
molecules

Article

Competition of Intra- and Intermolecular Forces in
Anthraquinone and Its Selected Derivatives
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Abstract: Intra- and intermolecular forces competition was investigated in the 9,10-anthraquinone (1)
and its derivatives both in vacuo and in the crystalline phase. The 1,8-dihydroxy-9,10-anthraquinone
(2) and 1,8-dinitro-4,5-dihydroxy-anthraquinone (3) contain Resonance-Assisted Hydrogen Bonds
(RAHBs). The intramolecular hydrogen bonds properties were studied in the electronic ground and
excited states employing Møller-Plesset second-order perturbation theory (MP2), Density Functional
Theory (DFT) method in its classical formulation as well as its time-dependent extension (TD-DFT).
The proton potential functions were obtained via scanning the OH distance and the dihedral angle
related to the OH group rotation. The topological analysis was carried out on the basis of theories
of Atoms in Molecules (AIM—molecular topology, properties of critical points, AIM charges) and
Electron Localization Function (ELF—2D maps showing bonding patterns, calculation of electron
populations in the hydrogen bonds). The Symmetry-Adapted Perturbation Theory (SAPT) was
applied for the energy decomposition in the dimers. Finally, Car–Parrinello molecular dynamics
(CPMD) simulations were performed to shed light onto bridge protons dynamics upon environmental
influence. The vibrational features of the OH stretching were revealed using Fourier transformation
of the autocorrelation function of atomic velocity. It was found that the presence of OH and NO2

substituents influenced the geometric and electronic structure of the anthraquinone moiety. The
AIM and ELF analyses showed that the quantitative differences between hydrogen bonds properties
could be neglected. The bridged protons are localized on the donor side in the electronic ground
state, but the Excited-State Intramolecular Proton Transfer (ESIPT) was noticed as a result of the
TD-DFT calculations. The hierarchy of interactions determined by SAPT method indicated that weak
hydrogen bonds play modifying role in the organization of these crystal structures, but primary
ordering factor is dispersion. The CPMD crystalline phase results indicated bridged proton-sharing
in the compound 2.

Keywords: anthraquinone; DFT; MP2; AIM; ELF; SAPT; TD-DFT; CPMD

1. Introduction

Intermolecular non-covalent forces of diverse types (from weak dispersion to strong
electrostatics) are as important for understanding of condensed phases as covalent bond is
for molecules [1–5]. In fact, both intra- and intermolecular forces are necessary for complete
description of chemical systems. Current research trends put more and more emphasis on
the factors governing formation of supramolecular systems [6,7]. Scientists are approaching
the level of predictive design, moving from observation towards successful strategies of
obtaining desired structural features [8]. Our quest to shed more light onto self-assembly
of molecules, and reveal how atoms and molecules form larger structures at nanoscale,
requires detailed description of intra- and intermolecular forces. Especially interesting
cases are those in which these types of forces compete, and the final outcome is a result of a
delicate balance [9–13]. Herein, we present a study of anthraquinone derivatives in which
diverse types of intermolecular forces are affected by intramolecular hydrogen bonding
and substituent effects.
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Anthraquinone (a common name for 9,10-anthraquinone) is a three-ring compound
resulting from anthracene oxidation (see Figure 1, compound 1). The aromaticity of the
middle ring is strongly limited, as usual for quinones, because of the presence of carbonyl
functions [14]. The presence of aromatic skeleton makes this molecule, and its derivatives,
rather rigid structurally, which can be important and promising for the design of well-
defined larger structures. On the other hand, aromatic systems undergo substitution
reactions relatively easily, so that influence of inductive and steric effects can be introduced
into the molecule. This makes the substituents the driving forces of molecular organization
at the microscopic level, which adds to the value of anthraquinones as building blocks.

Figure 1. The structures of the studied anthraquinones: 9,10-anthraquinone (1), 1,8-dihydroxy-9,10-
anthraquinone (2) and 1,8-dinitro-4,5-dihydroxy-anthraquinone (3) with atoms numbering scheme
prepared for the study. Only atoms of interest are marked. The atom coloring scheme is as follows:
grey—carbon, red—oxygen, blue—nitrogen and white—hydrogen. The dotted line indicates the
presence of intramolecular hydrogen bonds.

The group of anthraquinones is believed to be the largest family of naturally occurring
quinone derivatives. Anthraquinone and its derivatives found some practical application
as, e.g., digester additive in production of paper pulp by alkaline processes [15] or as an
electrolyte in flow battery which can provide long term electrical storage [16]. Additionally,
anthraquinone is a well-known building block of many dyes, which could be divided
into natural and synthetic [17]. In connection with the fact mentioned above that this
family is the most numerous among natural quinones, it is necessary to mention that
over 700 compounds of the anthraquinone group were identified as natural dyes (over
200 from plants, the rest from lichens and fungi) [18]. An interesting example is alizarin—
red dye (1,2-dihydroxyanthraquinone), the first natural dye, which has been produced
synthetically since 1869 [19]. The characteristics provided above make these molecules
very attractive for synthetic organic chemists, striving to attain total synthesis of more and
more representatives of this class of compounds. The continuous interest in this family
of chemical species is highlighted by usage statistics of the term “anthraquinone” as a
publication topic: the Web of Science reports 356 such publications in this year alone (from
January to May 2021), and 3342 papers within the last 5 years.

In the current study, we present quantum-chemical results for 9,10-anthraquinone
(1) [20] and its two derivatives (1,8-dihydroxy-9,10-anthraquinone (2) [21] and 1,8-dinitro-
4,5-dihydroxy-anthraquinone (3) [22]), (see Figure 1 and Figure S1). The chemical com-
position of anthraquinone (rigid part consisting of three fused rings) makes the molecule
an interesting object for structure modification based on various substituents. In our case,
the anthraquinone was treated as a reference to demonstrate differences in geometric and
electronic structure as well as self-assembly of molecules substituted by OH and NO2
groups. Special attention was paid to intra- and intermolecular interactions responsible for
the structure stabilization and molecules arrangement in the crystal unit cell (see Figure 2
where hydrogen bonded derivatives are presented).
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The introduction of the OH groups as substituents resulted in intramolecular hy-
drogen bonds formation in the compounds 2 and 3. The appearance of the substituents
resulted in the inductive effects influence on the electronic structure of the anthraquinone
moiety. The choice of nitro groups was dictated by their strong substituent influence,
measured by diverse parameters including classical Hammett constants [23]. In addition,
the quasi-rings were formed. The hydrogen bonding is classified among the strongest
non-covalent interactions [24]. In the compounds there are so called Resonance-Assisted
Hydrogen Bonds (RAHBs) [25]. The presence of intramolecular hydrogen bonding could
be associated with various phenomena, e.g., proton transfer from the donor to the acceptor
atom. The strength of the bonding could be further modified by steric and inductive
effects [26]. The presence of the hydrogen bonding is visible as well in the spectroscopy,
e.g., in the Nuclear Magnetic Resonance (NMR), strong hydrogen bonds are revealed by
downfield shifts in the 1H NMR spectrum. In the infrared spectroscopy (IR), the hydrogen
bonding shifts the X-H stretching frequency to lower energy (the decrease in the vibration
frequency is observed) [27–29].

