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Norovirus is the leading cause of food-borne disease outbreaks. We conducted this study to examine the incidence and molecular
characteristics of norovirus genogroup I infections from acute gastroenteritis outbreaks in Taiwan. Between January 2015 and June
2019, 2121 acute gastroenteritis clusters were reported to Taiwan CDC, of which 351 (16.5%) clusters were positive for NoVGI, and
GI.3 was the most prevalent (36.8%) during the study period. ,e GI.3 infections were significantly higher than non-GI.3
infections in the age groups of 0–5 and 6–18 years. ,e phylogenetic analysis of the MCC tree revealed that VP1 genes were
divided into 3 groups: the GI.P3-GI.3 strains in Taiwan were genetically close to Japan and the GI.Pd-GI.3 strains were segregated
into 2 other groups which were genetically closely related to China. In addition, 7 GI.Pd-GI.3 recombinants were identified
circulating in Taiwan between 2018 and 2019, and the prevalence of GI.Pd-GI.3 should be monitored to assess whether this could
become the new predominant strains in neighboring Asian countries or other parts of the world. Both GI.P3-GI.3 and GI.Pd-GI.3
strains cocirculate, the recombination among these two lineages occurs frequently, contributing to the genetic diversity and
multiple occurrences of different norovirus lineages, and their rapid evolution makes future control more difficult. Continued
surveillance and timely interventions are critical to understand the complexity of norovirus gene variation and tomonitor the new
emerging norovirus strains.

1. Introduction

Human noroviruses (NoVs) are the main causative agent of
nonbacterial acute gastroenteritis [1]. ,ey are a genetically
diverse group of single-stranded positive-sense RNA viruses
with 7.7-kb genomes divided into three open reading frames
(ORFs). ORF1 encodes a large polyprotein that is cleaved
into six mature nonstructural proteins, ORF2 encodes a
major structural protein called VP1 that can self-assemble
into virus-like particles (VLPs), and ORF3 encodes a minor
structural protein called VP2 [2, 3]. NoVs are highly diverse
viruses that can be genetically grouped into 10 genogroups
(GI–GX), but only genogroups GI, GII, GIV, GVIII, and
GIX can infect humans, with the GII genogroup being the
most prevalent [4, 5]. Each genogroup can be further

classified into numerous genotypes based on the sequence
differences of their VP1 proteins. To date, 9, 22, and 2 VP1
genotypes have been recognized in GI, GII, and GIV, re-
spectively [5, 6]. As recombination frequently occurs in the
ORF1/ORF2 overlap, genotyping of both RNA-dependent
RNA polymerase (RdRp) in ORF1 and VP1 in ORF2 is
necessary to establish a recombinant identity to the virus
[7, 8].

In Taiwan, human noroviruses are the common cause of
acute gastroenteritis (AGE) outbreaks and are the major
cause of both all-age-group diarrhea and food-borne disease
outbreaks [9–11]. According to the Communicable Disease
Control Act, all suspected gastroenteritis outbreaks must be
reported and stool samples must be collected to Taiwan CDC
through the Notifiable Diseases Surveillance System. ,is
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surveillance system aimed to control the spread of infectious
diseases including NoV infections by monitoring the cir-
culating strains. Laboratory-confirmed NoV GI.3 signifi-
cantly increased in 2018, implying a wave of epidemic of GI.3
occurred in Taiwan. Here, we presented the epidemic strains
of norovirus GI.3 with the P2-domain mutation and the
recombinant norovirus GI.Pd-GI.3 strains circulating in
Taiwan between 2015 and 2019, and to characterize their
epidemiological aspects, in particular the link between
molecular epidemiologic and phylogenetic characterization.

2. Materials and Methods

2.1. Sample Collection. Outbreaks were defined as including
two or more cases of gastroenteritis linked in place and time.
A new outbreak was arbitrarily defined as occurring at least 7
days after the last case in a previous outbreak or as occurring
in a different patient care unit such as a ward or hospital
[12, 13]. Stool samples from acute gastroenteritis outbreaks
were collected from January 2015 to June 2019 in Taiwan.
Acute gastroenteritis cases were defined as vomiting or
diarrhea (have three or more loose or liquid stools per day).
,e biological materials in this study were used for standard
diagnostic procedures following the physician’s prescrip-
tions and were conducted in accordance with no specific
sampling and no modification of the sampling protocol.
Following local regulations, the procedure did not require
specific consent from patients.

