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Objective. A growing body of evidence indicates that AMP-activated protein kinase (AMPK) contributes to not only energy
metabolic homeostasis but also the inhibition of inflammatory responses. However, the underlying mechanisms remain unclear.
To elucidate the role of AMPK, in this study, we observed the effects of AMPK activation on monocyte chemoattractant
protein-1 (MCP-1) release in mature 3T3-L1 adipocytes. Methods. We observed signal transduction pathways regulating MCP-1,
which increased in obese adipocytes, in an in vitro model of hypertrophied 3T3-L1 adipocytes preloaded with palmitate.
Results. Palmitate-preloaded cells exhibited significant increase in MCP-1 release and triglyceride (TG) deposition. Increased
MCP-1 release and TG deposition were significantly decreased by an AMPK activator. In addition, the AMPK activator not
only markedly diminished MCP-1 secretion but also augmented phosphorylation of nuclear factor-κB (NF-κB) and extracellular
signal-regulated kinase (ERK) 1/2. In contrast, MCP-1 release suppression was abolished by the AMPK inhibitor compound C
and the MEK inhibitor U0126. Conclusions. MCP-1 release from hypertrophied adipocytes is suppressed by AMPK activation
through the NF-κB and ERK pathways. These findings provide evidence that AMPK plays a crucial role in ameliorating obesity-
induced inflammation.

1. Introduction

Chronic low-grade inflammation in adipose tissues of obesity
models has been proven to play crucial roles in the develop-
ment of obesity, which in turn induces systemic insulin
resistance, the early step in the pathogenesis of type 2 diabe-
tes mellitus (T2DM) [1–3]. Adipocytes have recently been
recognized not only as energy storage cells, but also as having
functions in endocrine signaling by producing and secreting
a variety of pro-inflammatory adipocytokines, such as
monocyte chemoattractant protein-1 (MCP-1), vascular
endothelial growth factor (VEGF), tumor necrosis factor-α
(TNF-α), and interleukin-6 (IL-6) [4, 5].

Among these, MCP-1 is one of the crucial adipocyto-
kines, which accelerates macrophage infiltration into adipose

tissue via the MCP-1 receptor, a CC chemokine receptor-2,
and induces chronic low-grade inflammation [6, 7]. We
previously showed that MCP-1 release is increased by acti-
vated c-Jun N-terminal kinase (JNK) and nuclear factor-κB
(NF-κB) pathways in hypertrophied adipocytes [8]. Such
increased levels of MCP-1 release recruit more macrophages
to sites of infiltration, and these activated macrophages
stimulate further production of MCP-1. Taking these obser-
vations together, the secretory system of MCP-1 can be
understood as being critical for regulating inflammation in
the adipose tissues of obesity models, which leads to exacer-
bation of obesity-related insulin resistance.

Adenosine monophosphate-activated protein kinase
(AMPK) is a serine/threonine kinase which is highly con-
served. It is referred to as a “metabolic master switch” based

Hindawi
Journal of Diabetes Research
Volume 2018, Article ID 9256482, 11 pages
https://doi.org/10.1155/2018/9256482

http://orcid.org/0000-0003-2942-8441
http://orcid.org/0000-0002-6887-1481
http://orcid.org/0000-0001-6603-6709
https://doi.org/10.1155/2018/9256482


on its roles in regulating energy homeostasis and monitoring
cellular energy stores by maintaining the balance between
ATP production and consumption.

5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside
(AICAR), A769662, and metformin are well-known AMPK
activators. However, these compounds have different mecha-
nisms of action: AICAR is taken into cells by adenosine
transporters and is converted into ZMP, which mimics the
effect of AMP on AMPK activation in cells [9, 10],
A769662 directly binds to an AMPK site [11], and metformin
activates AMPK indirectly by changing the AMP/ATP ratio
or through inhibition of mitochondrial respiratory chain
complex I [12].

