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Abstract: In computer-assisted surgery, it is typically required to detect when the tool comes into
contact with the patient. In activated electrosurgery, this is known as the energy event. By continuously
tracking the electrosurgical tools’ location using a navigation system, energy events can help deter-
mine locations of sensor-classified tissues. Our objective was to detect the energy event and determine
the settings of electrosurgical cautery—robustly and automatically based on sensor data. This study
aims to demonstrate the feasibility of using the cautery state to detect surgical incisions, without
disrupting the surgical workflow. We detected current changes in the wires of the cautery device and
grounding pad using non-invasive current sensors and an oscilloscope. An open-source software was
implemented to apply machine learning on sensor data to detect energy events and cautery settings.
Our methods classified each cautery state at an average accuracy of 95.56% across different tissue
types and energy level parameters altered by surgeons during an operation. Our results demonstrate
the feasibility of automatically identifying energy events during surgical incisions, which could be
an important safety feature in robotic and computer-integrated surgery. This study provides a key
step towards locating tissue classifications during breast cancer operations and reducing the rate of
positive margins.

Keywords: automated electrosurgical cautery; sensor-based parameter setting; computer-assisted
surgery; robotic surgery

1. Introduction

Offering benefits to both patients and clinicians, robotic and computer-assisted surg-
eries (CAS) are becoming increasingly prevalent in the surgical suite [1–4]. One of the key
technical features of CAS systems is the level of autonomy they provide [5], and another
recent opportunity is to reduce the physical contact between the patient and the clinical
staff [6]. The subject procedures of CAS often employ electrosurgical and power tools,
which are sometimes tracked in real-time to assist robotic or navigated targeting. The data
gathered shall guide the surgeon to the pre-operatively defined target anatomical loca-
tions. In CAS, it may be necessary to detect when an activated electrosurgical tool (applied
part of a surgical device from the standards point of view [7]) comes into contact with
the patient; this is known as the energy event [8]. For electrosurgical cautery, placing
an accurate timestamp on the energy event is necessary when locating tissue classifications
from an intra-operative sensor that characterizes tissue properties. By tracking the elec-
trosurgical tools and detecting the energy events in time, a surgical navigation system
can determine locations of sensor-classified tissues of interest [9]. One such sensor-based
technology is the in vivo spectrometry, for which experimental devices already exist, such
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as the Rapid Evaporative Ionization Mass Spectrometry (REIMS), which can be physically
attached to a surgeon’s electrosurgical cautery. REIMS shows a promise for improved
patient outcome because it has high sensitivity and specificity scores in metabolomic tissue
identification [9–13]. This means that the REIMS is able to distinguish cancerous from
healthy tissue.

In CAS procedures, cautery tools are powered by an electrosurgical generator unit
(ESU), which outputs a high-frequency alternating current transferred into thermal en-
ergy upon tissue contact. The electric current flows from the ESU to the active electrode
(the cautery tip), then to the target tissue of the patient, and finally to a neutral electrode,
known as the grounding pad [14,15]. During a procedure, an ESU has both “cut” and “coag-
ulate” modes, where the former seals vessels and tissue with gradual heating, and the latter
creates incisions through rapid heating.

NaviKnife is a CAS system showing promise for use in breast-conserving surgery
(BCS) among other surgical domains, as it can differentiate tumors from healthy tissue
and is easily incorporated into the surgical workflow. The NaviKnife system features
a REIMS device attached to the surgeon’s spatially-tracked (navigated) cautery tool. REIMS
generates continuous mass spectrum data from the vapor generated while the surgeon
cauterizes tissue. Mass spectrum data is used to automatically detect what tissue was
being cauterized within a few seconds [9–11,13,16,17]. Nevertheless, synchronized position
tracking is required to map these tissue types on a surgical navigation display. To match
position information with tissue classification, we need to know exactly the timestamp of
the energy event [18].

