
fninf-13-00012 March 1, 2019 Time: 19:55 # 1

TECHNOLOGY REPORT
published: 05 March 2019

doi: 10.3389/fninf.2019.00012

Edited by:
Andrew P. Davison,

Institut des Neurosciences
Paris-Saclay (Neuro-PSI), France

Reviewed by:
Fidel Santamaria,

The University of Texas at
San Antonio, United States

Werner Van Geit,
École Polytechnique Fédérale

de Lausanne, Switzerland
Daniel Wheeler,

National Institute of Standards
and Technology (NIST), United States

*Correspondence:
Gregory Kiar

gregory.kiar@mail.mcgill.ca

†These authors have contributed
equally to this work

Received: 31 August 2018
Accepted: 15 February 2019

Published: 05 March 2019

Citation:
Kiar G, Brown ST, Glatard T and

Evans AC (2019) A Serverless Tool
for Platform Agnostic Computational

Experiment Management.
Front. Neuroinform. 13:12.

doi: 10.3389/fninf.2019.00012

A Serverless Tool for Platform
Agnostic Computational Experiment
Management
Gregory Kiar1,2* , Shawn T. Brown1, Tristan Glatard3† and Alan C. Evans1,2,4†

1 Montreal Neurological Institute, McGill University, Montreal, QC, Canada, 2 Department of Biomedical Engineering, McGill
University, Montreal, QC, Canada, 3 Department of Computer Science, Concordia University, Montreal, QC, Canada,
4 Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada

Neuroscience has been carried into the domain of big data and high performance
computing (HPC) on the backs of initiatives in data collection and an increasingly
compute-intensive tools. While managing HPC experiments requires considerable
technical acumen, platforms, and standards have been developed to ease this burden
on scientists. While web-portals make resources widely accessible, data organizations
such as the Brain Imaging Data Structure and tool description languages such as
Boutiques provide researchers with a foothold to tackle these problems using their
own datasets, pipelines, and environments. While these standards lower the barrier to
adoption of HPC and cloud systems for neuroscience applications, they still require the
consolidation of disparate domain-specific knowledge. We present Clowdr, a lightweight
tool to launch experiments on HPC systems and clouds, record rich execution records,
and enable the accessible sharing and re-launch of experimental summaries and results.
Clowdr uniquely sits between web platforms and bare-metal applications for experiment
management by preserving the flexibility of do-it-yourself solutions while providing a low
barrier for developing, deploying and disseminating neuroscientific analysis.

Keywords: cloud computing, reproducibility and tools, high performance computing, microservice,
interactive visualization

INTRODUCTION

The increasing adoption of distributed computing, including cloud and high-performance
computing (HPC), has played a crucial role in the expansive growth of neuroscience. With an
emphasis on big-data analytics, collecting large datasets such as the Consortium for Reliability and
Reproducibility (Zuo et al., 2014), UK-Biobank (Sudlow et al., 2015), and Human Connectome
Project (Van Essen et al., 2013) is becoming increasingly popular and necessary. While these
datasets provide the opportunity for unprecedented insight into human brain function, their size
makes non-automated analysis impractical.

At the backbone of science is the necessity that claims are reproducible. The reproducibility
of findings has entered the spotlight as a key question of interest, and has been explored
extensively in psychology (Open Science Collaboration, 2015), neuroimaging (Eklund et al., 2016;
Bowring et al., 2018), and other domains (Baker, 2016; Miłkowski et al., 2018). Computational
experiments must be re-executable as a critical condition for reproducibility, and this bare
minimum requirement becomes increasingly challenging with larger datasets and more complex

Frontiers in Neuroinformatics | www.frontiersin.org 1 March 2019 | Volume 13 | Article 12

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2019.00012
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fninf.2019.00012
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2019.00012&domain=pdf&date_stamp=2019-03-05
https://www.frontiersin.org/articles/10.3389/fninf.2019.00012/full
http://loop.frontiersin.org/people/459910/overview
http://loop.frontiersin.org/people/646953/overview
http://loop.frontiersin.org/people/156033/overview
http://loop.frontiersin.org/people/4918/overview
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-13-00012 March 1, 2019 Time: 19:55 # 2

Kiar et al. Clowdr: Serverless Experiment Management

analyses. While sharing all code and data involved may appear
a compelling solution, this is often inadequate for achieving
re-runnability or reproducibility of the presented findings and
models (Miłkowski et al., 2018). When re-executable applications
fail to reproduce findings, there is a gray area where the source of
errors are often unknown and may be linked to misinterpretation
of data, computing resources or undocumented execution details,
rather than scientific meaning.

As a result, new tools and standards have emerged to aid
in producing more reusable datasets and tools, and thereby
more reproducible science. The Brain Imaging Data Structure
(BIDS) (Gorgolewski et al., 2016) and the associated BIDS apps
(Gorgolewski et al., 2017) prescribe a standard for sharing and
accessing datasets, and therefore, increasing the accessibility and
impact of both datasets and tools. This standard includes the
definition of file organization on disk, as well as key-value pairs
of metadata information in JavaScript Object Notation (JSON)
files, and assigns specific meaning to command-line arguments
to be used when processing these datasets. The Boutiques
framework (Glatard et al., 2018) provides a standard for software
documentation in a machine-interpretable way, allowing the
automation of tool execution and evaluation. These descriptions
fully encapsulate the runtime instructions for a given tool in
JSON-files, and are appropriate for a majority of command-line
applications. Software containerization initiatives such as Docker
(Merkel, 2014) and Singularity (Kurtzer et al., 2017) facilitate
execution consistently across arbitrary computing environments
with minimal burden on the user.