We previously reported that activation of endogenous
AMPK by 2,4-dinitrophenol or AICAR significantly
decreases the release of MCP-1 from mature 3T3-L1 adipo-
cytes [13]. Several other studies have indicated that AMPK
has a role in regulating inflammatory responses in various
cells [14]. However, the molecular mechanism underlying
this pathway is not fully understood. In this study, to eluci-
date the role of AMPK, we demonstrated the direct effects
of AMPK using an in vitromodel of artificially hypertrophied
mature 3T3-L1 adipocytes preloaded with palmitate by
applying the three aforementioned AMPK activators,
AICAR, A769662, and metformin, focusing especially on
the AMPK-mediated mechanisms regulating the expressions
and secretions of adipokines playing central roles in the
induction of peripheral insulin resistance.

2. Materials and Methods

2.1. Reagents. AICAR and palmitate were purchased from
Wako (Osaka, Japan). A769662 and metformin hydrochlo-
ride were from Abcam (Cambridge, UK). Antibody against
MCP-1 was obtained from R&D Systems (Minneapolis,
MN, USA). Antibodies against AMPKα, phosphorylated
AMPKα, p38 mitogen-activated protein kinase (MAPK),
phosphorylated p38 MAPK, phosphorylated p44/42 MAPK
(ERK1/2) (Thr202/Tyr204), phosphorylated acetyl-CoA
carboxylase (ACC) (Ser79), ACC, NF-κB p65, phosphory-
lated NF-κB p65 (Ser536), phosphorylated JNK, and JNK
were all obtained from Cell Signaling Technology (Danvers,
MA, USA).

2.2. Preparation and Treatment of 3T3-L1 Adipocytes. The
3T3-L1 cells were obtained from the cell bank of the Japanese
Collection of Research Bioresources (Tokyo, Japan). Cells
were seeded and fed every two days in Dulbecco’s modified
Eagle’s medium (DMEM) containing 25mmol/L glucose
supplemented with 50U/mL penicillin, 50μg/mL strepto-
mycin, 100mmol/L minimum essential medium sodium
pyruvate, and 10% fetal calf serum. Cells were grown
under 5% CO2 at 37°C. Two days after the cells had
reached confluence, differentiation was induced by addition
of medium containing 500μmol/mL 3-isobutyl-1-methyl-
xanthine (IBMX) (Wako), 100 nmol/L dexamethasone
(Wako), and 1.7μmol/L insulin (Sigma). After 48h, this
mixture was replaced with fresh medium. The medium was
then changed every two days until the cells were used for

experiments. On day 10 after the induction of adipocyte
differentiation, these differentiated 3T3-L1 adipocytes were
treated with AICAR, A769662, metformin, or vehicle alone
for one hour, then treated with palmitate. The concentrations
of each reagent are given in Results or in the figure legends.
At 12 hr or 24hr after the addition of palmitate, several
different analyses of the cells were conducted.

2.3. Immunoblotting. At 24 hr after the above treatments,
cultured 3T3-L1 adipocytes were washed twice with ice-
cold phosphate buffered saline (PBS), lysed in RIPA buffer
(Nacalai Tesque, Kyoto, Japan) containing 50mmol/L Tris-
HCl buffer (pH7.6), 150mmol/L NaCl, 1% Nonidet P40,
0.5% sodium deoxycholate, and 1% protease inhibitor cock-
tail, with the addition of 0.1% sodium lauryl sulfate (SDS).
Then, the cell lysates were sonicated and centrifuged for
10min at 10000g at 4°C, and supernatants were collected.
The 30μg of supernatant obtained was boiled in 1% SDS
sample buffer in the presence of 50mmol/L dithiothreitol.
For the measurement of secreted proteins, cultured medium
samples in the same amounts as those after the treatments
were also used for immunoblotting. The samples were then
subjected to SDS–polyacrylamide gel electrophoresis (SDS-
PAGE) and transferred onto polyvinylidene difluoride mem-
branes (GE Healthcare Little Chalfont, Buckinghamshire,
England). Membranes were incubated with primary antibod-
ies as described in Reagents and thereafter with horseradish
peroxidase-conjugated secondary antibody. Protein bands
were visualized with Chemi-Lumi One Super reagents
according to the manufacturer’s protocol (Nacalai Tesque),
followed by X-ray film exposure. Images and densitometry
were obtained with ImageQuant LAS 4000 version 1.2 and
ImageQuant TL 7.0 (GE Healthcare Little Chalfont). Protein
band intensities under basal conditions were set as 100% for
normalization purposes.