Beyond cautery tools, it may be possible and necessary to detect energy events in other
devices, such as those used in radiofrequency (RF) ablation, robotic surgery, and telesurgery.
In RF ablation, tissue surrounding the ablator may become dry or charred, causing a loss of
contact with the tool [19]. By tracking the ablator’s energy level throughout the procedure,
this loss of contact may be detected rapidly. In robotic surgery and telesurgery, surgeons
typically do not receive tactile feedback from their tools, as they interact solely with
the robot’s controller. By detecting energy events, surgeons could be immediately notified
when their power tools are activated and touching a patient. Robots that detect energy
events may also be able to limit rapid and accidental surgical movements by performing
motion scaling, motion compensation, and tremor compensation, as typical surgical sub-
tasks subject to automation [20]. A prime example for such systems is the multi-degree of
freedom electrosurgical tool for the smart tissue autonomous robot (STAR), developed at
Johns Hopkins University (and before that at University of Maryland) [21].

Nevertheless, there are certain requirements which shall be met in order to robustly
identify the energy event of surgical power tools:

1. Surgeons must activate the power tool before touching a patient, requiring the collec-
tion of both activation and contact information;

2. Any solution must be easily incorporated into the surgical workflow and cannot
interfere with clinically approved devices;

3. Many surgical power tools cannot connect to a computer and display the mode or
activation status. Therefore, they must be modified before they can be connected to
a computer.

In previous works by Asselin et al. and Carter et al., the feasibility of using relative
voltage signals to detect the energy event of a surgical cautery was demonstrated [8,22].
To achieve this, relative voltage signals were collected, and the data was clustered based
on the cautery mode [8,22]. However, to implement this system in the operating room,
the energy event must be detected automatically. It is also essential to identify those of
the cautery’s settings, which may cause interference, such as energy level and mode. The en-
ergy level may interfere with pacemakers and other robotic devices involved in the pro-
cedure, whereas the mode may cause slight changes in the mass spectra, interfering with
the classification model used by the REIMS component of NaviKnife. Further, if the CAS
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procedure involved intra-operative Magnetic Resonance Imaging, synchronizing the image
acquisition is absolutely necessary [23].

Our objective was to detect the energy event and settings of the cautery robustly and
automatically, with a sensor-based technique that does not disrupt the surgical workflow.
Sufficient detection accuracy is defined as greater than 90% accuracy in detecting the energy
event and settings. Key parameters expected to be determined form the sensory information:

• identification of the start and end of surgical incisions;
• cautery’s mode (cut vs. coagulate);
• cautery’s energy level.

Doing so will demonstrate the feasibility of using non-invasive current sensors to
detect the cautery state to identify the exact time of surgical incisions.

2. Materials and Methods

To identify the energy event and settings of the cautery, we made incisions on ex vivo
tissue samples and detected the changes in the current of the cautery using a non-invasive
current sensor and oscilloscope (Figure 1). The voltage signal was streamed into the end-
user application via the OpenIGTLink communication protocol by the PLUS toolkit. PLUS
is an open-source software library that enables applications to communicate effectively with
hardware and underpins a wide variety of medical device research [24]. The signal output
was sent to the end-user application, 3D Slicer. 3D Slicer is an open-source software for
medical computing, commonly used in surgical navigation and CAS [25]. We implemented
an open-source 3D Slicer module that used machine learning to automatically detect
and display surgical incisions, the cautery’s mode and cautery settings with no change
to the surgical workflow. The oscilloscope and current sensors do not interfere with
the surgical workflow and can be attached to a wide variety of surgical power tools. PLUS
supports a variety of devices and converts data to a standard OpenIGTLink message format.