Web-platforms such as OpenNeuro (Poldrack et al., 2013),
LONI Pipeline (Rex et al., 2003), and CBRAIN (Sherif et al., 2014)
simplify the analysis process further by providing an accessible
way to construct neuroscience experiments on commonly used
tools and uploaded-datasets. These systems deploy tools on HPC
environments and record detailed execution information so that
scientists can keep accurate records and debug their workflows.
Tools such as LONI’s provenance manager (Dinov et al.,
2010), Reprozip (Chirigati et al., 2016), and ReCAP (Hasham
et al., 2018) capture system-level properties such as system
resources consumed and files accessed, where tools supporting
the Neuroimaging Data Model (NIDM) (Sochat and Nichols,
2016), a neuroimaging-specific provenance model based on
W3C-PROV (Missier et al., 2013), capture information about the
domain-specific transformations applied to the data of interest.

The initiatives enumerated above have synergistic
relationships, where each solves a small but significant piece
of the larger puzzle that is computational and scientific
reproducibility and replicability. However, the learning
curve associated with adopting each of these technologies
is considerable, leveraging them in an impactful way is difficult,
and certain applications may benefit from different approaches
so these learning curves may have to be paid multiple times.
For instance, interoperability is mainly valuable in contexts
which there is a large variety of datasets or tools, and provenance
may be of importance to identify the impact of an underlying
system on a processing or modeling task. We present Clowdr,
a lightweight tool which ties these approaches together so that
researchers can minimize the learning burden and lower the

barrier to develop, perform, and disseminate reproducible,
interoperable and provenance-rich neuroscience experiments.

EMERGENT TECHNOLOGIES IN
REPRODUCIBLE NEUROSCIENCE

Conducting reproducible analyses in neuroscience requires many
complementary facets, building on technologies which are
commonly adopted as de facto standards.

Data and Code Interoperability
Due in part to its simplicity and active public development
community, BIDS (Gorgolewski et al., 2016) has become
an increasingly prominent data organization format in
neuroimaging. This standard makes use of the Nifti file
format (Cox et al., 2004) and human-readable JSON files
to capture both imaging and subject-specific metadata. An
important benefit of this data organization is the ability to launch
data processing pipelines in the form of BIDS applications
(Gorgolewski et al., 2017), which expose a consistent set of
instructions compatible with the data organization. Together,
these complementary standards are suitable for performing a
large variety of neuroimaging experiments. In contexts where
tools have heterogeneous interfaces, or data organizations are
custom-built for a particular context, the Boutiques (Glatard
et al., 2018, 2019) framework allows the rich description of a
pipeline such that tool execution, validation, and exploration
can be automated. These descriptors include the command-line
structure to be populated as well as rich parameter descriptions
and interactions, such as mutually exclusivity or dependence,
such that complicated data interactions required or forbidden by
the tool can be accounted for.

Software Virtualization
While virtual machines have long been used for deploying
analysis pipelines with complex dependencies in heterogeneous
environments, software containers have recently emerged as
lighter-weight alternatives suitable for transient data processing
applications. Docker (Merkel, 2014) provides this functionality
across all major host operating systems, but is often not supported
by HPC centers due to security vulnerabilities (Bui, 2015; Combe
et al., 2016). Singularity (Kurtzer et al., 2017) addresses the
security risks of Docker, but currently only supports Linux
operating systems, filling the niche of containerization on shared
computing resources. A detailed comparison in the context of
medical imaging can be found in Matelsky et al. (2018).

Workflow Engines
Custom scientific pipelines can be composed in Python with
Nipype (Gorgolewski et al., 2011), Dask (Rocklin, 2015), Pegasus
(Deelman et al., 2015), Toil (Vivian et al., 2017), or several
other tools which facilitate the modular interaction of complex
independent processing stages. While the underlying tasks
in Nipype, Dask, and Toil are defined in Python, Pegasus
uses a Domain Specific Language (DSL) for representing
tasks, increasing the barrier for defining tasks but ultimately

Frontiers in Neuroinformatics | www.frontiersin.org 2 March 2019 | Volume 13 | Article 12

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-13-00012 March 1, 2019 Time: 19:55 # 3

Kiar et al. Clowdr: Serverless Experiment Management

increasing their portability. While Nipype is a widely used
tool in neuroimaging and has many readily-defined interfaces
available for researchers, the others require non-insignificant
development to describe interfaces for common neuroimaging
applications such as FSL (Jenkinson et al., 2012) or MRtrix
(Tournier and Calamante, 2012). PSOM (Bellec et al., 2012)
and Scipipe (Lampa et al., 2018) are functionally similar to
Nipype but have been developed for GNU Octave/MATLAB and
Golang, respectively. Several domains have more specialized tools
which accomplish similar feats in their area of interest. These
include Pypet (Meyer and Obermayer, 2016), Neuromanager
(Stockton and Santamaria, 2015), Arachne (Aleksin et al.,
2017), and others which facilitate the automation of modeling
and simulation workflows using tools such as Neuron (Hines
and Carnevale, 2001). For an in depth look at other tools
in this space please refer to Meyer and Obermayer (2016)
and (Stockton and Santamaria, 2015). Each of these tools
enables the construction of dependency graphs between pipeline
components, and allow the deployment either to cluster
scheduling software, multiple processing threads, and in some
cases computing clouds. These tools primarily function through
programmatic interfaces, though LONI pipeline (Rex et al.,
2003), OpenMOLE (Reuillon et al., 2013), and Galaxy (Goecks
et al., 2010) provide both DSL and graphical user interfaces.
Many of these tools also embed provenance capture, fault-
tolerance features, and data tracking to avoid recomputations
across similar executions. While each of these tools is a
powerful and attractive option for creating workflows, they
remain complex and potentially overkill when launching
atomic single-step analyses, prebuilt pipelines, or analysis
software developed in a different language than the workflow
engine of choice.