2.4. Quantitative Real-Time RT-PCR. Total RNA was
extracted from 3T3-L1 adipocytes using the RNAqueous®-
4PCR kit (Ambion, Austin, TX, USA) according to the man-
ufacturer’s instructions at 12 hr after the palmitate treatment.
Quantitative real-time RT-PCR was conducted using the
7300 real-time PCR system (Applied Biosystems, Foster City,
CA, USA). MCP-1 (Mm00441242_m1) primer and probe
was ordered from Applied Biosystems. The mRNA signal
was normalized over the 18S rRNA signal. The mean value
of each experiment, performed in triplicate, was used to
determine the relative mRNA level.

2.5. Enzyme-Linked Immunosorbent Assay (ELISA). Twenty-
four hours after palmitate treatment, the culture medium was
collected and MCP-1 secretion was measured employing a
CCL2/MCP-1 ELISA kit (R&D Systems). The protein
concentration was calculated from the standard curve and
adjusted by the intracellular protein contents. The protein
concentration under basal conditions was set to 100% for
normalization purposes.

2.6. Analysis of Triglycerides (TG). At 24 hr after treatment,
intracellular TG levels in 3T3-L1 adipocytes were determined
employing a commercially available Lipid Assay kit (Cosmo
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Bio, Tokyo, Japan) [15], according to the manufacturer’s
protocol, and the values obtained were adjusted to the
intracellular total protein contents. For Lipid Assay kit, cells
were fixed overnight at room temperature with 10% formalin
neutral buffer solution (Wako) and then stained with oil red
O solution for 15min. Oil red O solution was then removed,
and the cells were washed. After drying, the cells were
observed with a KEYENCE BZ-X700 All-in-one Fluores-
cence Microscope and extraction reagent was added to
measure dye extraction (540 nm) with a plate reader, to allow
calculation of the TG contents.

2.7. Statistical Analysis. Statistical analyses were performed
employing the unpaired t-test or analysis of variance
(ANOVA) and post hoc analysis using Bonferroni’s
method. Results were expressed as the means± SEM, and
differences at a value of p < 0 05 were considered to be sta-
tistically significant.

3. Results

3.1. Effects of AICAR on MCP-1 Expression and Its
Release from Hypertrophied 3T3-L1 Adipocytes. We ini-
tially monitored the effects of AMPK activation on
palmitate-induced MCP-1 expression. In 3T3-L1 adipo-
cytes, AICAR (0.3–1.0mmol/L) pretreatment 24 h prior
to the addition of palmitate dose-dependently increased
the phosphorylation of AMPK (Figure 1(a)). Meanwhile,
the palmitate-stimulated elevation of MCP-1 expression
was decreased by pretreatment of AICAR dose-dependently
(Figure 1(b)). AICAR at a dose of 0.5mmol/L, which blunted
the enhancement of MCP-1 mRNA by 64% (Figure 1(b),
p < 0 01), intracellular MCP-1 protein by 34% (Figure 1(c),
p < 0 05), and MCP-1 release by 35% (Figure 1(d), p < 0 05),
was the minimum concentration of AICAR, which reduced
MCP-1 expression overall, and thus, we used this dose for
all further observations.

3.2. Signaling Mechanisms Involved in Palmitate-Induced
MCP-1 Release and the Inhibitory Role of AICAR. To
elucidate the mechanism by which AICAR prevents
the palmitate-stimulated MCP-1 secretion cascade
(Figures 2(a)–2(c)), we first examined the involvement
of NF-κB signaling, which has been characterized as an
activator of the expressions of many genes and is consid-
ered to be crucial in obesity-induced inflammatory signal-
ing [8, 16]. As shown in Figure 2(d), palmitate-induced
NF-κB phosphorylation in 3T3-L1 adipocytes and AICAR
antagonized this palmitate-induced activation of NF-κB.
Since the NF-κB pathway serves as a target for MAPKs
[16], we next investigated the involvement of subfamilies
of MAPKs: ERK, p38 MAPK, and JNK. All members of
the MAPK family were significantly activated after 24 h
of palmitate treatment: ERK increased 1.3-fold, p38 MAPK
increased 1.4-fold, and JNK increased 1.2-fold (p < 0 05,
p < 0 05, and p < 0 01; Figures 2(e)–2(g), resp.). On the
other hand, AICAR pretreatment significantly suppressed
the increment in ERK phosphorylation, that is, by 42%