2.1. Experimental Set-Up

Two cautery devices were used in this study: a Valley Lab Force FX C (Avante Health
Solutions, IL, USA) and a ConMed System 5000 (ConMed Corporation, New York, NY,
USA). Each cautery device was tested at three different power levels: at 30 W, 35 W,
and 40 W, for both cut and coagulate modes. These energy levels were selected because
they form standard practices during surgical operations. We tested three different ex
vivo tissue specimens for each cautery device and wattage including chicken, porcine,
and bovine. Building on our previous work, we attached an SCT-013 current sensor (YHDC,
Madrid, Spain) to the live and return electrodes of the cautery [8,22]. The two sensors were
connected to a PicoScope P2204A USB oscilloscope (Pico Technologies, St Neots, UK) that
digitized the electrical signals. Voltage data as a relative estimate of current in the cautery
leads was streamed from the oscilloscope into 3D Slicer via the PLUS toolkit. Data was
streamed into 3D Slicer at a rate of 20 Hz with 3900 samples in each data packet.

2.2. Cautery State and Energy Level

The cautery has five different states: off, cut mode with the blade in air, cut mode with
the blade touching tissue (energy event), coagulate mode with the blade in air, and coagulate
mode with the blade touching tissue (energy event) (Figure 2). The start of a surgical incision
is defined as the cautery state transition from off, cut-in-air, or coagulate-in-air, to being
in cut-touching-tissue or coagulate-touching-tissue. The end of an incision is the reverse
transition. Therefore, we need to detect all five cautery states.

The three energy levels that are most commonly used in surgery also need to be auto-
matically detected. We detected these energy levels across both cautery machine models.
We only need to detect the energy levels when the cautery was in the air state, because
a surgeon can turn on the cautery prior to the beginning of an operation. This allowed us
to determine the energy level of the cautery prior to the operation beginning. The energy
level setting was rarely changed during surgery.
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2.3. Data Acquisition

We sampled the waveform of the cautery’s current over 18 different test set-ups: two
cautery devices, three power settings, and three tissue types (Table 1). Current sampling was
conducted for these parameters in cut-tissue and coagulate-tissue states only. For cautery
states off, cut-air and coagulate-air, the tissue sample does not change the waveform, thus
the current was not sampled in these states. Each tissue test contained 120 incisions for
both cut and coagulate modes. Each incision was approximately 1 sec in length. For cautery
state detection, validation was done with 8-fold cross-validation (Table 2). Each fold left
out all data from each testing variable: tissue (chicken, porcine, or bovine), power (30 W,
35 W, or 40 W), and machine (ConMed or Valley Lab) (Manufacturer, HeadO). Energy
level detecting was done using the air states for three power levels (30 W, 35 W, and 40 W)
for each cautery device (ConMed or Valley Lab). The training and validation data sets
contained distinct tissue samples to ensure no overlap in model training. The overall
workflow is visualized in Figure 3.

Table 1. Testing protocol for the cautery states for each of the 18 tests set-ups.

Chicken Porcine Bovine

30 W ConMed Valley Lab ConMed Valley Lab ConMed Valley Lab

35 W ConMed Valley Lab ConMed Valley Lab ConMed Valley Lab

40 W ConMed Valley Lab ConMed Valley Lab ConMed Valley Lab

Table 2. Overview of 8-fold cross-validation (grey = validation, white = training).

Chicken Liver Pork 30 W 35 W 40 W ConMed Valley Lab
Chicken Liver Pork 30 W 35 W 40 W ConMed Valley Lab
Chicken Liver Pork 30 W 35 W 40 W ConMed Valley Lab
Chicken Liver Pork 30 W 35 W 40 W ConMed Valley Lab
Chicken Liver Pork 30 W 35 W 40 W ConMed Valley Lab
Chicken Liver Pork 30 W 35 W 40 W ConMed Valley Lab
Chicken Liver Pork 30 W 35 W 40 W ConMed Valley Lab
Chicken Liver Pork 30 W 35 W 40 W ConMed Valley Lab
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Data samples were collected in packets, every 50 milliseconds (ms). Data samples were
streamed into the 3D Slicer at a rate of 20 Hz. Each data sample contained 3900 data points
of the cautery’s current resulting in a sampling rate of 78 kHz. The final dataset contained
a total of 69,532 data samples from the cautery’s states. For tissue testing, we recorded
voltages from the current sensors (Figure 4) and ran the classifier on each cautery state.
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The voltage patterns and values measured for each cautery mode differed significantly.