Provenance
Building on the W3-PROV (Missier et al., 2013) standard
for data provenance metadata put forth by the World Wide
Web Consortium, NIDM (Sochat and Nichols, 2016) is a
standard which represents a processing and data provenance
graph specific to neuroimaging analyses. While this standard is
machine-interpretable and interoperable-by-design, supporting
it currently requires tight integration with analysis pipelines.
In LONI pipeline, a provenance model exists which includes
detailed records of data use and file lifecycle (Dinov et al.,
2010), which is designed to inform data consumers what
types of analyses can be and have been performed with
the data in question; this tool is tightly coupled with
the LONI pipeline ecosystem. The ReCAP (Hasham et al.,
2018) project has been developed to evaluate the resource
consumption of arbitrary pipelines on the cloud and can aid
in cloud-instance optimization. While this tool has potential
for a large impact in designing both cost effective and
scalable analyses, there is considerable overhead as it manages
executions through a persistent server and workflow engine.
While various other libraries exist to monitor some piece
of data or compute provenance, Reprozip (Chirigati et al.,
2016) is perhaps the most exciting as it uniquely captures
records of all files accessed and created throughout an

execution, which allows for the creation of rich file dependency
graphs. The limitation of this technique is that it requires
data of interest to be written to disk, as opposed to
managed in memory, which may not always be the case in
some applications.

Web Platforms
Increasing the portability and accessibility of launching large
scale analyses, web platforms such as CBRAIN (Sherif et al.,
2014), LONI pipeline (Rex et al., 2003), and OpenNeuro
(Poldrack et al., 2013) provide science-as-a-service where users
can upload and process their data on distant computing
resources. Additionally, these platforms provide an accessible
and immediate way to share the results produced from
experiments with collaborators or the public. These tools provide
incredible value to the community and allow the deployment
of production-level pipelines from the web, but they are not
suitable for prototyping analyses or developing pipelines, and it
is cumbersome to run these services on a lab’s own resources.
In addition, monolithic Web interfaces are only suitable for a
certain type of use-cases and high-level users, while developers or
computer-savvy users prefer to rely on modular command-line
tools and libraries.

THE CLOWDR MICROTOOL

While the technologies enumerated above are essential pieces
toward reproducible neuroscience, they are largely isolated from
one another and place a large burden on researchers who wish to
adopt all of these best practices. Clowdr leverages these tools to
increase the deployability, provenance capture, and shareability
of experiments. In summary, Clowdr:

(i) is tightly based on Boutiques and is BIDS-aware, supporting
both arbitrary pipelines and providing an accessible
entrypoint for neuroimaging;

(ii) executes both bare-metal workflows and Docker or
Singularity virtualized pipelines through Boutiques on local,
HPC, and cloud resources;

(iii) supports the parallelized batch deployment and
redeployment of pipelines constructed with workflow-
engines, while being agnostic to programming language
and construct;

(iv) captures system-level provenance information (i.e.,
CPU and RAM usage), supports Reprozip, and internal
provenance captured by arbitrary pipelines such as NIDM;
and

(v) supports the deployment of both development- and
production-level tools without an active server,
and provides a web-report for exploring and
sharing experiments.

A typical workflow using Clowdr is summarized in Figure 1.
While a Clowdr experiment follows the same workflow
as traditional experiments, beginning with tool and data
curation through prototyping, deployment, and exploration,
there are several considerable benefits provided by Clowdr

Frontiers in Neuroinformatics | www.frontiersin.org 3 March 2019 | Volume 13 | Article 12

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-13-00012 March 1, 2019 Time: 19:55 # 4

Kiar et al. Clowdr: Serverless Experiment Management

FIGURE 1 | Clowdr Workflow. (1) Prior to launching an analysis with Clowdr, users must curate the analysis tools and their inputs. For the sake of portability, Clowdr
supports both native and containerized applications described in the Boutiques format. Several tools exist in Boutiques which simplify the adoption/creation or
execution of tools and are enumerated in (1.1,1.2), respectively. (2) Scientists can then launch their analysis with Clowdr either locally, on HPC systems, or
computing clouds. Possible workflows could involve the tuning of hyperparameters locally on a subset of the dataset of interest, and ultimately deploying the analysis
at scale using the same arguments, or sweeping hyperparameter values on an HPC system. (3) After execution, summary reports can be produced by Clowdr (3.1)
and visualized through a custom web portal enabling filtering by both execution properties and parameters, facilitating outlier detection and comparison across
executions. Identified outliers, such as failures, incomplete tasks, or those which consumed more resources than expected can be re-run through Clowdr without
having to regenerate any of the information previously provided. Clowdr facilitates the development, deployment, and debugging of analyses in a closed-loop
provenance-rich microservice.

over traditional approaches. In particular, Clowdr is based
on the rich Boutiques framework for tool description and
execution, ensuring that documentation, parameter definitions,
and real-world parameter values accompany the tool at
all times. Clowdr also treats all computing systems the
same, from the users perspective, so transitioning from local
development of analyses to at-scale systems is seamless,
which minimizes errors made during this transition. Clowdr
also provides a visualization portal for exploring executions
and filtering either based on parameter values or runtime
statistics, allowing for quality control of the execution in
addition to commonly used quality control of processed
derivatives themselves.