2.2. Detection of Norovirus. Specimens from patients were
submitted to Taiwan CDC for bacterial and viral tests.
Bacterial examinations included cultures for common en-
teric bacteria, such as Salmonella, Shigella, Vibrio cholerae,
Vibrio parahaemolyticus, pathogenic E. coli, Staphylococcus
aureus, and Bacillus cereus, while viral tests included real-
time reverse transcription polymerase chain reaction (rRT-
PCR) for norovirus and rotavirus as previously described
[14–16]. All norovirus-positive samples in rRT-PCR were
PCR amplified at the ORF1/ORF2 junction and were se-
quenced with primers as previously described [17]. Geno-
types were assigned using online Norovirus Genotyping
Tool Version 2.0 [18] available at https://www.rivm.nl/mpf/
typingtool/norovirus/ and the Human Calicivirus Typing
Tool [5] available at https://norovirus.ng.philab.cdc.gov.

2.3. Sequence Analysis. ,e partial sequences of the RdRp
gene and nearly full-length (1599 bp) coding sequences of
VP1 were amplified by RT-PCR using PrimeScript One Step
RT-PCR Kit (Takara Bio, Inc., Japan) and sequenced with
the primers as previously described [17, 19, 20]. Sequences
obtained in this study have been deposited in GenBank and
assigned accession numbers MN922648–MN922742.

2.4. Phylogenetic Characterization. Pairwise alignment was
performed using BioEdit 7.2.5, while multiple sequence
alignment was performed usingMUSCLE 3.8 [21], where the
aligned sequences were further manually inspected and

edited. Phylogeny reconstruction and evaluation were
implemented in BEAST 1.10.1 using the Bayesian Markov
chain Monte Carlo (MCMC) [22] method. In brief, jMo-
delTest2 [23] is used to select the best-fit nucleotide sub-
stitution model and then to determine the appropriate clock
and tree model by path sampling/stepping-stone sampling
(PS/SS) in BEAST1.10.1. Maximum clade credibility (MCC)
trees were then constructed using the TreeAnnotator pro-
gram in BEAST [24] and visualized using FigTree 1.4.4
(https://github.com/rambaut/figtree/releases). Potential
recombinant sequences were detected, and the localization
of possible recombination break points was determined
using Recombination Detection Program v.4.16 (RDP4)
[25]. Amultiple-comparison-corrected p value cutoff of 0.05
was used throughout. ,e recombination events were fur-
ther confirmed along with breakpoints using the SimPlot
program [26]. SimPlot analysis was performed by setting the
window width and the step size to 200 bp and 20 bp, re-
spectively. Selection pressure analysis was performed using
the software available in the Datamonkey software package
(http://datamonkey.org) [27]. ,e genomic sequences used
as reference sequences were retrieved from the National
Center for Biotechnology Information (NCBI).

2.5. Statistical Analysis. Categorical variables were analyzed
by chi-square and Fisher’s exact tests [28]. Odds ratio (OR)
and 95% confidence interval were calculated by binary lo-
gistic regression. All statistical tests were two-sided, and p

value less than 0.05 was considered statistically significant.

2.6. Ethical Approval. ,is study was approved by the In-
stitution Review Board of Taiwan Centers for Disease
Control (No. IRB108102). ,e consent was waived for this
study as there was no personal information collected from
subjects.