2.4. Model Training

Fast Fourier Transform (FFT) was applied to the voltage signals. FFTs were down
sampled to 200 frequency bands and clustered using Principal Component Analysis (PCA)
in selecting features for classification and for visualization of data classes. Features from
the FFT were used to train a Support Vector Machine (SVM) and a Random Forest Clas-
sifier (RFC). As an input into the SVM and RFC, we extracted the maximal intensity and
corresponding frequency from the FFT output for each cautery state. We also built ma-
chine learning models trained on the first five principal components. To detect the cautery
state, we used a leave-one-out 8-fold cross validation for each variable: tissue (chicken,
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porcine, or bovine), power (30 W, 35 W, or 40 W), and machine (ConMed or Valley Lab).
To detect the cautery’s power level (30 W, 35 W or 40 W), we used cautery mode (cut vs.
coagulate) in air. Voltage data analysis and machine learning models were implemented
as an open-source module for the 3D Slicer application supporting real-time analysis
(https://github.com/SlicerIGT/LumpNav.git (accessed on 1 February 2022)). Data for
validation of our proposed methodology can be accessed upon request. This allows for
other research groups to easily implement similar solutions on their own, or to replicate
our results for validation or benchmarking. Objectively comparing the machine-learning
algorithms’ outcome has become an increasingly important challenge for CAS systems [26].

3. Results

The average SVM and RFC validation classification accuracy for detecting cautery
states using maximal intensity and corresponding frequency, and principal components
are presented in Tables 3 and 4, respectively. The average accuracy scores for detecting
the energy level are shown in Tables 5 and 6, respectively. The top performing model was
the RFC for both cautery devices. The SVM still had good accuracy. The results for each
machine were similar.

Table 3. Average accuracy from cross-validation detecting cautery state using maximal intensity and
corresponding frequency.

Leave-Out Accuracy Average Accuracy

Tissue
Chicken:
SVM = 98.34%
RFC = 98.64%

Porcine:
SVM = 98.74%
RFC = 98.91%

Bovine:
SVM = 99.33%
RFC = 99.24%

SVM = 98.82%
RFC = 98.93%

Power
30 W:
SVM = 95.31%
RFC = 97.03%

35 W:
SVM = 92.98%
RFC = 97.75%

40 W:
SVM = 96.88%
RFC = 96.89%

SVM = 95.06%
RFC = 97.22%

Cautery
Device

ConMed:
SVM = 68.77%
RFC = 29.83%

Valley Lab:
SVM = 45.29%
RFC = 27.19%

SVM = 57.03%
RFC = 28.51%

Table 4. Average accuracy from cross-validation detecting cautery state using the first five princi-
pal components.

Leave-Out Accuracy Average Accuracy

Tissue
Chicken:
SVM = 86.21%
RFC = 95.56%

Porcine:
SVM = 92.86%
RFC = 100%

Bovine:
SVM = 93.24%
RFC = 100%

SVM = 90.77%
RFC = 98.52%

Power
30 W:
SVM = 87.70%
RFC = 97.46%

35 W:
SVM = 86.14%
RFC = 99.86%

40 W:
SVM = 87.80%
RFC = 96.61%

SVM = 87.21%
RFC = 97.98%

Cautery
Device

ConMed:
SVM = 38.46%
RFC = 89.18%

Valley Lab:
SVM = 25.25%
RFC = 82.81%

SVM = 31.86%
RFC = 86.00%

Table 5. Average accuracy detecting the energy level for each cautery using maximal intensity and
corresponding frequency.

Accuracy

Cautery Device
ConMed:
SVM = 70.08%
RFC = 99.05%

Valley Lab:
SVM = 75.74%
RFC = 99.93%

https://github.com/SlicerIGT/LumpNav.git
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Table 6. Average accuracy detecting the energy level for each cautery using the first five princi-
pal components.

