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ABSTRACT Despite playing a key role in the health of their hosts, host-associated mi-
crobial communities demonstrate considerable variation over time. These communities
comprise thousands of temporally dynamic taxa, which makes visualizing microbial
time series data challenging. As such, a method to visualize both the proportional and
absolute change in the relative abundance of multiple taxa across multiple subjects
over time is needed. To address this gap, we developed BiomeHorizon, the first auto-
mated, open-source R package that visualizes longitudinal compositional microbiome
data using horizon plots. BiomeHorizon is available at https://github.com/blekhmanlab/
biomehorizon/ and a guide with step-by-step instructions for using the package is pro-
vided at https://blekhmanlab.github.io/biomehorizon/.

IMPORTANCE Host-associated microbiota (i.e., the number and types of bacteria in
the body) can have profound impacts on an animal’s day-to-day functioning as well
as their long-term health. Recent work has shown that these microbial communities
change substantially over time, so it is important to be able to link changes in the
abundance of certain microbes with host health outcomes. However, visualizing such
changes is difficult because the microbiome comprises thousands of different microbes.
To address this issue, we developed BiomeHorizon, an R package for visualizing longitudi-
nal microbiome data using horizon plots. BiomeHorizon accepts a range of data formats
and was developed with two common microbiome study designs in mind: human health
studies, where the microbiome is sampled at set time points, and observational wildlife
studies, where samples may be collected at irregular time intervals. BiomeHorizon thus
provides a flexible, user-friendly approach to microbiome time series data visualization
and analysis.
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Despite playing a key role in the health of their hosts (1, 2), host-associated micro-
bial communities demonstrate considerable variation both between hosts and

within an individual host over time (3–5). To determine drivers of this temporal varia-
tion, and to link such variation to specific host health outcomes, recent work has
focused on collecting time series microbiome samples from individual hosts. However,
host-associated microbiome data are compositionally complex, with thousands of mi-
crobial taxa present at any given time point, and visualizing these longitudinal data is
challenging. Traditional methods of longitudinal microbiome visualization use a stream
or line graph with a different color for each microbe (5–8). While this is valuable for
tracking a single microbe in a single host, it becomes visually difficult to distinguish
broader trends among several microbes, or to compare microbial trends at the same
time points across multiple hosts. This is especially true given that large proportional
changes in microbes with low abundances (e.g., mean relative abundance ,0.5%) are
dwarfed by highly abundant microbes (e.g., mean abundance .25%). Further, line
graphs do not facilitate comparing microbial trends at the same time points across
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different hosts. Hence, tools that enable automated visualization of proportional
changes across microbes, hosts, and/or time are crucial for exploratory data analysis, as
well as for detailed comparisons of select taxa, individuals, or time slots.

RESULTS
Overview. Here, we present BiomeHorizon, a ggplot2-compatible R package that pro-

vides an automated way of visualizing the longitudinal dynamics of multiple microbes in
parallel (9). BiomeHorizon was developed with two of the most common microbiome
study designs in mind: human health experiments, such as dietary or medical interven-
tion studies, where the microbiome is sampled from all subjects at set time points to
compare microbiome health outcomes over time; and observational wildlife studies,
where samples may be collected at irregular time intervals (e.g., opportunistically when
defecation is observed) and/or with large time gaps.

BiomeHorizon generates horizon plots, charts in which the x axis is a time series and
the y axis starts from the “horizon” (or “origin,” often the median value of a variable
across all time points) and features areas whose y axis distribution represents the dis-
tance of the variable from the origin at a given time point (Fig. 1A) (10). Colored bands
are used to represent n-tiles from the origin, with two different color families repre-
senting positive or negative values. The compactness of horizon plots facilitates pat-
tern-recognition and comparison between numerous time series, revealing unique
insights into longitudinal data. Specifically, they allow visual identification of sustained
versus temporary change in microbe(s), which is valuable for modeling stability and
disturbance (6). For example, it is easy to detect “comovement” or “periodicity,” while
also comparing amplitude. Comovement can be valuable for identifying microbes with
related functions (e.g., similar proportional increases at the same time points may indi-
cate taxa play similar roles for the host), while periodicity might reveal links between
environmental or experimental factors and microbial dynamics (6).