Figure 2 shows the execution lifecycle within Clowdr. Starting
from user-provided Boutiques descriptor (B) and invocation(s)
(C), and access to any required datasets, Clowdr begins by
identifying a list of tasks to launch. For a new experiment,
tasks are identified in one of three main ways: (1) a one:one
mapping from a list of invocations, (2) a one:many mapping from
a single invocation in which parameter(s) have been specified
for sweeping during execution, or a BIDS-specific, and (3)
one:many mapping from a single invocation for a BIDS app,
which will iterate upon the participant- and session-label fields,
and described in the BIDS app specification (Gorgolewski et al.,
2017). Experiments can be re-run, and determine the task-list
based on whether a full, failure-only, or incomplete-only re-
execution is desired. Once the task-list is determined, Clowdr
creates an independent invocation which explicitly defines the
arguments used in each task.

At this stage, Clowdr distributes tasks to the Cloud system
or local cluster scheduler being used for deployment. Presently
Clowdr supports the SLURM scheduler and Amazon Web
Services (AWS) cloud through their Batch service with adoption
of more platforms ongoing. Each task is launched through a
Clowdr-wrapper, which initializes CPU and RAM monitoring
and triggers Reprozip tracing prior to launching the analysis
itself. Reprozip tracing has limited support in conjunction with
containerized analyses on HPC systems due to potential security
issues. Reprozip is built upon the Linux command “ptrace,”
which traces processes to monitor or control them. To eliminate
the potential risk of using this tool, it is common for systems
to disallow the tracing of administrator-level processes. The
requirement of limited administrator privileges by Singularity
(during the creation of multiple user namespaces) and Docker
(for interacting with the daemon) makes encapsulating these
tools within the restricted ptrace scope not possible on many
shared systems. For more information on the specific conditions
in which these technologies can be made to interoperate please
view the GitHub repository for this manuscript, linked below.

Upon completion of the analysis, Clowdr bundles the system
monitored records, standard output and error, exit status, and
any other information collected by either the tool itself or the
Boutiques runtime engine, and concludes its execution. Once the
experiment has begun, Clowdr provides the user with the Clowdr
provenance directory which will be updated automatically as
executions progress.

The researcher can monitor the provenance directory
using the Clowdr share portal (Figure 3), which provides

Frontiers in Neuroinformatics | www.frontiersin.org 4 March 2019 | Volume 13 | Article 12

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-13-00012 March 1, 2019 Time: 19:55 # 5

Kiar et al. Clowdr: Serverless Experiment Management

FIGURE 2 | (A) Clowdr Data Flow. Beginning with a user-supplied tool descriptor (B) and parameter invocation(s) (C), Clowdr identifies unique tasks to launch and
wraps each with usage and log monitoring tools, to ultimately provide a rich record of execution to the user alongside the expected output products of the
experiment. Clowdr ultimately produces an HTML summary for users to explore, update, filter, and share the record of their experiment. In the above schematic, blue
boxes indicate data, where gray indicate processing steps. ∗External reprozip tracing is supported on limited infrastructures, as running virtualized environments
within a trace capture requires elevated privileges which may be a security risk on some systems.

a web interface summarizing the task executions. Once the
analysis concludes, the figures on this web page and the
associated metadata can be saved and serve as a record of
the experiment either for evaluation or dissemination alongside
published results.

The Clowdr package is open-source on GitHub (Kiar and
Glatard, 2019), and installable through the Python Package Index.

PERFORMING EXPERIMENTS WITH
CLOWDR

Here, we explore an experiment in which we used Clowdr
to process the Human Connectome Project (HCP) (Van
Essen et al., 2013) dataset with a structural and functional

connectome estimation pipeline, ndmg (Kiar et al., 2018a,b).
The records of this experiment, and materials and instructions
that can be used to reproduce a similar analysis with
Clowdr using the publicly available DS114 BIDS dataset
(Poldrack et al., 2013) an the example BIDS application
(Gorgolewski et al., 2017) can be found on Github at:
https://github.com/clowdr/clowdr-paper. Specific packages and
their versions for both experiments can be found at the end of
this manuscript.

As summarized above, performing an analysis with Clowdr
requires the creation of a Boutiques descriptor summarizing the
pipeline of interest, an invocation containing the parameters to
supply to this pipeline on execution, and curation of the data
to be processed. There are several utilities in Boutiques which
aid in this setup process, including to automatically generate a

Frontiers in Neuroinformatics | www.frontiersin.org 5 March 2019 | Volume 13 | Article 12

https://github.com/clowdr/clowdr-paper
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-13-00012 March 1, 2019 Time: 19:55 # 6

Kiar et al. Clowdr: Serverless Experiment Management

FIGURE 3 | Clowdr Experiment Viewer. Experiments launched with Clowdr can be monitored and both progress and runtime statistics explored. The page is
produced using Plotly Dash to produce highly interactive plots and tables, enabling rich filtering, rescaling, and exploration of executions. The table can be toggled to
present summary statistics about experiment execution or invocation parameters identifying parameters used for each task in the experiment. The subsequent Gantt
plot shows the timeline of executed tasks in the experiment, where those selected for visualization in the usage plot below are highlighted. The final plot in this view
shows the memory and processing footprint throughout all selected tasks. Selection and filtering may be done by value in the tables or selection in the task timeline.
In this example, several tasks did not complete and one appeared to exit after 10 s erroneously. The Clowdr portal enables quick identification of these outliers, and
the table view can be switched to identify more information such as parameters pertaining to the executions of interest. For more information about the pipeline
being executed in particular, please see Kiar et al. (2018b).