The common names for 1,8-dihydroxy-9,10-anthraquinone (2) are dantron and chrysazin.
The main uses of 2 are as medical laxative (contemporarily in decline, because of suspected
carcinogenicity) and as an intermediate for various dyes. Our attention was drawn to this
compound because 2 forms five polymorphs [21] (the structure assumed in our study is
polymorph 5, see Figure 2). This shows how delicate the balance is between various factors
governing the self-assembly and ultimate crystal structure of 2. As we describe below, the full
spectrum of interactions (dispersion, electrostatics, weak C-H· · ·O bonds) should be taken
into account.

Figure 2. The crystallographic unit cells with the molecules arrangement for the compounds 2 and
3 [21,22]. The dotted lines indicate the presence of intramolecular hydrogen bonds. The data was
used for CPMD simulations in the crystalline phase.

Discussing further the chemical structure of the chosen compounds, we have to
underline that in the compound 3 the NO2 groups were added to the 1,8-dihydroxy-9,10-
anthraquinone. Therefore, when describing the substituent effects, the molecule could be
divided into three parts: (i) substituent X (in our case the NO2 groups); (ii) functional group
Y where the effect is investigated “reaction center” (in our case OH groups); (iii) “trans-
mitter” R (in our case anthraquinone moiety). The schematic presentation of the structure
division is presented in the Supplementary Information (see Figure S2). Such division has
been reported while investigating the physical interpretation of inductive and resonance
substituent effects [30].

Compound 3 is not commercially significant, but it is a potential colorant. Its crys-
tals exhibit pleochromism (different coloring when viewing at different angles), and its
synthesis was undertaken to study the impact of loss of planarity on the anthraquinone
derivatives [22]. In our case, introduction of diverse interaction centers (nitro groups as
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strongly acting substituents and hydrogen bond acceptors) into the three-ring skeleton was
the main motivation to select this compound for deeper study.

The main aim of the study was devoted to the description of intra- and intermolecular
forces present in the studied set of anthraquinone-type compounds. In order to achieve this
goal, we have employed several theoretical approaches. The simulations were performed in
the electronic ground and excited states as well as in vacuo and crystalline phase. We have
analyzed monomeric, dimeric and crystal forms of the investigated compounds. In par-
ticular, we paid special attention to: (i) the metric paramteres changes upon substituents
introduction to the anthraquinone moiety (ii) the electronic structure changes as a result
of the presence of intramolecular hydrogen bonds; (iii) the molecular topology study on
the basis of Atoms in Molecules (AIM) [31] and Electron Localization Function (ELF) [32];
(iv) intermolecular forces present in the studied dimers using Symmetry-Adapted Pertur-
bation Theory (SAPT) method [33]; (v) proton potential functions in the electronic ground
and excited states with special emphasis of Excited-State Intramolecular Proton Transfer
(ESIPT) present in the molecules; (vi) bridged protons dynamics in vacuo and crystalline
phase; (vii) spectroscopic properties reproduced by the Fourier transformation of the time
autocorrelation function of atomic velocity.

Herein, we present the description of transition from single molecules through dimers
to crystals taking into account various forces responsible for the self-assembly of the
discussed in the study anthraquinones.

2. Results and Discussion

The competition of intra- and intermolecular forces was analyzed on the basis of
quantum-chemical simulations performed in vacuo and in the crystalline phase for the
studied anthraquinones. The monomeric, dimeric forms and finally the crystal structure
were taken into account and analyzed in detail.

2.1. Geometric Parameters for Monomeric Forms and Proton Potential Functions

Thorough discussion of computational results should include at the beginning an
important task of estimation how the applied levels of theory reproduce the experimental
geometrical parameters. The extensive discussion of the performance of applied levels
of theory with respect to the X-ray data [20–22] of the compounds 1–3 is given in the
Supplementary Information. As it is shown in Tables S1–S3, the computationally obtained
results correspond well with the experimental findings. Special attention was paid to the
properties of intramolecular hydrogen bonds. They are classified as Resonance-Assisted
Hydrogen bonds (RAHB) and their presence introduced so-called quasi-rings and reduced
the mobility of the OH groups. The quasi-ring formation usually is associated with the
internal geometric parameters as well as electronic structure reorganization. Therefore, we
analyzed using different perspectives the substituents effect on the anthraquinone moiety.

The proton reaction path was studied for one of intramolecular hydrogen bonds in
compounds 2 and 3. The results of the analyses are presented in Figure 3. The simula-
tions were performed at the DFT level of theory with application of 6-311+G(d,p) basis
set. One energy minimum was obtained in case of both compounds. We can conclude
that the proton transfer phenomenon is not preferable in both studied anthraquinones.
The substituent effects in the compound 3 are subtle and they did not affect proton potential
functions. The lack of secondary, acceptor-side minimum means that the proton potential
functions do not possess classically defined barriers; however, we will use this term to
indicate the expense of energy necessary to promote the proton to the wide plateau at
the acceptor side. The energy barrier visible in Figure 3 ranges from ca. 12.5 kcal/mol
to 15 kcal/mol depending on the functional. The lowest energy barrier was obtained for
the PBE functional in both compounds while the highest was for the ωB97XD functional.
Summarizing, in the electronic ground state, the bridged proton is localized on the donor
side according to the simulations performed in vacuo where the molecules possess all
degrees of freedom and the environmental effects as well as the intermolecular interactions



Molecules 2021, 26, 3448 5 of 21

were not included. In the next paragraph, the topological analyses results are presented to
discuss the bonding pattern and electronic structure reorganization as a consequence of
intramolecular hydrogen bonds formation and the presence of the NO2 substituent.

Figure 3. The potential energy scans for the proton motion in the hydrogen bridges of (a) 1,8-
dihydroxy-9,10-anthraquinone (2) and (b) 1,8-dinitro-4,5-dihydroxy-anthraquinone (3). X axis: donor-
proton (O1-Ha) distance.