Accuracy

Cautery Device
ConMed:
SVM = 32.01%
RFC = 83.41%

Valley Lab:
SVM = 25.05%
RFC = 100%

The standard models were used for both the SVM and RF classifiers based on [27].
An example correlation matrix for the leave-out 30 W fold can be seen in Figures 5 and 6.
Frequency domain transformations for each cautery state are displayed in Figure 7. Princi-
ple Component Analysis on the frequency bins of each sample are seen in Figure 8. FFT
features used to train the SVM and RFC are seen in Figure 9.
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The RFC and SVM performed comparably on the leave-out tissue and power level
sets. On average, the top performing classifier was the RFC for the leave-out sets on tissue
(98.93% accuracy) and power (97.22% accuracy). For the cautery device leave-out set,
the top performing model was the SVM (57.03% accuracy). The models performed the best
on the leave-out tissue set. On the leave-out power set, the models performed acceptably.
On the cautery device leave-out set, the models did not perform well.

The RFC performed better than the SVM for the majority of the leave-out sets. On av-
erage, the RFC was the top performing model for the leave-out sets on tissue (98.52%
accuracy), power (97.98% accuracy), and cautery device (86.00% accuracy). The models us-
ing the principal components were more effective in classifying the cautery state regardless
of ESU type.

The top performing model was the RFC for both cautery devices. The SVM still had
good accuracy. The results for each machine were similar.

The top performing model was the RFC for both cautery devices. The SVM performed
poorly when classifying the power level.

Two of the confusion matrices are displayed in Figures 5 and 6 for the leave-out 30 W
power set. Both models performed well. As seen above, the model struggled the most with
separating the cut air and cut-tissue cautery states (classes 1 and 3, respectively).

Figure 8 displays a PCA plot for the Valley Lab-40 W-bovine experiment. There is
separation between each of the cautery states. The narrowest margin of separation in states is
between cut air and cut tissue. This aligns with the results seen in the confusion matrix and is
consistent across all models, confusion matrixes, and PCAs for each of the leave-out sets.

Figure 9 visualizes the frequency features used for training the SVM and RFC models.
The maximal intensity and corresponding frequency were plotted against each other and
annotated based on the cautery state. For each feature, there is clear separation for each
cautery state. Some overlap in feature space occurs between cut-air and cut-tissue states.
This is representative of the confusion matrixes and PCA plots for each model.

Consistent across each model was the lower classification accuracy when identifying
cut-air vs. cut-tissue states. This is because the differences in electrical signal patterns are
less pronounced. As seen in the PCA plot, the cut-air and cut-tissue data points have less
separation. Additionally, each ESU has different frequencies associated with each cautery
state (Figure 10). As a result, the model struggled to classify different ESU data sets.



Sensors 2022, 22, 5808 11 of 15

Sensors 2022, 22, x FOR PEER REVIEW 11 of 15 
 

 

Figure 8. Principal Component Analysis of five cautery states for collection with Valley Lab cautery 
device, set to 40 W power excising bovine tissue. 

Figure 8 displays a PCA plot for the Valley Lab-40 W-bovine experiment. There is 
separation between each of the cautery states. The narrowest margin of separation in 
states is between cut air and cut tissue. This aligns with the results seen in the confusion 
matrix and is consistent across all models, confusion matrixes, and PCAs for each of the 
leave-out sets. 

 
Figure 9. SVM features used to separate cautery signal for collection with Valley Lab cautery device 
set to 40 W power excising bovine tissue. 

Figure 9 visualizes the frequency features used for training the SVM and RFC mod-
els. The maximal intensity and corresponding frequency were plotted against each other 
and annotated based on the cautery state. For each feature, there is clear separation for 
each cautery state. Some overlap in feature space occurs between cut-air and cut-tissue 
states. This is representative of the confusion matrixes and PCA plots for each model. 