BiomeHorizon is the first horizon plot tool specific to microbiome data. As such, it
provides three innovations specific to microbiome data compared to prior horizon plot
applications, which also allow substantial room for customization and adaptation (11,
12). First, it takes data in a common OTU table format, as either read counts or per-
sample relative abundance, with functions to filter taxa based on prevalence and abun-
dance. We note that “OTU” table here refers to the finest level of microbial taxonomic
delineation available in the input data. This table can be generated from amplicon
sequencing output, or alternatively, from shotgun metagenomic output. For example,
for 16S rRNA gene amplicon input data, the input table can be comprised of actual
OTUs (operational taxonomic units created by clustering amplicons at some percent-
age identity threshold) or of ASVs (amplicon sequence variants). For metagenomic
shotgun data, the input table could mean a sequence with taxonomic identity
assigned via BURST (5), or to an actual OTU obtained by extracting the marker genes
(e.g., using a program like PhyloFlash [13]). For simplicity, we will continue to use the
term “OTU” throughout this paper, as that is the term used in the BiomeHorizon pack-
age itself. A taxonomy table and metadata table may be supplemented such that
microbes can be annotated by taxonomic level and selected from subject(s) of interest,
respectively. These data sets are accepted in a variety of formats (see online tutorial for
full examples, including acceptable variable names), making the package applicable to
a wide range of experimental and observational conditions.

Second, BiomeHorizon can simultaneously compare abundant and rare taxa by show-
ing proportional changes. Specifically, the tool can switch between a fixed origin or y
axis scale for each microbe, and variable origin or y axis scale, allowing for comparisons
between multiple microbes and between multiple hosts. The user can also customize
the number of bands. Including more horizon bands will more precisely distinguish val-
ues and emphasize those at the highest ranges of magnitude, while using fewer bands
will de-emphasize values at the extreme ends of the data.

Third, BiomeHorizon can accurately reflect taxa dynamics across irregular time intervals,
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FIG 1 A BiomeHorizon horizon plot showing custom configurations. (A) Annotated horizon plot for a single microbe (single_var_otu = “Taxon 1”), for 17
samples across 6 subjects in the diet study example data set, illustrating how a horizon plot is constructed. First, values are plotted as a relative abundance
versus time area graph for each OTU time series. Values are then centered to a “zero,” in this case the median relative abundance. This centered value is
referred to as the “horizon” or “origin.” Next, the plotting area is divided into quartile “bands” above and below the origin, with darker blue bands
indicating values incrementally above the origin and darker red bands below the origin; negative bands are mirrored upward. Finally, bands are overlaid to
compress vertical space. (B) Microbes manually chosen as those with a per-sample average relative abundance of at least 0.75% (thresh_abundance = 0.75)
across 15 samples in one subject (subj = “MCTs01”) in the diet study example data set. Microbes are labeled by their most fine-grained level of taxonomic
identification (facetLabelsByTaxonomy = TRUE). (C) The same data as B, but with the origin manually set to 1% relative abundance (origin = 1) and band
thickness set so each band represents 10% relative abundance (band.thickness = 10), which serves to visually emphasize changes in highly abundant
microbes (e.g., Bacteroides). (D) For data collected at irregular time intervals or with collection gaps (shown in the wild baboon study example data set),
BiomeHorizon can interpolate between points to regularize intervals (25 days shown here; regularInterval = 25) with breaks when there are gaps greater
than a specified interval (75 days shown here; maxGap = 75). Custom aesthetics can be used to adjust labels, colors, etc.
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making it suitable for visualizing data sets with lengthy gaps. These customizations make
BiomeHorizon versatile in highlighting a wide range of aspects of longitudinal data, and
facilitate the user’s ability to pick which microbes may be of interest for additional
analyses.

Usage scenario. To demonstrate the versatility of BiomeHorizon, we apply it to two
different publicly available microbiome data sets: a 17-day human diet experimental study
with metagenomic sequencing of the gut microbiome (5), and a multiyear collection of
wild baboon 16S rRNA gut microbiome samples (14). By using single_var_otu,
BiomeHorizon can compare the temporal dynamics of a single microbe across multiple
subjects with samples collected on the same days (Fig. 1A).