(p < 0 01), while no effect was observed on the palmitate-
induced increases in JNK and p38 MAPK phosphorylation.

3.3. Effects of AICAR on Intracellular TG Contents in
Palmitate-Preloaded 3T3-L1 Adipocytes. Palmitate exacer-
bates adipocyte hypertrophy via TG deposition, as shown
in Figure 3(a) (1.2-fold, p < 0 01) and Figure 3(b). Con-
versely, in response to pretreatment with AICAR which
stimulated ACC phosphorylation (Figure 3(c)), the intracel-
lular TG level decreased to 85% of that with palmitate alone
(Figure 3(a), p < 0 01).

3.4. Effects of A769662 on MCP-1 Expression and Its Release
from Hypertrophied 3T3-L1 Adipocytes and Intracellular TG
Contents. ZMP, an AICAR metabolite, has been found to
regulate other AMP-sensitive enzymes [10]. In contrast,
A769662 reportedly does not exert this effect [11]. To verify
the effects of AMPK on palmitate-preloaded adipocytes,
we next examined whether A769662, a specific AMPK
activator, also antagonizes the pro-inflammatory effect of
palmitate. As expected, the A769662 treatment signifi-
cantly increased, by 1.6-fold, the phosphorylation of
AMPK (Figure 4(a), p < 0 05). Treatment with 25μmol/L
A769662 plus palmitate significantly inhibited MCP-1
mRNA, intracellular MCP-1 protein, MCP-1 release, and
activation of NF-κB (Figures 4(b)–4(e)), by 28% (p < 0 01),
20% (p < 0 05), 14% (p < 0 05), and 25% (p < 0 05), respec-
tively. ERK phosphorylation was also inhibited by treatment
with A769662, by 31% (Figure 4(f), p < 0 05). In addition,
A769662 pretreatment increased the phosphorylation of
ACC and resulted in the inhibition of intracellular TG
accumulation (Figures 4(g) and 4(h)). However, much like
AICAR, A769662 did not antagonize palmitate-induced
phosphorylation of JNK and p38 MAPK (data not shown).

3.5. Effects of Metformin onMCP-1 Expression and Its Release
from Hypertrophied 3T3-L1 Adipocytes and Intracellular TG
Contents. Metformin is an established first-line therapy for
T2DM. One of the important targets of metformin is AMPK.
In a past study, metformin was shown to significantly
improve MCP-1 levels in the aorta [17], and this drug also
reportedly inhibits NF-κB activation via AMPK activation
in vascular endothelial cells [18]. Because the AMPK activa-
tors, AICAR and A769662, used in our present study moder-
ated the pro-inflammatory potential of palmitate, we next
analyzed whether treatment with metformin might affect
palmitate-stimulated adipokine secretion from hypertro-
phied 3T3-L1 adipocytes. Metformin 2.5mmol/L treatment
resulted in a 1.7-fold increase in the phosphorylation of
AMPK (Figure 5(a), p < 0 05). Palmitate-induced intracellu-
lar MCP-1 protein was significantly inhibited by treatment
with metformin (−28%; Figure 5(b), p < 0 05). Metformin
also significantly attenuated the palmitate-induced increases
in MCP-1 mRNA, MCP-1 release (−21%, −53%, resp.),
NF-κB, and ERK activation (data not shown). Inhibition
of intracellular TG accumulation was also observed with
a concomitant increase in the phosphorylation of ACC
(Figures 5(c) and 5(d)).
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3.6. Signaling Mechanism Involved in AMPK Inhibition of
Palmitate-Induced MCP-1 Expression in Hypertrophied
3T3-L1 Adipocytes. Given that AMPK activation blocked
intracellular MCP-1 protein production and regulated this
palmitate-induced NF-κB signaling in a solely ERK-
dependent manner, as shown in Figure 2, we assessed
whether the phosphorylation of NF-κB and ERK1/2 is
directly downstream from AMPK. Treatment with the
AMPK inhibitor compound C (10μmol/L) clearly reduced
the phosphorylation induced by AMPK (Figure 6(a)).
Blockage of AMPK abolished the AICAR-mediated
increase in ACC phosphorylation and decrease in both
NF-κB phosphorylation and intracellular MCP-1 protein