2.2. Topological Analysis of Molecular Scalar Fields—A Tool to Reveal the Pattern of Bonding
2.2.1. Atoms in Molecules (AIM)

The topological analysis was performed for structures in equilibrium. The wave-
functions for the AIM analysis were obtained at the B3LYP/6-311+G(d) level of theory.
The net atomic charges values for atoms of interest are presented in Table 1 (for clarity
see Figure 1). The 9,10-anthraquinone served as a reference to detect differences intro-
duced by intramolecular hydrogen bonds and NO2 groups as additional substituents in the
anthraquinone moiety. The net atomic charge of bridged protons is equal ca. 0.6 [e] in com-
pounds 2 and 3, respectively. The values of net atomic charges of O1 and O3 atoms derived
from O-H groups are equal ca. −1.0945 [e] and −1.0869 [e]. The net charge value of atom
O2 differs between 9,10-anthraquinone and its hydrogen-bonded derivatives. The presence
of the intramolecular hydrogen bonds decreased the values ca. 0.0394 [e] and 0.0314 [e] in
the compounds 2 and 3, respectively. Significant changes in electron density were noticed
for C1 and C5 atoms. The introduction of O-H groups as substituents affected the net
charge values as it is presented in Table 1. The net atomic charge values of C2 and C4 of
9,10-anthraquinone are lower than in the compounds 2 and 3. Therefore, the substituent
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effects’ influence on the electron density were noticed. A similar conclusion could be drawn
for the C3 atom, but the net charge value is the highest in 9,10-anthraquinone. The elec-
tronic structure analysis showed quantitative differences introduced by substituents and
intramolecular forces to the anthraquinone moiety.

Table 1. Atomic charges values computed based on Atoms in Molecules (AIM) theory at the B3LYP/6-
311+G(d) level of theory in vacuo.

Atomic Charge [e] Compound 1 Compound 2 Compound 3

qHa 0.1013 0.5989 0.6022
qO1 −– −1.0945 −1.0869
qC1 −0.0264 0.5807 0.6053
qC2 −0.0369 −0.0332 −0.0199
qC3 0.9535 0.8257 0.8445
qO2 −1.0854 −1.1248 −1.1168
qC4 −0.0369 −0.0332 −0.0199
qC5 −0.0264 0.5813 0.6055
qO3 — −1.0944 −1.0869
qHb 0.1012 0.5988 0.6021

The electron density maps for the studied compounds are presented in Figure 4. They
are in agreement with the conventional view of intramolecular interactions. The topology
of 9,10-anthraquinone was characterized on the basis of Bond and Ring Critical Points
(BCPs and RCPs). They are BCPs related to the covalent bonding present in the molecule.
In addition, three RCPs were detected confirming the structure composition of the molecule.
Again, the unsubstituted anthraquinone served as a reference to show differences in the
studied molecules due to the additional intramolecular forces. The presence of intramolec-
ular hydrogen bonds was confirmed by BCPs found between the bridged protons and the
acceptor atoms in compounds 2 and 3. In case of the compound 3, BCPs were noticed
between oxygen atom from the athraquinone moiety and nitrogen from the NO2 groups.
This could be a result of a sterically driven electron densities overlap and does not indicate
important intramolecular interactions. The presence of intramolecular hydrogen bonds re-
sulted in quasi-rings formation in compounds 2 and 3. Therefore, the compound 2 contains
five RCPs—three derived from the anthraquinone moiety and two from the quasi-rings.
The AIM molecular graph of the compound 3 shows seven RCPs. However, two of them
(where NO2 groups are contributing) do not belong to quasi-rings and they are a result
of electron density distribution driven by steric effects introduced by the substituents.
The quantitative estimation of electron density and its Laplacian at Bond Critical Points
(BCPs) is presented in Table 2.

The quantitative description given by the values indicated small differences in the
electron density and its Laplacian introduced to the anthraquinone moiety by the presence
of intramolecular hydrogen bonds and NO2 groups. The hydrogen bond electron density
and its Laplacian at BCPs in both compounds have positive values, which is in agreement
with Popelier’s criteria for hydrogen bonding [34]. The values of electron density at BCPs
of hydrogen bonds are equal in both compounds; however, there is a difference in the
Laplacian, which is lower for the compound 2. The electron density and its Laplacian
at Ha-O1 and O3-Hb at BCPs is smaller in the compound 3 than in the compound 2.
The noticeable difference could be an effect of the presence of the NO2 groups. Comparing
9,10-anthraquinone with its substituted derivatives, one can see that electron density at
C1-C2 and C4-C5 BCPs is larger than in the compounds 2 and 3, but its Laplacian is smaller.
An opposite situation was found for electron density and its Laplacian at C2-C3 and C3-C4
BCPs. Comparing further the electron density and its Laplacian values at BCPs related to
the C1-C2, C2-C3, C3-C4 and C4-C5, it was noticed that for the compound 2 the electron
density value is larger, but its Laplacian is smaller than in the compound 3.
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Table 2. Bond Critical Points (BCPs) obtained for the selected geometric parameters of compounds 1,
2 and 3 in vacuo at B3LYP/6-311+G(d) level of theory. Electron density ρBCP is given in e · a−3

0 atomic
units, and its Laplacian ∇2ρBCP in e · a−5

0 units.

Compound 1 Compound 2 Compound 3
BCP ρBCP ∇2ρBCP ρBCP ∇2ρBCP ρBCP ∇2ρBCP

Ha-C1 0.2818 −0.9690 −– −– — —
O2-Ha −– −– 0.0478 0.1559 0.0478 0.1570
Ha-O1 −– — 0.3320 −2.2345 0.3316 −2.2386
O1-C1 −– −– 0.3051 −0.4180 0.3097 −0.4160
C1-C2 0.3068 −0.8498 0.2983 −0.8021 0.2970 −0.7960
C2-C3 02655 −0.6622 0.2794 −0.7247 0.2778 −0.7160
C3-O2 0.4013 −0.1270 0.3675 −0.3033 0.3707 −0.2923
C3-C4 0.2655 −0.6621 0.2794 −0.7247 0.2778 −0.7161
C4-C5 0.3068 −0.8497 0.2983 −0.8021 0.2969 −0.7960
C5-Hb 0.2818 −0.9690 −– — — —
C5-O3 −– −– 0.3051 −0.4180 0.3097 −0.4160
O3-Hb −– — 0.3320 −2.2345 0.3316 −2.2384
Hb-O2 −– — 0.0478 0.1559 0.0479 0.1570

Figure 4. Electron density contour maps of the investigated molecules: (a) Compound 1, (b) Com-
pound 2, (c) Compound 3. Small green spheres denote Bond Critical Points, while small red spheres
denote Ring Critical Points.