]] Subset the data set to the subjects whowere sampled on all 17 days; and arrange by date

metadata 17,2metadatasample diet %.%

filter subject%in% c }MCTs08}; }MCTs18}; }MCTs23}; }MCTs26}; }MCTs33};ð�

}MCTs36}ÞÞ%.%

arrange subject; collection dateð Þ
otu 17,2 otusample diet %.%

select taxon id; as:character metadatasample diet %.% filter subject%in% cðððð
}MCTs08}; }MCTs18}; }MCTs23}; }MCTs26}; }MCTs33}; }MCTs36}ð ÞÞÞ$sampleÞÞ

]] Single variable analysis with }Taxon 1}

paramList,2 prepanel otudata ¼ otu 17; metadata ¼ metadata 17;ð
singleVarOTU ¼ }taxon 1}Þ
horizonplot paramListð Þ

Alternatively, by adjusting thresh_prevalence, thresh_abundance, or
otulist, and specifying subj, microbes can be filtered by prevalence and abun-
dance, or by name, to compare many microbes in the same subject (Fig. 1B).

paramList,2 prepanel otudata ¼ otusample diet; metadata ¼ metadatasample diet;ð
taxonomydata ¼ taxonomysample diet$taxonomy; subj ¼ }MCTs01};

facetLabelsByTaxonomy ¼ TRUE; thresh abundance ¼ 0:75Þ

Further, by adjusting origin or band.thickness, the dynamics of highly abun-
dant or rare microbes can be emphasized (Fig. 1C).

paramList,2 prepanel otudata ¼ otusample diet; metadata ¼ metadatasample diet;ð
taxonomydata ¼ taxonomysample diet$taxonomy; subj ¼ }MCTs01};

facetLabelsByTaxonomy ¼ TRUE; origin ¼ 1; band:thickness ¼ 10;

thresh abundance ¼ 0:75Þ

The origin is the base of the first positive band for an OTU, where the y axis value = 0.
The y-scale height of each band is the band thickness. By default, the origin for each
OTU is calculated as the median value of that OTU across all samples, and band thick-
ness represents 4 quartiles above (blue bands) and 4 quartiles below (red bands) the
origin relative to the absolute extreme value for that OTU. By scaling within each OTU,
the dynamics of multiple OTUs that may vary in median abundance by orders of mag-
nitude can be visualized on the same graph. At smaller values of band.thickness,
an increasing number of values are above the new maximum or below the new mini-
mum, resulting in more extreme bands (at 14 or 24). This accentuates changes in
microbes with low abundances but compresses change in microbes with larger
abundances.

Finally, for data at irregular time intervals, such as those collected in the wild ba-
boon example data set, regularInterval specifies the interval at which missing
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data can be interpolated. The new, interpolated point is calculated based on a linear
interpolation between the previous and subsequent observed time points. maxGap
specifies the maximum amount of time between sample collection before a gap in the
x axis rather than an interpolated point should be used (Fig. 1D).

paramList,2 prepanel otudata ¼ otusample baboon;ð
metadata ¼ metadatasample baboon; subj ¼ “Baboon 388”;

regularInterval ¼ 25; maxGap ¼ 75Þ

DISCUSSION

BiomeHorizon is a powerful tool for visualization of microbiome dynamics over time,
as well as a useful initial data exploration tool. It is highly customizable and versatile,
as it is designed to accommodate both metagenomics and 16S microbiome data, and
can be easily integrated into ggplot2, allowing for esthetic customization. Although it
is designed for microbiome data, BiomeHorizon can also be applied to other types of
longitudinal data sets that are represented as the relative abundance of many features.
We also note that changes in the relative abundance of a feature can occur despite a
stable absolute abundance (i.e., if one feature increases in absolute abundance, other
features will show a change in relative abundance), so follow-up statistical analyses to
initial BiomeHorizon explorations are recommended. BiomeHorizon is an open-source
project available on GitHub, with a tutorial to supplement the documentation.

MATERIALS ANDMETHODS
Implementation. BiomeHorizon is available at https://github.com/blekhmanlab/biomehorizon/ and

released under the MIT license. The submitted software version is archived on Zenodo at https://doi.org/
10.5281/zenodo.5469141. A guide with step-by-step instructions for using the package is provided at
https://blekhmanlab.github.io/biomehorizon/. The guide also provides code to reproduce all plots in
this manuscript.

Data availability. The full version of the data sets used in this article and incorporated into the
BiomeHorizon package are available on Zenodo (baboon data set at https://doi.org/10.5281/zenodo
.4662081) and Github (human diet data set at https://github.com/knights-lab/dietstudy_analyses/tree/
master/data/maps).
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