Frontiers in Neuroinformatics | www.frontiersin.org 6 March 2019 | Volume 13 | Article 12

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-13-00012 March 1, 2019 Time: 19:55 # 7

Kiar et al. Clowdr: Serverless Experiment Management

descriptor and sample inputs from a tool, and can be explored in
the associated documentation (Glatard et al., 2019).

Clowdr experiments can be launched locally, on cluster, or
submitted to cloud resources. In each case, invocations and task
definitions are created locally, and then the jobs are run serially,
submitted to a cluster queue, or pushed to cloud storage and
called remotely. The commands used in Clowdr to launch these
commands are the local, local with the cluster switch, and cloud
modes, respectively. Upon completion of each tasks, summary
files created by Clowdr can be either inspected manually or
consolidated and visualized in the web with the Clowdr share
command (Figure 3).

The share tool, launchable on any computer with access to
the experiment, creates a lightweight web service displaying
summary statistics and invocation information from the
experiment, including memory usage, task duration, launch
order, and log information. The visualizations provided are
filterable and sortable, enabling users to interrogate and identify
outliers in their experiment, explore potential sources of failure,
and effectively profile the analysis pipeline in use. The modified
figures can be downloaded from this interface, serving as
accessible records of execution.

In the example above, the HCP dataset has been processed
using a pipeline performing image denoising, registration, model
fitting, and connectivity estimation, all of which are commonly
used processing steps in neuroimaging. For more information on
this pipeline, please see Kiar et al. (2018b).

In this experiment the table has been filtered to show several
tasks which appeared spurious in their execution compared to
the others. We can see that several tasks failed to complete and
one appeared to terminate in significantly less time than the
others. After identifying these tasks and exploring the time series’
to see at what stage of processing the job failed (in this case,
immediately), we can investigate parameter selections used in
each and attempt the re-execution of these jobs using the local
or cloud command with the rerun switch in Clowdr. Clowdr
provides a layer of quality control on executions, in addition to
that which is regularly performed by researchers on their datasets,
which provides immediate value when identifying task failures
which otherwise may be difficult to identify, especially in cases
which intermediate and terminal derivatives are written to the
same location, which can often be the case with transformations
estimated by registration pipelines, for example.

While the share tool currently requires maintaining an active
server, the plots can be exported statically and it is in the
development roadmap to enable exporting the entire web page
as static files, as discussed here: https://github.com/plotly/dash/
issues/266. Since the record created by Clowdr is stored in
the machine-readable and JSON format, researchers can easily
extract their records and integrate it into other interfaces that suit
their application.

DISCUSSION

Clowdr addresses several barriers to performing reproducible
neuroscience. Clowdr experiments consist of enclosed

computational environments, versioned-controlled Boutiques-
described tools with explicit usage parameters, rich execution
history, and can be re-executed or distributed with minimal
effort. Clowdr provides an accessible interface for initially
running analyses locally, and translating them seamlessly to HPC
environments. The rich record keeping provided with Clowdr is
system-agnostic resulting in uniformly interpretable summaries
of execution. As a Python library, Clowdr can be used as a
module in a larger platform, or directly as a command-line tool.

Clowdr uniquely packages an executable tool summary,
parameters, and results together, in a language- and tool-
agnostic way, and therefore, greatly increases the transparency
and shareability of experiments. Importantly, this adds clarity
to experimental failures and documents the hyper-parameter
tuning process of experiments, which has been historically largely
undocumented in literature (Reunanen, 2003).

There are several axes upon which the value of Clowdr can
be discussed. In particular: lines of code written, time spent,
and the ultimate re-runnability of analyses. While these remain
subjective areas for comparison, we can conceptually consider
a workflow dependent on Clowdr to those constructed with
traditional scripting, workflow engines (WEs), and software-as-
a-service (SaaS) platforms.

Where Clowdr has been built upon tools and standards to
provide users with a series of single-commands for launching
and managing analyses, accomplishing a similar result with
traditional scripting would take considerably more lines of
code and time. Similarly, where command-line execution may
be similar in complexity to tools developed with WEs, their
integration within tools requires substantial development and
is only practical in cases for which there is a WE written in
the same language as the underlying application. SaaS platforms
provide a similar type of abstraction to Clowdr, where tools are
treated as black-box objects, but come with the added overhead
of maintaining complex database architectures, often complex
integration of tools, and primarily restrict access through web-
based interfaces which leads to reduced flexibility for the user.

The clear benefit of Clowdr is in the simplicity it provides for
identifying outliers or failed tasks and either re-launching specific
subsets of an analysis or the entire experiment. Clowdr records
and visualizes detailed logging information about executions and
the specific instructions which were used, which isn’t guaranteed
in either traditional scripting or WE-based applications. To
replicate this feature across these systems, tools which (1)
record execution instructions, (2) identify parameters used for
parallelization, (3) produce summary plots, and (4) reconstruct
and (5) re-execute instructions would require development.

While SaaS platforms often contain these features, an
additional limitation of large platforms is that they are often
designed for consumers of widely adopted tools consumers rather
than tool developers. Clowdr fills the void between these types
of pipeline deployments by providing a programmatic tool-
independent method for managing job submission and collecting
provenance across multiple architectures and enabling the rapid
prototyping of analyses.