3. Results

Surveillance of clusters of AGE in Taiwan is based on the
reporting system from schools, populous institutes, and
laboratory diagnostics. A total of 2121 AGE clusters were
reported to Taiwan CDC during the study period of 2015 to
2019. Of them, 351 (16.5%) clusters were positive for NoV
GI, and GI.3 was the most frequently detected genotype
(36.8%), followed by GI.4 (21.7%), GI.2 (18.5%), and the
other GI genotypes (23%, including GI.1, GI.5, GI.6, and
GI.7). Although the relative prevalence of NoV GI varies
from season to season, GI.3 was the major epidemic strain
during the study period, the percentage of GI.3-positive
clusters increased from 2017 to 2019, and the viral detection
rate was 43.7% in 2017, 66.7% in 2018, and 39.5% in 2019
(counted to July). ,is reflects GI.3 was the predominant
NoV GI genotype circulating in patients with acute diarrhea
in Taiwan and with a peak in February to April (Figure 1). A
total of 760 cases from 351 clusters were laboratory-con-
firmed NoV GI positive, 261 (27.6%) of them were GI.3
positive with age ranging from 10 months to 89 years, and
118 (45.2%) of these GI.3-positive cases are children and
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teenagers (less than 18 years old). A binary regression lo-
gistic analysis was performed to determine significant as-
sociations, using 19- to 30-year groups which had the robust
immune system as the reference group, and the GI.3 in-
fections were significantly higher than non-GI.3 infections
in the age groups of 0–5 and 6–18 years (OR� 2.25,
p � 0.0229; OR� 1.53, p � 0.0461). However, there is no
statistical difference between the elder group and the ref-
erence group. ,e detection rate between males and females
was not significantly different in each age group (Table 1).

,e nearly full-length PCR amplicon (1599 bp) of the
VP1 gene and partial RdRp gene nucleotide sequences were
randomly selected by different outbreaks and months. A
total of 95 GI.3 strains determined in this study further
generated Bayesian phylogenetic trees for time-scaled
analysis in Figures 2(a) and 2(b) for the RdRp gene and VP1
gene, respectively. ,eMCC tree showed that the VP1 genes

and RdRp genes were divided into 3 groups: the GI.P3-GI.3
strains found in Taiwan were genetically close to Japan and
the GI.Pd-GI.3 strains were segregated into 2 other groups
which were genetically closely related to China (Figure 2). In
addition, most of GI.3 RdRp genes broadly fall into 2 groups
(GI.P3-GI.3 and GI.Pd-GI.3), whereas 7 GI.Pd-GI.3 strains
were found to be the recombinant strains, the genotyping
analyses of which by phylogenetic trees of RdRp and VP1
genes showed discordance of GI.3 genogroups (Figure 3).

Among these 7 recombinant strains, nucleotide identity
ranged from 98.9% to 99.8%. ,e recombination break-
points observed in 7 recombinant strains detected in the
present study were located at nucleotide position 618 in PCR
amplicons in this study (2293 bp), corresponding to nu-
cleotide position 5346 in relation to the Hu/GI/Otofuke/
1979/JP reference strain (accession number AB187514),
localized in the ORF1/2 junction. ,e recombination point

0

10

20

30

40

50

60

70

Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan Mar May
2015 2016 2017 2018 2019

Years

N
o.

GI.7
GI.6
GI.5
GI.4

GI.2
GI.1
GI.3

Figure 1: Seasonal distribution of NoV GI genotypes in Taiwan, 2015–2019.

Table 1: Association between age and infection of the norovirus GI genotype in Taiwan, 2015–2019.

Age group
GI.3

(N� 261)
Other GI genotypes

(N� 499) Odds
ratio∗ p value

GI.3 (N� 261) Other GI genotypes
(N� 499)

n (%) n (%) Male, n (%) Female, n (%) Male, n (%) Female, n (%)
0–5 yrs 19 (7.3) 22 (4.4) 2.25 0.0229 13 (68.4) 6 (31.6) 13 (59.1) 9 (40.9)
6–18 yrs 99 (37.9) 169 (33.9) 1.53 0.0461 58 (58.6) 41 (41.4) 101 (59.8) 68 (40.2)
19–30 yrs 48 (18.4) 125 (25.1) 1.00 Reference 34 (70.8) 14 (29.2) 83 (66.4) 42 (33.6)
31–45 yrs 50 (19.2) 87 (17.4) 1.50 0.1007 26 (52.0) 24 (48.0) 46 (52.9) 41 (47.1)
46–65 yrs 40 (15.3) 77 (15.4) 1.35 0.2424 14 (35.0) 26 (65.0) 32 (41.6) 45 (58.4)
>65 yrs 5 (1.9) 19 (3.8) 0.69 0.4763 2 (40.0) 3 (60.0) 4 (21.1) 15 (78.9)
∗Calculated by logistic regression. ,e total number of clusters and cases of NoV GI infection is 351 and 760, respectively.
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Figure 2: Continued.
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determined by both RDP4 and SimPlot programs showed
similar results (Figures 3(a) and 3(b)). SimPlot analysis was
performed using the recombinant GI.Pd-GI.3 virus (GI.Pd-