The Ring Critical Points (RCPs) values are presented in Table S4. Let us look at
9,10-anthraquinone electron density and its values at the RCPs. The values of electron
density and its Laplacian are lower in the ring II comparing to the rings I and III. A similar
tendency was observed for the compounds 2 and 3, respectively. However, the quasi-rings
formation had an influence on the RCPs in the compounds 2 and 3—the electron density
and its Laplacian values are smaller for rings I and III comparing to the compound 1. In the
ring II, an opposite situation was found (see Table S4 for details). As it was shown, the
electron density and its Laplacian at RCPs in the quasi-rings are quantitatively equal. It was
indicated as well that the presence of NO2 groups in the anthraquinone moiety introduced
changes in the electronic structure, which were estimated quantitatively by the AIM theory
application in the current study.
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2.2.2. Electron Localization Function (ELF)

In general, the ELF basins correspond to the regions with well-defined chemical role.
In particular, the cross-sections of the ELF field (Figure 5) show the atomic cores (as red dots
indicating strong electron pairing inside the 1s2 cores) connected with the valence (bonding)
regions (elongated orange ovals) and lone pairs. The case of hydrogen atoms is special—
lacking cores, these atoms form large valence domains. The cross-sections in the molecular
planes are valuable because they depict in great detail the bonding schemes around the
quinone oxygen atoms, and the hydrogen bridges. However, 3D representations depicted
in Figure S4 are able to show more details of the aromatic system and the out-of-plane
nitro groups.

Figure 5. 2D maps of Electron Localization Function (ELF) for the studied compounds (a) 1, (b) 2
and (c) 3 codified by colors in a range form 0 (purple) to 1 (red). The ELF was calculated at the
B3LYP/6-311+G(d) level of theory.

The vicinity of the hydrogen bridge in the studied compounds has the following
composition in the ELF framework: the donor O1 atom has its lone pair region Lp(O1),
and the acceptor O2 atom exhibits two symmetrical lone pairs Lp(O2). The bridge itself
corresponds to the valence V(O1-Ha) basin. Compound 1, having no hydrogen bridges,
posses only the two symmetrical Lp(O2) regions. All the electron populations inside these
basins are reported in Table 3.

Table 3. Electron populations of selected basins of the Electron Localization Function related to the
intramolecular hydrogen bonds.

Compound Lp(O2) Lp(O1) V(O1-Ha)

1 2.63 − −
2 2.74 4.32 1.77
3 2.74 4.28 1.78

The Lp(O2) electron populations are very sensitive to the presence of the hydrogen
bonding. An increase in the electron population of the O2 acceptor atom lone pairs is
related to the polarization of the acceptor by the bridged proton—the magnitude of this
polarization (difference between Lp(O2) population for 1 and either 2 or 3) is 0.11 e, and it
is not affected by the presence of nitro substituents in 3. Note, however, that the lone
pair domains of O2 contain more than one electron pair (populations larger than 2 e),
in agreement with the strong electronegativity and electron-withdrawing properties of the
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oxygen atom. The same can be said about the lone pairs of the O1 donor; these are merged
into one Lp(O1) region with population larger than 4 e. A small but visible difference
of 0.04 e between the Lp(O1) populations in 2 and 3 can be potentially associated with
the presence of electron-withdrawing nitro substituents in 3, competing with O1 for the
electron density. Finally, the donor–proton bonds, formally single, are predicted to be
weakened (populations less than 2 e), in agreement with the electronegativity difference.
For comparison, the ELF basins corresponding to the C-H bonds have electron populations
of 2.12–2.14 e. Thus, the ELF analysis shows the subtle effects of the nitro substituents,
and presents the extent of the charge transfer due to electronegativity of the oxygen atoms.

2.3. Intermolecular Forces in the Crystal Lattice: A Symmetry-Adapted Perturbation
Theory Perspective

The crystal structures of the three studied compounds [20–22] share some similar-
ities, but differ in some important details. In particular, a given molecule in the lattice
forms at least three types of distinct contacts with its neighbors. We have extracted the
corresponding dimers from the crystal structures, see Figure 6, and identified the following:

• Typical stacked structures, labeled as dimers 1a, 2a, 3a—note that, because of the
substituents, the monomers in 2a and 3a are not placed directly in vertical alignment;

• Head-to-head or head-to-tail structures 1b, 2b, 3b, where 2b is head-to-tail, 3b is
head-to-head, and 1b is less typical because one of the interacting molecules is raised
by half of the interplanar stacking separation of 1a;

• Various forms of the C-H· · ·O interactions: in 1c the C-H bond targets the carbonyl
oxygen atom, while in 2c and 3c there are lateral C-H· · ·O bonds, respectively, to the
hydroxyl group or to the nitro group of the neighboring molecule.

Figure 6. The structures of the dimers of compounds 1, 2, and 3 taken into account in the interaction
energy study. Additional letter labels indicate: a—stacked dimers, b—head-to-head or head-to-tail
structures, c—structures with C-H· · ·O bonding. Atoms coloring scheme: grey—carbon, red—oxygen,
blue—nitrogen, white—hydrogen.

The dimers differ not only in their structures, but also in the origin of the intermolec-
ular bonding, revealed in the detailed partitioning of the interaction energies. Results
of such calculations are compiled in Table 4 and divided into the four principal groups:
electrostatic (without the effect of polarization by the neighbor), exchange (which is the
short-range Pauli repulsion), induction (which is based on mutual polarization of the
monomers), and dispersion. It is very interesting to see that the presence of substituents in
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fact does not warrant stronger intermolecular forces—the largest magnitude of interaction
is calculated for the dimer 1a of 9,10-anthraquinone. Before delving into details, we note
that this unexpected finding comes, with all probability, from the fact that the introduced
hydroxyl substituents are engaged in the intramolecular contacts and do not contribute
to the intermolecular binding, whereas the nitro groups of 3 are bulky and can enforce
suboptimal stacking arrangement.

Table 4. The results of the SAPT energy partitioning at the SAPT2 level for the dimers of compounds
1, 2 and 3 depicted in Figure 6. Structures are taken from the crystal X-ray data available [20–22]. All
energy terms in kcal/mol: Elst—electrostatics; Exch—exchange (Pauli) repulsion; Ind—induction
(polarization); Disp—dispersion; SAPT0 and SAPT2 are defined according to Ref. [35].

