predict SAP
Clinical tests were filtered based on availability of test 
results, AP cases were divided into training and test 
groups for model building and validation, respectively. A 
proof-of-principle SAP prediction model using all avail-
able biomarkers in body-fluids was built using Random 
Forest algorithm. For SAP models using only venous 
blood biomarkers, we used the Recursive Feature Elimi-
nation algorithm (python package “sklearn”) to identify a 
preset number of tests that classified MAP and SAP sam-
ples, based on the blood biomarkers they measured with 
the highest degree of accuracy in the training set. We 
used Python package StatsModels to build the prediction 
model, and validated it on test set AP samples.

We then built an expanded SAP prediction model 
by combining average uMHL scores of the predefined 
cfDNA methylation markers with the identified blood 
biomarkers, and performed logistic regression on the 
combined marker set using training set. The combined 
model was then tested on the validation set (Table 1).
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