GI.3 2018-TW2904) as a query sequence. Data showed that
GI.P3-GI.3 2018-TW2905 and GI.Pd-GI.3 2018-2802 are the
parent sequences, and the other 6 GI.Pd-GI.3 strains (2018-
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Figure 2: Phylogenetic analysis of Taiwan GI.3 RdRp genes (a) and VP1 genes (b) during 2015–2019. ,e RdRp tree was constructed from
708 bp (nucleotide positions 4694–5401 based on the Hu/GI/Otofuke/1979/JP reference strain) (accession number AB187514), and the VP1
tree was constructed from 1599 bp (nucleotide positions 5388–6986 based on the reference strain AB187514). ,e phylogeny of time-scaled
analysis was summarized from MCMC phylogenies of the RdRp and VP1 genes by using a relax-clock model with uncorrelated lognormal
distribution in BEAST.
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Figure 3: Recombination analysis of Taiwan GI.3 norovirus. (a) Bootscan analysis of recombinant GI.3 norovirus using RDP software
version 4.0. Bootscan evidence for the recombination event is based on pairwise distance. (b) SimPlot analysis using the recombinant GI.Pd-
GI.3 virus (GI.Pd-GI.3 2018-TW2904) as the query sequence and making use of a sliding window of 200 bp with a step size of 20 bp. ,e
Kimura 2-parameter model is applied.,e y-axis shows the percentage of similarity between the selected sequences and the query sequence.

Table 2: Positive selection analysis using SLAC, FEL, and MEME methods.

Positive selection sites
Data set Mean dn/ds SLACa (p value) FELb (p value) MEMEc (p value)
VP1 0.056 377 (0.055) 20 (0.03) 302 (0.03)

505 (0.084) 377 (0.07) 505 (0.00)
508 (0.07) 528 (0.00)
532 (0.04)

RdRp 0.035 82 (0.09) 43 (0.03) 111 (0.01)
aSLAC: single likelihood ancestor counting: codons with p value< 0.1. bFEL: fixed-effects likelihood: codons with p value< 0.1. cMEME: mixed-effects model
of evolution: codons with p value< 0.1.
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TW2903, 2018-TW2806, 2018-TW1611, 2018-TW1613,
2019-TW0327, and 2019-TW2601) are highly similar to the
query recombinant strain 2018-TW2904 (Figure 3(b)).

To estimate comprehensively the positive selection site in
the VP1 protein of NoV, single likelihood ancestor counting
(SLAC), fixed-effects likelihood (FEL), internal fixed effects
likelihood (IFEL), and mixed-effects model of evolution
(MEME) were applied (Table 2). ,e method implemented
in Datamonkey detected 2 sites (377 and 505) from both FEL
and MEME as potentially episodic positive selection and
suggested these sites may play an important role during the
adaptive evolution of the GI.3 strain to local environments.
Furthermore, the evolutionary rate of the VP1 gene was
estimated to be 1.903×10− 3 substitutions/site/year (95%
HPD interval, 1.461–2.343×10− 3 substitutions/site/year),
and the overall RdRp gene region of Taiwan GI.3 strains was
estimated to be 2.576×10− 3 substitutions/site/year (95%
HPD interval, 1.878–3.264×10− 3).