Dimer Type Elst Exch Ind Disp SAPT0 SAPT2

1a −5.48 14.10 −1.47 −19.17 −11.60 −12.01
1b −1.63 2.48 −0.65 −3.38 −3.98 −3.19
1c −2.04 2.10 −0.55 −2.63 −4.08 −3.12

2a −3.10 7.17 −0.78 −9.22 −6.19 −5.93
2b −0.96 2.82 −0.45 −2.68 −0.88 −1.27
2c −1.55 1.76 −0.32 −1.72 −2.06 −1.82

3a −4.62 12.69 −1.73 −16.85 −10.22 −10.51
3b −4.25 5.47 −0.62 −2.53 −2.33 −1.93
3c −2.80 2.65 −0.80 −2.15 −4.11 −3.10

A detailed analysis of Table 4 shows that the least important factor of the dimer stability
is induction (polarization). This stems from the lack of large, “soft” electron clouds—while
the aromatic system contains strongly delocalized orbitals, these are at the same time
confined by the molecular skeleton and are unable to provide large induction energy. Note
also that the electrostatic contribution is quite significant for the compound 1, which—at a
first glance, due to the symmetry of the molecular skeleton—should be much less polar than
the compounds 2 and 3 possessing polar hydroxyl substituents. Our earlier experience with
aromatic systems of high symmetry [36] indicates that quadrupole–quadrupole interactions
are significant sources of interaction strength for symmetric molecules of this kind, and this
work shows that these interactions in 1 can compete in strength with dipole–dipole forces
in 2 and 3. Interestingly, the dimer 2b is arranged in a head-to-tail manner, which is less
optimal (electrostatic energy of −0.96 kcal/mol) for the permanent dipole interactions
than the head-to-head arrangement found in 3b (−4.25 kcal/mol electrostatic term). All
these phenomena, however, are overwhelmed by the dispersion contribution in the stacked
dimers, resulting from the delocalized electron clouds. The role of dispersion is so large
that the total interaction energy calculated at the simplified SAPT0 level is predicted to be
smaller than the full SAPT2 value, contrary to usual findings. This fact is most pronounced
for the stacked dimers 1a–3a. A large area of aromatic systems makes the dispersion
stronger than specific C-H· · ·O interactions of the dimers 1c–3c. Each dimer exhibits only
one such weak hydrogen bond, and - in agreement with the other types of dimers—it is
weakest in the 1,8-dihydroxy-9,10-anthraquinone 2.

The hierarchy of interactions determined in this section shows that the weak hydrogen
bonds play modifying role in the organization of these crystal structures, but primary
ordering factor is dispersion.

2.4. Proton Potential Functions in the Electronic Ground and Excited States

Properties of the hydrogen bonds in aromatic systems can be modified by such
factors as substituents, number of rings, or electronic excitation. The latter is particularly
interesting as it does not require modification of the molecular structure, and only the
irradiation is necessary. For this reason, we have investigated the proton potential functions
for the studied systems (compounds 2 and 3) in three electronic singlet states, S0, S1 and S2.
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The Ha proton pathways along the O1· · ·O2 bridges, resulting from the optimized scan
procedure (see Section 3.1 for details), are presented in Figure 7.

Figure 7. The proton potential functions for the proton transfer pathway in the ground electronic state
and two lowest-lying excited singlet states from TD-DFT calculations at the ωB97XD/6-311+G(d,p)
level. (a) Results for compound 2, 1,8-dihydroxy-9,10-anthraquinone. (b) Results for compound 3,
1,8-dinitro-4,5-dihydroxyanthraquinone.

The ground state proton potential functions do not possess additional minima on the
acceptor side; inflexion points at ca. 1.5 Å are present instead. This excludes the possibility
of any long-lived proton transfer phenomenon, in agreement with the fact that such
proton transfer would result in severe loss of aromaticity in the outermost aromatic rings.
The inflexion points, located 15 kcal/mol above the minimum, are not easily accessible.
The situation changes dramatically when the molecules are subject to UV/Vis irradiation.
The PES for S1 and S2 possess minima not only at the donor side, but also at the acceptor
side. The acceptor-side minima for the S1 excited state are 5 kcal/mol above the donor-
side structure, and the barrier height is 6.5 kcal/mol (the values are very similar for both
compounds 2 and 3). This enables the possibility of temporary, short-lived Excited-State
Intramolecular Proton Transfer (ESIPT) phenomenon. On the other hand, the acceptor-side
minima on the S2 excited state PES are less suited for the ESIPT—they are shallower and
lie somewhat higher in relation to the donor-side structures. The most important difference
between the S1 and S2 excited state PES for compounds 2 and 3 is that for 2, the two curves
are very close (almost degenerate) at the O1-Ha distance of 1.1 Å, but for 3, the two states
are always well separated. This fact must be attributed to the substituent effects of the nitro
groups in 3.

Shapes of the S0 ground state highest occupied (HOMO) and the lowest unoccupied
(LUMO) molecular orbitals have been frequently used to rationalize the properties of the
lowest-lying excited states. The HOMO and LUMO orbitals for compounds 2 and 3 are
presented in Figure 8. These orbitals have π character with respect to the plane of the
aromatic system; therefore, under each feature shown in Figure 8, there is a corresponding
feature of the opposite sign. It can be seen that while the orbitals are mostly delocalized
over the rings, there is a significant contribution of HOMO orbitals on the donor O1 and
O3 atoms. On the other hand, the LUMO is encompassing not the donor atoms, but the
O2 proton acceptor. This agrees with the sensitivity of the proton potential function to the
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electronic excitation. The role of nitro substituents can be appreciated from the fact that the
HOMO (and to a lesser extent, LUMO) of the compound 3 also involves these groups.

Figure 8. HOMO and LUMO orbitals for the compounds 2 and 3 computed at the ωB97XD/6-
311+G(d,p) level.

The fact that HOMO and LUMO encompass also the hydrogen bridge regions has
prompted us to study the effect of the O1-Ha group rotation around the C1-O1 bond on the
energy profiles of the ground state and S1, S2 excited states, in the spirit of a recent study by
Cozza et al. [37]. The results, shown in Figure S5, indicate that the asymmetry introduced
by non-equivalent positions of the -NO2 groups influences the height of the rotation energy
barriers for the ground state energy profile of 3. However, this effect is much less visible in
the two excited states. Anthraquinone skeleton is an effective transmitter of the substituent
influence, and—as we have already noted above—even relatively small variations of the
angle of the nitro groups has noticeable impact on the energy profiles.

The reported shapes of the bridged proton potential energy surface (PES) for the
electronic ground and excited states have distinct bearing on the dynamical behaviour of the
compounds 2 and 3. In particular, even if the proton transfer events in the ground state are
not likely, significant anharmonicity of the O1-Ha stretching mode is expected. The details
will be revealed using the Car–Parrinello molecular dynamics (CPMD) approach.