Consistent across each model was the lower classification accuracy when identifying 
cut-air vs. cut-tissue states. This is because the differences in electrical signal patterns are 
less pronounced. As seen in the PCA plot, the cut-air and cut-tissue data points have less 
separation. Additionally, each ESU has different frequencies associated with each cautery 
state (Figure 10). As a result, the model struggled to classify different ESU data sets. 

 
Figure 10. Coagulate Valley Lab (left) vs. ConMed (right). 
Figure 10. Coagulate Valley Lab (left) vs. ConMed (right).

The differences between the Valley Lab and ConMed cautery device signal can be seen
in Figure 10. Both the frequency and intensity of the signal were significantly different
across the devices.

4. Discussion

Our results show that each cautery state can be classified with high accuracy regard-
less of the different tissue types and energy level parameters altered during operations.
The machine learning models were also able to detect the energy level of the cautery. To our
knowledge, this is the first study that shows automatic detection of both the energy events
and the settings of a cautery, which could be an enabling feature towards automated elec-
trocautery tool management, or an additional safety feature. We developed a sensor-based
solution that is low-cost, easy to implement, and most importantly does not require any
changes in the surgical workflow. We implemented the methods in an open-source soft-
ware to allow a wider research community to collect data, train and test their machine
learning models, and implement and benchmark their solutions. Our study demonstrates
the feasibility of using the cautery state automatically to identify when surgeons make
incisions during their operations.

Machine learning provided a rapid and effective way to classify our data from the non-
invasive current sensors. Simpler classification methods, such as hardware electrical
solutions provided by additional circuits in the electrosurgical devices, may be used in fu-
ture solutions; however, those solutions would require a long approval process, because
they would change the closed commercial electrosurgical units. The machine learning
models tested in our experiments performed poorly when one cautery device was left
out from training; an expected result based on the different frequencies and waveforms
between the cautery machines (Figure 10). To overcome this, separate models were built
for each cautery machine.

For each leave-out set, four machine learning models were built: an RFC and SVM
using the maximum intensity and corresponding frequency, and an RFC and SVM using
the first five principal components from the PCA. The models using the principal com-
ponents performed better on the leave-out sets for power level and ESU. The maximum
intensity and corresponding frequency features were more effective at classifying tissue
types. We found that the RFC consistently outperformed the SVM when using the principal
components. One reason for this may be that RFC performs better with higher dimension-
ality data. In light of the principal components’ accuracy results, we believe the maximal
intensity and corresponding frequency are more robust features to use for classification.
Detecting the cautery state regardless of different tissues will be the primary use case for
a future system. This is because surgeons will be cutting through different tissue types
during their operation and maintaining a relatively constant energy level. More cautery
state classifications will be made on multiple tissue types than energy levels. To ensure our
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model’s robustness throughout the operation, we must be able to detect the energy event
regardless of tissue types. In future machine learning models, using a combination of both
PCA and maximal intensity and corresponding frequency may produce strong accuracy
results across all leave-out sets.

This study provides a key step towards sensor-integrated, fully navigated intra-
operative mass spectrometry tissue analysis for breast-conserving surgeries. By combining
the timepoints of energy events during surgical incisions with position tracking, we can
locate tissue and tumor classifications detected by REIMS. Integrating these methods allows
us to classify the cautery state multiple times during each REIMS classification, as REIMS
requires at least 1 sec of sampling time for one tissue classification, whereas our cautery
state classifier samples at 20 Hz. Using majority voting on the cautery state classifier may
improve the accuracy of our model in clinical practice. We can combine 20 cautery state
classifications to improve our detection method. Detecting the cautery state also allows
us to analyze differences in mass spectra signatures because the cautery’s mode changes
the mass spectra of REIMS [19]. By identifying variation in the mass spectra, we can im-
prove the accuracy of REIMS models. Our experimental device set-up can be implemented
on a wide variety of electrosurgical devices. Some devices that may require detecting the en-
ergy event include RF ablators and vessel sealers. In ablation, tissue contact is essential to
destroy dysfunctional tissue [28,29]. Maintaining effective and stable tissue contact during
ablation would minimize complication risk resulting from delivery of energy to nearby
tissue structures [19]. There is a need for a safety system that monitors an ablator’s energy
which would inform clinicians when their ablator loses contact with surrounding tissue to
reduce damage to surrounding tissue [30–33]. The feasibility to detect energy levels using
our methodology is validated with our experiments.