4. Discussion

Surveillance of viral enteric diarrhea in Taiwan is performed
by sentinel physicians through the Notifiable Diseases Sur-
veillance System and is based on laboratory detection of virus
nucleic acid. ,is study represents the prevalence, epidemic
genotypic diversity, and spatiotemporal dynamics of NoV
GI.3 genotype strains in Taiwan from 2015 to 2019. From our
data, it is seen that the prevalence of NoV GI in Taiwan is
higher than previous reports in China, Seoul, and ,ailand
[29–31], NoV GI.3 was the most common genotype detected
in outbreaks of NoV GI among Taiwanese people, and NoV
GI.3 infection mainly occurred in preschool students (0–5
years) and school students (6–18 years) in Taiwan, similar to
previous NoV reports fromChina that NoV outbreaks mainly
occurred in kindergartens and primary schools [29, 32].
However, it is worth noting that our data reveal NoV out-
breaks in teenager school students, the risk factors for nor-
ovirus infection and the origin of these school outbreaks are
not clear, but the epidemiological surveillance data show that
norovirus infections increase when school is in session es-
pecially during the beginning of the term and decrease in
summer and winter vacation. ,is inconsistent result might
be due to different school cultures from other countries; for
example, school group meal service is common in Taiwan.

Phylogenetic analysis showed the RdRp region of NoV
GI.3 strains formed two distinct clusters: GI.P3-GI.3 strains
were observed in 2015–2019, whereas the GI.Pd-GI.3 strains
including recombinants were only detected in 2018 and
2019. ,en, different variants of GI.3 norovirus cocirculate
simultaneously in Taiwan, and even in a city, the virulence
and transmissibility of GI.3 strains were likely enhanced
through mutation, contributing to its recent dissemination
together with different subgenotypes. RdRp of norovirus is a
key enzyme responsible for viral transcription and repli-
cation [33] and was suggested to be a driving factor in
norovirus recombination [34]. A previous study showed that
the low prevalence of norovirus is a consequence of a low
mutation rate in RdRp, resulting in limited antigenic drift
and an inability to escape herd immunity compared to the

predominant strains; the suggested mutation rate in com-
bination with a high replication rate is a key determinant in
epidemiological fitness [35].

Genetic recombination is a common phenomenon in
norovirus, which has a major impact on its evolution and
genotype diversity. As most NoV recombinant occurs in a
single hotspot breakpoint located in the ORF1/2 overlapping
region [25, 34], a combined characterization of both the po-
lymerase and VP1 regions is important to monitor new NoV
genotype emergence and recombinant strains. In this study, 7
GI.Pd-GI.3 recombinants were identified circulating in Taiwan
between 2018 and 2019, and this result is inconsistent with
other studies showing that less GI norovirus recombinants
have been described when compared to GII norovirus
recombinants [1, 33, 36]. ,e prevalence of GI.Pd-GI.3 should
be monitored to assess whether this could become the new
predominant strains in neighboring Asian countries or other
parts of the world. Furthermore, spatial reconstruction of the
VP1 gene of the GI.3 genotype indicated that the 3 groups of
GI.3 viruses found in Taiwan were genetically closely related to
Japan and China, and this might be due to traveling frequently
for business and sightseeing among Taiwan, Japan, and China.
In addition, from our time-scaled phylogenetic analysis, it is
seen that theGI.3 genotype accelerated in variation and showed
transmission dynamics, and variants in 2019 are not identical to
its parent strain in 2018, as evidenced in the phylogenetic tree;
despite their evolution from Japan or China, 2018 formed at
least 3 distinct groups.

,e results presented in this study demonstrate that
genetically distinct viruses within both GI.P3-GI.3 and
GI.Pd-GI.3 strains cocirculate and that recombination be-
tween these two lineages occurs frequently, contributing to
the genetic diversity of the circulating strains. Within the 5-
year surveillance, the GI.3 strain accumulated nearly 23.2%
(76.7%–99.9%) genetic distance; multiple occurrences of
different norovirus lineages and their rapid evolution make
future control more difficult because prior exposure to
certain norovirus variants cannot offer complete protection
from new variant infection. Continued surveillance and
unified systems for norovirus typing are critical to monitor
the emergence and impact of these GI.3 strains and other
new norovirus strains.
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