2.5. Compounds 2 and 3 in Light of the Car–Parrinello Molecular Dynamics

Following gas phase findings for an isolated molecule of 9,10-anthraquinone and
its derivatives using static MP2 and DFT methods, we have performed Car–Parrinello
molecular dynamics (CPMD) simulations for the anthraquinones containing intramolecular
hydrogen bonds. The simulations were carried out in vacuo and in the crystalline phase.
The two-phases simulations enabled to make comparisons and show the external forces
influence on, e.g., intramolecular hydrogen bond properties in our case. The hydrogen
bridges dynamics of compounds 2 and 3 was analyzed in detail. As it is shown in Figure 9
where the CPMD results are presented for the compound 2, the bridged protons are local-
ized on the donor side during the whole simulations time. In the crystalline phase (lower
part of Figure 9), proton-sharing events were noticed. The stronger proton mobility is
associated with external forces influence on the hydrogen bridges dynamics, e.g., the pres-
ence of neighbouring molecules and crystal field. Concerning the compound 3, the CPMD
simulations gave very similar results in both applied phases and conditions. The bridged
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protons are localized on the donor side. However, we did not notice proton-sharing events.
There is an interaction between an oxygen atom from the NO2 group of a neighbouring
molecule with the bridged proton (see the crystal structure of the compound [22]). There-
fore, there is a competition between intra- and intermolecular interactions. Most probably,
that is the main reason why the bridged proton exhibited a smaller mobility comparing
to the compound 2. Moreover, the presence of the two NO2 groups introduces strong
inductive and resonance effects into the aromatic rings, resulting in electron withdrawal
from the aromatic rings. In the context of our simulations it must be noted that these effects
are dependent on the orientation of the nitro group; compound 3 possesses non-equivalent
arrangements of the nitro groups, thus modifying the properties of the hydrogen bridges.
The crystal environment does not allow the orientation of the two nitro groups to become
equalized, and this results in some differences in the calculated bridge properties. This
is an important difference between the gas phase and solid state arrangement of various
forces governing the molecular properties. The obtained results are presented in Figure S6.
A detailed discussion of the time-evolution of metric parameters of atoms involved in the
intramolecular hydrogen bonds formation is presented in the Supplementary Information.

Figure 9. Time-evolution of interatomic distances of atoms involved in the intramolecular hydrogen
bonds formation of the compound 2, (a,b) results obtained from CPMD in vacuo while (c,d) in the
crystalline phase.

The dynamics of the bridge protons are directly related to their vibrational signatures
in the IR spectra. The CPMD approach allows for an easy decomposition of the vibrational
power spectra into atomic contributions, but at the price of losing the information on the
observable intensities. The intensities of atomic motions are registered instead, and the
phenomenon of the increase in the stretching band intensity upon hydrogen bond formation
is lost. For our purposes, however, it is more important to determine the contributions of
the bridged protons to the vibrational spectrum. The results are presented in Figure 10.
In agreement with the discussion on the structural parameters of the bridges presented
above, the νOH bands for the compounds 2 and 3 are very similar. They are centered at
3000 cm−1 and extend from 2700 to 3300 cm−1. This indicates that the hydrogen bonds are
medium-strong, but the protons are not strongly delocalized and stay at the donor side.
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The important exception is the solid state simulation of 2, exhibiting more downshifted
position of the band center (2930 cm−1) and the shape suggesting overlap of two vibrational
regimes. This is in agreement with the instances of closer contacts of the bridged protons
with the acceptor side revealed in the CPMD distance analysis—see Figure 9a,b. A survey of
the SDBS spectral database [38] shows that the IR spectra of 1, 2 and 3 have been measured.
The compound 1 has no hydrogen bridges and thus it is the reference structure for the
high wavenumber region. The compound 3 has an additional feature not related to the
C-H bonds present also in 1: a band of weak intensity, centered at 3050 cm−1. On the other
hand, the IR spectrum of 2 has strong, broad feature extending practically from 1700 cm−1

upwards. Its center is hidden under the C-H modes, close to 2950 cm−1. Our CPMD results
are in excellent agreement with these experimental data, revealing the unusual role of
the nitro groups, which restrict the dynamics of the bridged protons. The spectroscopic
evidence suggests that the hydrogen bonding is weaker, only middle-strong, than one
could estimate from structural reasons (short O1· · ·O2 interatomic distance corresponding
to rather strong hydrogen bonds). The reason behind this interesting feature could be
the fact that the small O1· · ·O2 distance is enforced by the shape of the ring skeleton,
and does not reflect the actual strength of the hydrogen bonds. Moreover, the proton
transfer to the O2 acceptor atom would result in the reorganization of single and double
bonds in the central ring, and this would conflict with the other carbonyl group. In this
way, the “resonance assistance” phenomenon cannot be strong in the case of compounds 2
and 3.

Figure 10. Vibrational features of the bridge protons in the studied compounds. Results of the
gas phase and solid state CPMD simulations for compound 2, 1,8-dihydroxy-9,10-anthraquinone,
and compound 3, 1,8-dinitro-4,5-dihydroxyanthraquinone.
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3. Computational Methodology
3.1. Static Electronic Ground State DFT and MP2 Models

The initial geometry for the quantum-chemical simulations of the studied an-
thraquinones monomers and dimers was taken from the crystallographic data deposited
in the Cambridge Crystallographic Data Centre (CCDC) [39]. The CCDC code is 1031904
for 9,10-anthraquinone (1) [20], 719215 for 1,8-dihydroxy-9,10-anthraquinone [21] (2)
and 1113560 for 1,8-dinitro-4,5-dihydroxy-anthraquinone (3) [22]), see Figures 1 and 6.
The geometry optimization of monomers was performed on the basis of Density Functional
Theory (DFT) [40,41] and Møller–Plesset second-order perturbation theory (MP2) [42].
The DFT functionals denoted as B3LYP [43], PBE [44,45] and ωB97XD [46] with 6-
311+G(d,p) triple-zeta valence split basis set [47,48] were applied to reproduce metric and
electronic structure parameters. Additionally, the energy minimization was performed
using MP2 method with assistance of the basis set mentioned above as a reference for
the DFT computations. The harmonic frequencies were calculated to confirm that the
obtained structures correspond with the minima on the Potential Energy Surface (PES).
The proton reaction paths in the intramolecular hydrogen bonds were analyzed by means
of the scan method with optimization. The OHO valence angle was fixed and the O-H
distance was elongated with 0.05 Å increment while the remaining part of the molecules
was optimized using all mentioned above functionals and basis set. The wavefunctions for
further electronic structures analyses on the basis of Atoms and Molecules (AIM) [31] and
Electron Localization Function (ELF) [32] theories were prepared using B3LYP/6-311+G(d)
level of theory. This part of the simulations was performed with the Gaussian16 rev. C.01.
suite of programs [49].