(Figures 6(b)–6(d)). In addition, after treatment with
10μmol/L of the MEK inhibitor U0126, the AICAR-
mediated decrease in the expression of intracellular
MCP-1 was also abolished (Figures 6(e) and 6(f)).

4. Discussion

There is a growing evidence that increased inflammation
in tissues is a key characteristic of obesity and contributes
to malfunctions of tissues and organs [19–21]. Excessive
saturated fatty acids, such as palmitate, have been shown
to enhance the pro-inflammatory state in adipocytes, skeletal
muscle, pancreatic β cell lines, and osteoblasts [8, 22–25].
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Figure 1: Effects of AICAR on the mRNA expressions and release of MCP-1 in 24 h palmitate-preloaded 3T3-L1 adipocytes. Differentiated
3T3-L1 adipocytes were preincubated with 0.3–1.0mmol/L of AICAR (a) for 1 h and then treated with 0.3mmol/L palmitate (Pa) (black bar)
or ethanol vehicle alone (white bar) for 24 h. AMPK phosphorylation of Thr172 (a) and intracellular MCP-1 (c) was quantified by
immunoblot analysis, and MCP-1 release was also assessed by ELISA (d). The mRNA levels of MCP-1 (b) were measured by quantitative
real-time RT-PCR at 12 h after stimulation and then normalized over the 18S rRNA signal. Data are means± SEM (n = 4). ∗p < 0 05,
∗∗p < 0 01 compared to corresponding control cells.
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However, the mechanisms by which saturated fatty acids
promote the inflammatory state have not been fully eluci-
dated. On the other hand, extensive studies have indicated
that AMPK activation may have anti-inflammatory effects
[26, 27]. Moreover, it was reported that AMPK activation
increases fatty acid oxidation and inhibits lipogenesis
through phosphorylation of ACC, which results in decreased
lipid deposition in liver and muscle [28].

In this study, we employed an artificial hypertrophied
adipocyte model with palmitate preloading and compared
the effect of AMPK activation on intracellular signal trans-
duction pathways involved in MCP-1 release and lipid depo-
sition. We previously confirmed that treatment with AICAR
inhibited MCP-1 release [13] and that MCP-1 release is
potentially enhanced via NF-κB pathways in hypertrophied
adipocytes [8]. Therefore, we attempted to analyze the
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Figure 2: Effects of AICAR on palmitate-induced MCP-1, NF-κB, and MAPK signaling in 3T3-L1 adipocytes. 3T3-L1 cells were exposed to
0.3mmol/L palmitate (black bar) or ethanol vehicle alone (white bar) in the presence or absence of 0.5mmol/L AICAR for 12 h. The mRNA
levels of MCP-1 were measured by quantitative real-time RT-PCR (a). After additional 12 h, cell lysates were immunoblotted to determine the
intracellular MCP-1 concentration (b), phosphorylation of NF-κB on Ser536 (d), ERK1/2 on Thr180/Tyr182 (e), p38 MAPK on Thr180/
Tyr182 (f), and JNK on Thr183/Tyr185 (g). β-Actin was measured as an internal control, and each phosphorylation was normalized by
the corresponding total protein concentration. The release of MCP-1 was also assessed by ELISA (c). Data are means± SEM (n = 4).
∗p < 0 05, ∗∗p < 0 01 compared to corresponding control cells. NS: no significant difference compared to corresponding control cells.
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expression and secretion of MCP-1 and NF-κB activation.
MCP-1 expression/secretion and NF-κB activation were
significantly increased by palmitate stimulation and were
inhibited by individual treatments with all of the three
AMPK activators, AICAR, A769662, and metformin, despite
these AMPK activations having different mechanisms. Also
in the previous study [29], we have demonstrated that in
hypertrophied adipocytes, the expression and secretion of
VEGF120 increases through PI3K; therefore, we also analyzed
whether AMPK exertion has a protective effect against
palmitate-induced VEGF120 and activation of Akt. However,
AMPK activation exhibited no effects on Akt phosphoryla-
tion or on the expression and secretion of VEGF120 (data
not shown). Thus, we focused on MCP-1 secretion and
conducted further studies to elucidate the intracellular
signaling pathways related to MCP-1-NF-κB cascades. Pal-
mitate stimulation markedly enhanced the phosphorylation