Several immediate applications of the provenance information
captured by Clowdr include the benchmarking of tools, and

Frontiers in Neuroinformatics | www.frontiersin.org 7 March 2019 | Volume 13 | Article 12

https://github.com/plotly/dash/issues/266
https://github.com/plotly/dash/issues/266
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-13-00012 March 1, 2019 Time: 19:55 # 8

Kiar et al. Clowdr: Serverless Experiment Management

resource optimization during the selection of cloud resources,
as was done in Hasham et al. (2018). While the value of
comparing provenance records has not been demonstrated here,
other studies such as (Salari et al., 2018) have demonstrated the
efficacy of leveraging provenance information to identify sources
of variability or instability within pipelines.

Future work includes adopting a W3C-PROV compatible
format for Clowdr provenance records, increasing the machine-
readability and interoperability of these records with other
standards such as NIDM. Integrating the reports produced by
Clowdr with a system such as Datalad would allow for record
versioning and more strictly enforce the complete reporting
of experiments. Clowdr will also continually be extended with
greater testing and support for more HPC schedulers, clouds, and
provenance capture models.

TOOLS AND VERSIONS

The following is a list of tools and data used in this manuscript,
and their respective versions. The architecture and analysis
presented for the Clowdr package corresponds to version 0.1.0.
The key Python packages and specific versions tested are:
boutiques (version 0.5.12), boto3 (1.7.81), botocore (1.10.81),
slurmpy (0.0.7), psutil (5.4.7), pandas (0.23.4), plotly (3.1.1), and
plotly dash (0.24.1), including dash-core-components (0.27.1),
dash-html-components (0.11.0), dash-renderer (0.13.0), dash-
table-experiments (0.6.0), and flask (0.12.2). Executions were
tested locally using Docker (17.12.0-ce), and on Compute
Canada’s Cedar high performance cluster using Singularity
(2.5.1-dist). The Docker container used for ndmg can be

found on Docker hub as neurodata/m3r-release (0.0.5), which
contains ndmg (0.1.0-f). The Singularity container used was
pulled and dynamically created from this Docker hub endpoint.
The dataset use was a subset of the HCP 1200 collection
(Van Essen et al., 2013).

AUTHOR CONTRIBUTIONS

GK designed and developed the tools, experiments, and figures,
and wrote the majority of the manuscript. SB supported the
design and development processes, and edited the manuscript
and provided valuable feedback. TG provided insight and
contributed to the design and development of the tools and
experiments, and contributed to writing the manuscript. AE
edited the manuscript and provided valuable feedback. TG and
AE jointly supervised this project.

FUNDING

Funding for this work was provided by CFREF/HBHL (Canada
First Research Excellence Fund/Healthy Brains for Healthy Lives)
and the Natural Sciences and Engineering Research Council of
Canada (CGSD3-519497-2018).

ACKNOWLEDGMENTS

The authors would like to thank Pierre Rioux and Valerie Hayot-
Sasson for their insight and many helpful discussions.

REFERENCES
Aleksin, S. G., Zheng, K., Rusakov, D. A., and Savtchenko, L. P. (2017).

ARACHNE: a neural-neuroglial network builder with remotely controlled
parallel computing. PLoS Comput. Biol. 13:e1005467. doi: 10.1371/journal.pcbi.
1005467

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature 533,
452–454. doi: 10.1038/533452a

Bellec, P., Lavoie-Courchesne, S., Dickinson, P., Lerch, J. P., Zijdenbos, A. P., and
Evans, A. C. (2012). The pipeline system for Octave and Matlab (PSOM): a
lightweight scripting framework and execution engine for scientific workflows.
Front. Neuroinform. 6:7. doi: 10.3389/fninf.2012.00007

Bowring, A., Maumet, C., and Nichols, T. (2018). Exploring the impact of analysis
software on task fMRI results. bioRxiv [Preprint]. doi: 10.1101/285585

Bui, T. (2015). Analysis of Docker Security. Available at: https://arxiv.org/abs/1501.
02967v1.

Chirigati, F., Rampin, R., Shasha, D., and Freire, J. (2016). “ReproZip:
computational reproducibility with ease,” in Proceedings of the International
Conference on Management of Data, San Francisco, CA, 2085–2088.
doi: 10.1145/2882903.2899401

Combe, T., Martin, A., and Pietro, R. D. (2016). To Docker or not to Docker: a
security perspective. IEEE Cloud Comput. 3, 54–62. doi: 10.1109/MCC.2016.100

Cox, R. W., Ashburner, J., Breman, H., Fissell, K., Haselgrove, C., Holmes, C. J.,
et al. (2004). A (Sort of) new image data format standard: NIfTI-1: WE 150.
Neuroimage 22:e1440.

Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P.,
et al. (2015). Pegasus, a workflow management system for science
automation. Future Gen. Comput. Syst. 46, 17–35. doi: 10.1016/j.future.2014.
10.008

Dinov, I., Lozev, K., Petrosyan, P., Liu, Z., Eggert, P., Pierce, J., et al. (2010).
Neuroimaging study designs, computational analyses and data provenance
using the LONI pipeline. PLoS One 5:e13070. doi: 10.1371/journal.pone.
0013070

Eklund, A., Nichols, T. E., and Knutsson, H. (2016). Cluster failure: why
fMRI inferences for spatial extent have inflated false-positive rates. Proc.
Natl. Acad. Sci. U.S.A. 113, 7900–7905. doi: 10.1073/pnas.1602004441
3113