3.2. Electronic Structure and Topological Analyses on the Basis of Atoms in Molecules (AIM) and
Electron Localization Function (ELF) Theories

The electronic structure analysis was performed using two methods: (i) Atoms in
Molecules (AIM) [31] and (ii) Electron Localization Function (ELF) [32] for the structures in
equilibrium of the studied anthraquinones.

The AIM theory served for electronic structure and topology study of the an-
thraquinones. Particular attention was paid to the intramolecular hydrogen bonds
properties. The AIM atomic charges were computed for the whole molecules, but we have
reported on values obtained for atoms involved in the hydrogen bonds formation as well
as for carbon atoms associated with the quasi-rings. The electron density and its Laplacian
at Bond and Ring Critical Points (BCPs and RCPs) were used as descriptors confirming
the presence of the hydrogen bonds. Additionally, the substituent effects influence on the
hydrogen bonds property and anthraquinone moiety were studied. The AIM analysis
was carried out with the AIMAll package [50]. The ELF theory provides molecular space
partitioning, which gives information of different bonding functionalities. This analysis
is useful especially for molecules containing hydrogen bonding—to study consequences
related to the proton position in the hydrogen bridge. There are core and valence basins.
The first are related to the chemically inert electron density while the latter to the bonds
and lone electron pairs. The ELF analysis was performed using the DGrid 5.1 [51]
and Multiwfn [52] programs. The 3D visualization of ELF was performed with UCSF
ChimeraX, developed by the Resource for Biocomputing, Visualization, and Informatics
at the University of California, San Francisco, with support from National Institutes of
Health R01-GM129325 and the Office of Cyber Infrastructure and Computational Biology,
National Institute of Allergy and Infectious Diseases [53].

The AIM theory was found to be valuable in the interpretation of the charge density
and its association with other chemical concepts (e.g., atoms, bonds etc.) [31]. The ELF
theory describes chemical bonds with employment of rigorous partitioning of molecular
space, being opposed to classical well-known concepts of chemical bonding [32]. It was
developed using topological analysis of local quantum-mechanical functions connected
with the Pauli’s exclusion principle where the local maxima specify the so-called “localiza-
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tion attractors”. Three basic types of the “localization attractors” were defined: bonding,
non-bonding, and core. The bonding attractors describe the shared-electron interactions.
The spatial arrangements of localization attractors gives a basis for a well defined bonds
classification. An application of the two theories enabled a complete study of the bridged
protons property and consequences related to the presence of the NO2 groups in the para
position in respect to the OH groups.

3.3. Symmetry-Adapted Perturbation Theory (SAPT)

The energy decomposition of the dimers of the investigated anthraquinones (see
Figure 6) was performed based on Symmetry-Adapted Perturbation Theory (SAPT) [33].
The energy was decomposed for dimers extracted from the X-ray data [20–22] in order to
preserve geometries and reproduce intermolecular forces. The SAPT energy partitioning
was carried out at the SAPT2 level of theory [35]. The interaction energy was calculated at
the SAPT2/jun-cc-pVDZ level of theory (the jun-cc-pVDZ basis set, selected so that the
dimers of compound 3 could be studied, corresponds to the modified aug-cc-pVDZ basis
set where some diffuse functions are truncated [54,55]). The basis set superposition error
(BSSE) correction [56] was included in the simulations of the dimers (the homodimers were
divided into “monomers” in order to fulfil the requirements of the Boys–Bernardi method).
The SAPT calculations were carried out using the Psi4 1.2.1 [57] program.

3.4. Time-Dependent Density Functional Theory (TD-DFT)

The Time-Dependent DFT calculations were carried out for compounds 2 and 3 using
the Gussian16 rev. C.01. suite of programs [49]. The ωB97XD [46] functional with 6-
311+G(d,p) triple-zeta valence split basis set [47,48] was employed to reproduce the proton
transfer path in the electronic excited state. The geometries for the TD-DFT calculations
were taken from the electronic ground state investigations of the proton reaction path
(scan method, yielding 16 structures for each compound). Additionally, the O1-Ha group
rotation around the C1-O1 bond was included as a separate potential energy scan, starting
from the optimized structure and taking 24 steps of 15◦ increment in the relevant dihedral
angle. A single-point TD-DFT calculation encompassing 20 singlet states was carried out
for each of the structures. The energy of two lowest-lying excited singlet states S1 and S2
was extracted from the calculation and used to construct proton potential functions in the
excited electronic state. In order to support the TD-DFT study with insight from the S0
ground state, HOMO and LUMO orbitals in the ground state were computed for 2 and 3
at the ωB97XD/6-311+G(d,p) level of theory using the cubegen utility of the Gaussian16
suite, and visualized using the VMD 1.9.3 program [58].

3.5. Car–Parrinello Molecular Dynamics (CPMD) in the Gas Phase and Solid State

Car–Parrinello molecular dynamics (CPMD) simulations were performed in vacuo
and in the crystalline phase. The intramolecular hydrogen bonds dynamics and spec-
troscopic signatures were developed for compounds 2 and 3. The initial geometries for
the CPMD runs were prepared based on crystal structures with (CCDC) code: 719215
for 1,8-dihydroxy-9,10-anthraquinone [21] (2) and 1113560 for 1,8-dinitro-4,5-dihydroxy-
anthraquinone (3) [22], respectively. The isolated molecule models of compounds 2 and
3 are presented in Figure S1. The molecules were placed to cubic boxes with a = 14.5 Å
for both compounds. The models for CPMD in the crystalline phase are presented in
Figures 2 and S3. The crystal unit cells served as a source of information for the proper
models preparation. For the compound 2, the experimental unit cell values are a = 5.7487 Å,
b = 5.7487 Å, c = 31.438Å and β = 90◦ with Z = 4 while for the compound 3 they are:
a = 15.664 Å, b = 12.056 Å, c = 6.704 Å and α = 90◦ β = 94.20◦ γ = 90◦ with Z = 4. The CPMD
simulations were divided into three steps: geometry optimization, equilibration and pro-
duction runs. The exchange correlation functional of Perdew–Burke–Ernzerhof denoted as
PBE [44,45] and Troullier–Martins [59] norm-conserving pseudopotentials were applied.
The fictitious electron mass (EMASS) was equal 400 a.u. for both compounds during the
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gas phase and solid state simulations. The time-step was set to 3 a.u. and the kinetic energy
cutoff for the plane-wave basis set was 100 Ry. The CPMD simulations were performed at
297 K temperature controlled by Nosé–Hoover thermostat [60,61]. The empirical van der
Waals corrections proposed by Grimme [62] were added to reproduce the intermolecular
weak forces. The translational and rotational movements were removed from the CPMD
data collection in the gas phase. The Hockney’s scheme [63] was applied in order to
remove the interactions with periodic images of the cubic cells. Additionally, the solid state
CPMD was performed with Γ point approximation [64] and Periodic Boundary Conditions
(PBCs). The real-space electrostatic summations was set to TESR = 8 nearest neighbours
in each direction. The initial part of the simulations was taken as an equilibration (ca.
10,000 steps) and it was excluded during the data analyses. The CPMD trajectories were
collected for 70 ps for both compounds in both phases. The post-processing procedures
focused mostly on the intramolecular hydrogen bonds dynamics. The time-evolution of
interatomic distances of atoms involved in the intramolecular hydrogen bond formation
was analyzed. The spectroscopic signatures of the studied anthraquinones were repro-
duced based on power spectra of atomic velocity. The CPMD simulations were carried
out with the CPMD 3.17.1 program [65]. The data was analyzed using the VMD 1.9.3 [58]
program and home-made scripts. The graphical presentation of the obtained results in
the current study was prepared with assistance of the VMD 1.9.3 [58], Vesta Ver.3.5.6 [66],
and Gnuplot [67] programs.