of JNK, p38, and ERK1/2 in 3T3-L1 adipocytes, whereas
among the members of the MAPK family, only ERK1/2
phosphorylation was suppressed. Compound C is a compet-
itive inhibitor binding to the same ligand site as AMP or
AICAR, such that it can block AICAR-induced AMPK acti-
vation [30]. U0126 is a MEK1/2 inhibitor, and it has been
widely used to elucidate the functions of ERK1/2, as ERK1/
2 is one of the downstream targets of MEK1/2 [31]. To
understand the association of the AMPK system with AMPK
activator treatment, we next investigated the effects of
compound C and U126 on intracellular MCP-1 expression.
Treatment with compound C did not significantly affect the
augmented intracellular MCP-1 protein nor the NF-κB activ-
ity induced by palmitate, while treatment with compound C
inhibited AMPK activator-induced ACC phosphorylation
(Figure 6). Similarly, treatment with U0126 did not reduce
palmitate-induced intracellular MCP-1 protein (Figure 6).
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Figure 3: Effects of AICAR on intracellular TG contents in 24 h palmitate-preloaded 3T3-L1 adipocytes. Differentiated 3T3-L1 adipocytes
were exposed to 0.3mmol/L palmitate (black bar) or ethanol vehicle alone (white bar) in the presence or absence of 0.5mmol/L
AICAR for 24 h. (a) Cellular TG contents were measured, and the concentrations were then adjusted to intracellular total protein
contents. (b) Lipid drops were stained with oil red O and examined using fluorescence microscope. (c) ACC phosphorylation on Ser79
was then quantified by immunoblot analysis. Data are means± SEM (n = 4). ∗∗p < 0 01 compared to corresponding control cells.
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Figure 4: Effects of A769662 on MCP-1, NF-κB, and MAPK signaling and intracellular TG contents in 24 h palmitate-preloaded 3T3-L1
adipocytes. Differentiated 3T3-L1 adipocytes were exposed to 0.3mmol/L palmitate (black bar) or ethanol vehicle alone (white bar) in the
presence or absence of 25μmol/L A769662 for 24 h. Lysates were immunoblotted to assess the phosphorylation of AMPK on Thr172 (a),
NF-κB on Ser536 (e), ERK1/2 on Thr180/Tyr182 (f), ACC on Ser79 (h), and intracellular MCP-1 (c). The release of MCP-1 was also
assessed by ELISA (d). The cellular TG (g) contents were measured and then adjusted to intracellular total protein contents. The levels of
MCP-1 mRNA (b) were measured by quantitative real-time RT-PCR at 12 h after stimulation and then normalized over the 18S rRNA
signal. Data are means± SEM (n = 4). ∗p < 0 05, ∗∗p < 0 01 compared to corresponding control cells.
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Taken together, these observations suggest that AMPK
reduces the pro-inflammatory state by inhibiting MCP-1
expression via NF-κB-ERK1/2 pathways and by reducing
lipid deposition via phosphorylation of ACC in hypertro-
phied adipocytes.