Identifying the cautery state can also improve surgical workflow analysis, mass spec-
tra analysis, and tissue characterization. It is important to identify the proper location of
incisions—a key step in an operation—in relation to anatomy and blood supply [34]. Au-
tomatically locating surgical incisions may be especially important when incisions must be
made in obstructed views, when there is shifting in tissues during the operation, and to ensure
minimal destruction to surrounding anatomical structures. Since inflammation and immune
responses are correlated with the length of surgical incisions [35], patient infection rates may
decrease by providing surgeons with more incision length and location information.

We are limited in this study by a small sample size, which may limit our ability to
detect changes in the current signal due to variation in patient tissue. We did not use
any patient tissue to train our models. Each patient has slightly different levels of cellular
resistance. Using real-patient tissue may well impact the current signal. To mitigate this,
we tested three different types of animal tissues. During surgical operations, the location
of the grounding pad varies, which may affect the cautery’s current flow. The location of
the grounding pad was not varied during data collection. The grounding pad location
may impact the resulting cautery current signal. Additionally, we did not use any data
from a surgical operation. In the future, it would be important to collect data from a breast
cancer surgery and classify the current signal. Finally, the location of the current sensors
was not varied during the experimental set-up. Altering the distance from the current
sensor to the ESU may impact the intensity of the signal due to electromagnetic interference.
It would be important to evaluate the interference of other electrosurgical tools used
in the operating room; one solution would be to insulate the current sensors to eliminate
the interference. The parameters listed above may impact the model’s ability to effectively
classify the cautery state.

Additionally, our model may require re-training, depending on the ESU selected. Our
model identifies the cautery state using the ESU frequency, a factor that varies between
cut and coagulate modes across ESUs. Therefore, one model may be insufficient to classify
the cautery state using all ESUs, and a list of models for each ESU may need to be created.
The models were able to separate cut-air from cut-tissue cautery states; however, these
were the classes that the model struggled the most to separate. One of the reasons may be
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because there are fewer changes in frequency seen between these states. In the future, it may
be effective to model the noise separately in the cautery’s current signal to better identify
the cautery states. We did not evaluate the spatial accuracy of our model using the location
of surgical incisions. A next step includes evaluation of the model with an EM tracking
system. By pairing the navigation system with the model, we can determine the accuracy
of locating surgical incisions, which would be an important clinical support function.

5. Conclusions

To our knowledge, this is the first study that investigates the option to automatically
detect the energy events and settings of an electrocautery device, including the cautery’s
mode (cut vs. coagulate), and the energy level. The procedure described in this article is
a robust and automatic method to make these detections, experimented on two cautery
devices, which classifies cautery states with an average accuracy of 95.56% across different
tissue types and energy levels. This was completed using an open-source software to
allow other researchers to collect data, and train and test their models to be implemented.
Our results demonstrated the feasibility of implementing a low-cost solution, which is
easy to implement and does not disrupt the surgical workflow. In the future it will be
important to increase the sample size of in vivo tissue testing in addition to investigating
the effects of viscoelasticity on locating tissue classifications. Our methods can be applied
to a variety of surgical procedures. In robotic and telesurgery, updating surgeons when
their electrosurgical tool touches patient tissue may provide increased feedback beyond
visual feedback from a camera or scope. In RF ablation, detecting the energy event and
level of the ablator may help surgeons ensure they completely destroy dysfunctional tissue.
By combining the time of a surgeon’s incisions with position tracking, we can locate tumor
signals detected by the REIMS. This study provides a key step towards fully navigated
intra-operative mass spectrometry tissue analysis, which may see its clinical application for
breast-conserving surgeries among others.
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