Glatard, T., Kiar, G., Aumentado-Armstrong, T., Beck, N., Bellec, P., Bernard, R.,
et al. (2018). Boutiques: a flexible framework to integrate command-line
applications in computing platforms. Gigascience 7:giy016. doi: 10.1093/
gigascience/giy016

Glatard, T., Kiar, G., Benderoff, E., Tristan, A. A., Charrière, J., ValHayot, Simon-
dube, et al. (2019). boutiques/boutiques: release 0.5.19 (version 0.5.19). Zenodo.
doi: 10.5281/zenodo.2574166

Goecks, J., Nekrutenko, A., Taylor, J., and Galaxy Team (2010). Galaxy:
a comprehensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences. Genome Biol. 11:R86.
doi: 10.1186/gb-2010-11-8-r86

Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom,
M. L., et al. (2011). Nipype: a flexible, lightweight and extensible neuroimaging
data processing framework in python. Front. Neuroinform. 5:13. doi: 10.3389/
fninf.2011.00013

Gorgolewski, K. J., Alfaro-Almagro, F., Auer, T., Bellec, P., Capotã, M.,
Chakravarty, M. M., et al. (2017). BIDS apps: improving ease of use,
accessibility, and reproducibility of neuroimaging data analysis methods. PLoS
Comput. Biol. 13:e1005209. doi: 10.1371/journal.pcbi.1005209

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff,
E. P., et al. (2016). The brain imaging data structure, a format for organizing

Frontiers in Neuroinformatics | www.frontiersin.org 8 March 2019 | Volume 13 | Article 12

https://doi.org/10.1371/journal.pcbi.1005467
https://doi.org/10.1371/journal.pcbi.1005467
https://doi.org/10.1038/533452a
https://doi.org/10.3389/fninf.2012.00007
https://doi.org/10.1101/285585
https://arxiv.org/abs/1501.02967v1
https://arxiv.org/abs/1501.02967v1
https://doi.org/10.1145/2882903.2899401
https://doi.org/10.1109/MCC.2016.100
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1371/journal.pone.0013070
https://doi.org/10.1371/journal.pone.0013070
https://doi.org/10.1073/pnas.16020044413113
https://doi.org/10.1073/pnas.16020044413113
https://doi.org/10.1093/gigascience/giy016
https://doi.org/10.1093/gigascience/giy016
https://doi.org/10.5281/zenodo.2574166
https://doi.org/10.1186/gb-2010-11-8-r86
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.1371/journal.pcbi.1005209
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-13-00012 March 1, 2019 Time: 19:55 # 9

Kiar et al. Clowdr: Serverless Experiment Management

and describing outputs of neuroimaging experiments. Sci. Data 3:160044.
doi: 10.1038/sdata.2016.44

Hasham, K., Munir, K., and McClatchey, R. (2018). Cloud infrastructure
provenance collection and management to reproduce scientific workflows
execution. Future Gen. Comput. Syst. 86, 799–820. doi: 10.1016/j.future.2017.
07.015

Hines, M. L., and Carnevale, N. T. (2001). NEURON: a tool for neuroscientists.
Neuroscientist 7, 123–135. doi: 10.1177/107385840100700207

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., and Smith,
S. M. (2012). FSL. Neuroimage 62, 782–790. doi: 10.1016/j.neuroimage.2011.09.
015

Kiar, G., Bridgeford, E., Roncal, W. G., Chandrashekhar, V., Mhembere, D., Burns,
R., et al. (2018a). neurodata/ndmg: stable ndmg-DWI pipeline release (version
v0.1.0). Zenodo. doi: 10.5281/zenodo.1161284

Kiar, G., Bridgeford, E., Roncal, W. G., Chandrashekhar, V., Mhembere, D.,
Ryman, S., et al. (2018b). A high-throughput pipeline identifies robust
connectomes but troublesome variability. bioRxiv [Preprint]. doi: 10.1101/
188706

Kiar, G., and Glatard, T. (2019). clowdr/clowdr: clowdr version 0.1.2 (version
0.1.2). Zenodo. doi: 10.5281/zenodo.2537168

Kurtzer, G. M., Sochat, V., and Bauer, M. W. (2017). Singularity: scientific
containers for mobility of compute. PLoS One 12:e0177459. doi: 10.1371/
journal.pone.0177459

Lampa, S., Dahlö, M., Alvarsson, J., and Spjuth, O. (2018). SciPipe - a workflow
library for agile development of complex and dynamic bioinformatics pipelines.
bioRxiv [Preprint]. doi: 10.1101/380808

Matelsky, J., Kiar, G., Johnson, E., Rivera, C., Toma, M., and Gray-Roncal, W.
(2018). Container-based clinical solutions for portable and reproducible image
analysis. J. Digit. Imaging 31, 315–320. doi: 10.1007/s10278-018-0089-4

Merkel, D. (2014). Docker: lightweight linux containers for consistent development
and deployment. Linux J. 2014:2.