Dai et al. reported that AICAR and metformin downreg-
ulated palmitate-induced MAPK activation via different
mechanisms in a β cell line: AICAR by reversing TG over-
load, activating Akt, and inhibiting p38MAPK, whereas met-
formin through suppression of JNK and p38 MAPK [25].
Sena et al. showed that metformin treatment improved not
only the CCL2 level but also oxidative stress in the aortas of
high-fat-fed diabetic rats [17]. However, in our study, none
of the AMPK activators suppressed neither JNK nor p38
phosphorylation. This might be explained by the differences
in cells lines. In osteoblasts, palmitate-induced apoptosis
was inhibited by AICAR via ERK activation [24]. In rat skel-
etal muscle cells, ERK played a key role in palmitate-induced
activation of NF-κB signaling and AMPK blunted this
inflammatory pathway [23]. AICAR suppressed TNF-α-
induced phosphorylation of ERK [32] in adipose tissue of
db/db mice and in 3T3-L1 adipocytes. Because adipocytes

and osteogenic cells share a common precursor in adult
marrow, there is a high degree of plasticity between the
two cell lines even at the most advanced stages of matura-
tion [33–35]. Moreover, skeletal myocytes originate from
precursors in the somite that also give rise to adipocytes.
These previous studies support our hypothesis that AMPK
activation inhibits palmitate-induced MCP-1 via NF-κB-
ERK-dependent pathways. We cannot exclude the possibility
that MAPK upregulation or blockage of lipid deposition by
AMPK activator prevents fatty acid-induced insulin resis-
tance by directly targeting proximal components of the
insulin signaling cascade [36]. Nor were we able to determine
whether the decrease in NF-κB is influenced only by ERK1/2.
However, Green et al. proved that ERK plays a key role in
palmitate-induced IKK/NF-κB activation by using PMA, a
potent ERK activator, and that AMPK activators blocked
the effects of palmitate by reducing ERK signaling [23].

5. Conclusions

In this study, we showed that not only AICAR, but also
A769662, a specific AMPK activator, and metformin, which
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Figure 5: Effects of metformin on palmitate-induced MCP-1 protein and intracellular TG contents in 24 h palmitate-preloaded 3T3-L1
adipocytes. Differentiated 3T3-L1 adipocytes were exposed to 0.3mmol/L palmitate (black bar) or ethanol vehicle alone (white bar) in the
presence or absence of 2.5mmol/L metformin for 24 h. Lysates were immunoblotted to assess the phosphorylation of AMPK on Thr172
(a) and intracellular MCP-1 (b). The cellular TG (c) contents were measured and then adjusted to intracellular total protein contents.
Data are means± SEM (n = 4). ∗p < 0 05, ∗∗p < 0 01 compared to corresponding control cells.
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Figure 6: Effects of compound C and U126 on MCP-1 in palmitate-preloaded 3T3-L1 adipocytes treated with AICAR. Adipocytes were
pretreated with 10μmol/L compound C (a, b, c, and d), 10 μmol/L U126 (e, f), or vehicle (dimethyl sulfoxide) alone for 20min. Then, the
cells were treated with 0.3mmol/L palmitate (black bar) or vehicle (ethanol) alone (white bar) for 24 h with or without 0.5mmol/L
AICAR. Intracellular MCP-1 (d, f) was quantified by immunoblotting. AMPK phosphorylation on Thr172 (a), ACC phosphorylation on
Ser79 (b), NF-κB phosphorylation on Ser536 (c), and ERK1/2 phosphorylation on Thr180/Tyr182 (e) were also quantified by immunoblot
analysis. Each phosphorylation was normalized by the level of the corresponding total protein. β-actin was assessed as an internal control.
Results are means± SEM (n = 3). ∗p < 0 05, ∗∗p < 0 01 compared to the corresponding controls. NS: no significant difference compared to
corresponding control cells.
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is known as the first-line therapy for T2DM, antagonized the
palmitate-induced ERK-NF-κB activation concomitant with
the MCP-1 reduction. These results clearly indicate AMPK
activation to exert anti-inflammatory effects on saturated
fat-treated 3T3-L1 adipocytes. Elucidating the details of
the mechanisms underlying reduced MCP-1 expression in
response to AMPK activation in hypertrophied 3T3-L1
adipocytes may open the way to new therapeutic strategies
for obesity-induced inflammation and insulin resistance.
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