4. Conclusions

This study highlights the case of the use of molecular symmetry to influence the
substituent effects. The compounds 2 and 3 differ by the presence of two nitro substituents
in 3, placed in such a way that their effects on the intramolecular hydrogen bonds are
counteracting each other. The presence of these substituents is visible in the structural
parameters, and the non-planar orientation of the nitro groups influences the resonance
and steric effects, modifying the hydrogen bridges. Quantum-chemical DFT and MP2
calculations have provided structures in an overall good agreement with the experiment.
Introduction of substituents did not significantly change the physico-chemical character-
istics of the anthraquinone moiety; therefore, we can predict that introduction of other
substituents from diverse regions of the Hammett constant spectrum will not affect heavily
the molecular structure of this class of compounds.

The proton potential surface calculations have revealed that the electronic ground state
prefers location of the proton at the donor side, while two analyzed excited states possess
secondary minima at the acceptor side, thus making possible the ESIPT phenomenon.
Topological analyses (AIM, ELF) revealed that the presence of the hydrogen bonding
affects strongly the electronic structure of the molecular fragments common for the 1–3
anthraquinones, and the effect of nitro substituents, however subtle, is also visible in the
monomers. On the other hand, it is evident that the nitro groups enhance the possibility
of intermolecular contacts and improve the magnitudes of the interaction energies in the
dimers. The unexpected finding of this study is that the compound 1, without substituents,
forms stronger intermolecular contacts than the hydroxyl-bearing derivatives 2 and 3.
The intramolecular contacts seem to have preference over the intermolecular forces for
these compounds. We have also determined that the dimers of the studied compounds,
taken from their crystal structures, are held mostly by dispersion forces, while electrostatic
quadrupole–quadrupole (for 1) and other multipole moments are present, but less sig-
nificant. These factors influence directly the details of self-assembly of larger structures
for these compounds. The main structure-forming role of the skeleton constituted by
three rigid, fused rings leads to formation of stacked layers (held by dispersion) tilted by
some angle (to allow for multipolar interactions) and with various in-layer separations
of molecules (depending on the size of substituents—in our case, larger when the nitro
groups are present). Thus, the general scheme of solid state structure of anthraquinone
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derivatives is fine-tuned by the details of molecular structure. This will be also true for
other similar systems, which adds broader perspective to the presented results.

The crystal phase simulations provided a comprehensive description of the solid
state structures of the investigated compounds 2 and 3, in which diverse intra- and inter-
molecular factors combine to govern the overall self-assembly of the molecular crystals.
The dynamics of structural features was investigated, and compound 2 revealed some
instances of closer contact between the proton and the acceptor region. The compound
3 exhibits no such events despite more favourable donor–acceptor distance parameters,
which should be attributed to the intermolecular contacts between the hydrogen bridges
and the neighboring hydroxyl and nitro groups. Finally, the vibrational signatures derived
from the CPMD were found consistent with the picture presented by the static models
and dynamics. The crystal simulation of 2 showed broadening and red-shift of the νOH
band, in agreement with the presence of shorter proton–acceptor contacts, increasing the
anharmonicity of the proton potential surfaces.

Supplementary Materials: The following are available online. Figure S1. Molecular forms of
1—9,10-anthraquinone, 2—1,8-dihydroxy-9,10-anthraquinone and 3—1,8-dinitro-4,5-dihydroxy-
anthraquinone with atoms numbering scheme. Figure S2. Schematic presentation of the molecule
division for the substituent effects discussion. Figure S3. The crystallographic unit cells of
1,8-dihydroxy-9,10-anthraquinone and 1,8-dinitro-4,5-dihydroxy-anthraquinone used to prepare
initial models for solid state CPMD simulations. Table S1. Selected geometric parameters of the
compound 1. Comparison of experimental and computed data. Table S2. Selected geometric
parameters related to the intramolecular hydrogen bonds and quasi-rings in the compound 2.
Comparison of experimental and computed data. Table S3. Selected geometric parameters related to
the intramolecular hydrogen bonds and quasi-rings in the compound 3. Comparison of experimental
and computed data. Table S4. The Ring Critical Points (RCPs) values of the anthraquinone (1)
and its derivatives (2) and (3) obtained on the basis of AIM theory at B3LYP/6-311+G(d) level
of theory. Figure S4. Electron Localization Function (ELF) isosurface for compounds 1, 2 and 3.
Figure S5. The O1-Ha group rotation around the C1-O1 bond in the compounds 2 and 3. Figure S6.
Time-evolution of interatomic distances of atoms involved in the intramolecular hydrogen bonds
formation of the compound 3, (a) and (b) results obtained from CPMD in vacuo while (c) and (d) in
the crystalline phase.
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MP2 Møller–Plesset second-order perturbation theory
PES Potential Energy Surface
AIM Atoms in Molecules
ELF Electron Localization Function
SAPT Symmetry-Adapted Perturbation Theory
TD-DFT Time-Dependent Density Functional Theory
CPMD Car–Parrinello Molecular Dynamics
BCP Bond Critical Point
RCP Ring Critical Point
ESIPT Excited-State Intramolecular Proton Transfer
HOMO Highest Occupied Molecular Orbital
LUMO Lowest Unoccupied Molecular Orbital
CCDC Cambridge Crystallographic Data Centre
BSSE Basis Set Superposition Error
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