Meyer, R., and Obermayer, K. (2016). pypet: a python toolkit for data management
of parameter explorations. Front. Neuroinform. 10:38. doi: 10.3389/fninf.2016.
00038

Miłkowski, M., Hensel, W. M., and Hohol, M. (2018). Replicability or
reproducibility? On the replication crisis in computational neuroscience and
sharing only relevant detail. J. Comput. Neurosci. 45, 163–172. doi: 10.1007/
s10827-018-0702-z

Missier, P., Belhajjame, K., and Cheney, J. (2013). “The W3C PROV family of
specifications for modelling provenance metadata,” in Proceedings of the 16th
International Conference on Extending Database Technology, Genoa, 773–776.
doi: 10.1145/2452376.2452478

Open Science Collaboration (2015). PSYCHOLOGY estimating the reproducibility
of psychological science. Science 349:aac4716. doi: 10.1126/science.aac4716

Poldrack, R. A., Barch, D. M., Mitchell, J. P., Wager, T. D., Wagner, A. D., Devlin,
J. T., et al. (2013). Toward open sharing of task-based fMRI data: the OpenfMRI
project. Front. Neuroinform. 7:12. doi: 10.3389/fninf.2013.00012

Reuillon, R., Leclaire, M., and Rey-Coyrehourcq, S. (2013). OpenMOLE, a
workflow engine specifically tailored for the distributed exploration of

simulation models. Future Gen. Comput. Syst. 29, 1981–1990. doi: 10.1016/j.
future.2013.05.003

Reunanen, J. (2003). Overfitting in making comparisons between variable selection
methods. J. Mach. Learn. Res. 3, 1371–1382.

Rex, D. E., Ma, J. Q., and Toga, A. W. (2003). The LONI pipeline processing
environment. Neuroimage 19, 1033–1048. doi: 10.1016/S1053-8119(03)00
185-X

Rocklin, M. (2015). “Dask: parallel computation with blocked algorithms and task
scheduling,” in Proceedings of the 14th Python in Science Conference, Austin, TX.
doi: 10.25080/Majora-7b98e3ed-013

Salari, A., Scaria, L., Kiar, G., and Glatard, T. (2018). Numerical error propagation
in the HCP structural pre-processing pipelines. Organ. Hum. BrainMapp. 2052.

Sherif, T., Rioux, P., Rousseau, M. E., Kassis, N., Beck, N., Adalat, R., et al. (2014).
CBRAIN: a web-based, distributed computing platform for collaborative
neuroimaging research. Front. Neuroinform. 8:54. doi: 10.3389/fninf.2014.
00054

Sochat, V., and Nichols, B. N. (2016). The neuroimaging data model (n.d.) API.
Gigascience (Suppl. 1), 23–24. doi: 10.1186/s13742-016-0147-0-u

Stockton, D. B., and Santamaria, F. (2015). NeuroManager: a workflow analysis
based simulation management engine for computational neuroscience. Front.
Neuroinform. 9:24. doi: 10.3389/fninf.2015.00024

Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., et al. (2015).
UK biobank: an open access resource for identifying the causes of a wide
range of complex diseases of middle and old age. PLoS Med. 12:e1001779.
doi: 10.1371/journal.pmed.1001779

Tournier, J. D., and Calamante, F. (2012). MRtrix: diffusion tractography in
crossing fiber regions. Int. J. Imaging Syst. Technol. 22, 53–66. doi: 10.1016/j.
nicl.2018.02.015

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E.,
Ugurbil, K., et al. (2013). The WU-Minn human connectome project:
an overview. Neuroimage 80, 62–79. doi: 10.1016/j.neuroimage.2013.
05.041

Vivian, J., Rao, A. A., Nothaft, F. A., Ketchum, C., Armstrong, J., Novak, A., et al.
(2017). Toil enables reproducible, open source, big biomedical data analyses.
Nat. Biotechnol. 35, 314–316. doi: 10.1038/nbt.3772

Zuo, X.-N., Anderson, J. S., Bellec, P., Birn, R. M., Biswal, B. B., Blautzik, J., et al.
(2014). An open science resource for establishing reliability and reproducibility
in functional connectomics. Sci. Data 1:140049. doi: 10.1038/sdata.2014.49

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Kiar, Brown, Glatard and Evans. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 9 March 2019 | Volume 13 | Article 12

https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1016/j.future.2017.07.015
https://doi.org/10.1016/j.future.2017.07.015
https://doi.org/10.1177/107385840100700207
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.5281/zenodo.1161284
https://doi.org/10.1101/188706
https://doi.org/10.1101/188706
https://doi.org/10.5281/zenodo.2537168
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1101/380808
https://doi.org/10.1007/s10278-018-0089-4
https://doi.org/10.3389/fninf.2016.00038
https://doi.org/10.3389/fninf.2016.00038
https://doi.org/10.1007/s10827-018-0702-z
https://doi.org/10.1007/s10827-018-0702-z
https://doi.org/10.1145/2452376.2452478
https://doi.org/10.1126/science.aac4716
https://doi.org/10.3389/fninf.2013.00012
https://doi.org/10.1016/j.future.2013.05.003
https://doi.org/10.1016/j.future.2013.05.003
https://doi.org/10.1016/S1053-8119(03)00185-X
https://doi.org/10.1016/S1053-8119(03)00185-X
https://doi.org/10.25080/Majora-7b98e3ed-013
https://doi.org/10.3389/fninf.2014.00054
https://doi.org/10.3389/fninf.2014.00054
https://doi.org/10.1186/s13742-016-0147-0-u
https://doi.org/10.3389/fninf.2015.00024
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1016/j.nicl.2018.02.015
https://doi.org/10.1016/j.nicl.2018.02.015
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.1038/nbt.3772
https://doi.org/10.1038/sdata.2014.49
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

	A Serverless Tool for Platform Agnostic Computational Experiment Management
	Introduction
	Emergent Technologies in Reproducible Neuroscience
	Data and Code Interoperability
	Software Virtualization
	Workflow Engines
	Provenance
	Web Platforms

	The Clowdr Microtool
	Performing Experiments With Clowdr
	Discussion
	Tools and Versions
	Author Contributions
	Funding
	Acknowledgments
	References

