
METHODS ARTICLE
published: 26 July 2013

doi: 10.3389/fnbot.2013.00011

Incremental learning of skill collections based on
intrinsic motivation
Jan H. Metzen 1* and Frank Kirchner1,2

1 Robotics Research Group, Faculty 3 – Mathematics and Computer Science, Universität Bremen, Bremen, Germany
2 Robotics Innovation Center, German Research Center for Artificial Intelligence (DFKI), Bremen, Germany

Edited by:

Tom Stafford, University of
Sheffield, UK

Reviewed by:

Antonio Novellino, ett s.r.l., Italy
Frank Van Der Velde, University of
Twente, Netherlands

*Correspondence:

Jan H. Metzen, Robotics Research
Group, Faculty 3 - Mathematics and
Computer Science, Universität
Bremen, Robert-Hooke-Str. 5,
Bremen, 28359, Germany
e-mail: jhm@informatik.uni-
bremen.de

Life-long learning of reusable, versatile skills is a key prerequisite for embodied agents
that act in a complex, dynamic environment and are faced with different tasks over their
lifetime. We address the question of how an agent can learn useful skills efficiently during
a developmental period, i.e., when no task is imposed on him and no external reward
signal is provided. Learning of skills in a developmental period needs to be incremental
and self-motivated. We propose a new incremental, task-independent skill discovery
approach that is suited for continuous domains. Furthermore, the agent learns specific
skills based on intrinsic motivation mechanisms that determine on which skills learning is
focused at a given point in time. We evaluate the approach in a reinforcement learning
setup in two continuous domains with complex dynamics. We show that an intrinsically
motivated, skill learning agent outperforms an agent which learns task solutions from
scratch. Furthermore, we compare different intrinsic motivation mechanisms and how
efficiently they make use of the agent’s developmental period.

Keywords: hierarchical reinforcement learning, skill discovery, intrinsic motivation, life-long learning, graph-based

representation

1. INTRODUCTION
Embodied agents like robots are used in increasingly complex,
real-world domains, such as domestic and extraterrestrial set-
tings. A simple, reactive control approach is not sufficient as it
lacks the ability to predict and control the environment on larger
scales of time and space. For this, agents must be able to build up
competencies and knowledge about the world and store these in
a convenient way so that they can be accessed fast and reliably.
This requires control architectures which allow, inter alia, model-
learning, predictive control, learning reusable skills, and even the
integration of high-level cognitive elements. See Figure 1 for an
example of such an architecture.

In this work, we focus on the middle, “decision” layer of
such an architecture. One main objective on this layer is to
learn a repertoire of reusable skills. Such skills may be the abil-
ity to reliable grasp objects, to throw, catch, or hit a ball, or
to use a tool for a specific task like using a hammer to drive
a nail into a wall. A repertoire of skills is useful for embod-
ied agents which have to solve several different but related tasks
during their lifetime. Instead of learning every novel task from
scratch, learning skills allows that acquired capabilities are reused,
i.e., transferred between tasks. Furthermore, being able to use
prelearned skills may dramatically increase response times and
therefore reduce the probability of system failure. One approach
to skill learning is hierarchical reinforcement learning (Barto
and Mahadevan, 2003), which has been applied successfully in
robotic applications (see, e.g., Kirchner, 1998). Since the acquired
skills shall be reusable, they should not be driven by external,
task-specific reward. Instead, the agent should learn skills in a
task-independent manner. In addition, an autonomous agent

must decide on its own what constitutes a useful skill; this is
denoted as skill discovery.

Existing skill discovery approaches are mostly tailored to
discrete domains or to decomposing a specific task into sub-
tasks. While the former have limited significance for contin-
uous domains like robotics, the latter might yield skills that
are task-specific and not reusable. The main contribution of
this paper is a new skill discovery method which is suited for
continuous domains and does not require external tasks and
rewards. This method allows the agent to generate a collec-
tion of skills during a developmental period, in which the agent
can explore freely without having to maximize external reward.
The proposed skill discovery method is based on an incremen-
tal, hierarchical clustering of a learned state transition graph.
This graph encodes the structure and dynamics of a domain.
Densely connected subgraphs (“clusters”) of this graph corre-
spond to qualitatively similar situations in the domain. Skills
are learned for transitioning from one cluster to an adjacent
one, i.e., for purposefully reaching a specific configuration of the
domain.

In large domains with complex dynamics, exploring the envi-
ronment, which is a prerequisite for skill discovery, is challenging
by itself as is the decision whether the agent should engage in
skill learning or exploration. We consider intrinsic motivation to
reward the agent for (a) exploring novel parts of the environment
and for (b) engaging in learning skills whose predictive model
exhibits large error. We define novelty with regard to a set of
observed states and predict skill effects based on a learned skill
model which allows predicting state transitions conditioned on
the specific skill.

Frontiers in Neurorobotics www.frontiersin.org July 2013 | Volume 7 | Article 11 | 1

NEUROROBOTICS

http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/about
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org/Neurorobotics/10.3389/fnbot.2013.00011/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JanMetzen&UID=77391
http://community.frontiersin.org/people/FrankKirchner/102557
mailto:jhm@informatik.uni-bremen.de
mailto:jhm@informatik.uni-bremen.de
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Metzen and Kirchner Incremental learning of skill collections

FIGURE 1 | A 3-layer control architecture, which allows the integration

of reflexive reactive behaviors, more flexible decision-based behaviors,

and explanation-based approaches for novel situations. Extrinsic
motivation is provided by homeostatic need regulation and prediction of
fitness-enhancing events. We refer to Köhler et al. (2012) for more details.

We present an empirical analysis of the proposed approach
in two continuous, high-dimensional domains with complex
dynamics. We evaluate empirically to which extent the agent can
benefit from reusing skills, which influence the specific skill dis-
covery approach and the definition of intrinsic motivation have
onto the agent’s performance, and how the length of the agent’s
developmental period affects the task performance. Furthermore,
we present evidence that the intrinsic motivation mechanisms
can identify how much time should be spent on learning specific
skills.

The paper is structured as follows: section 2 provides the nec-
essary background and summarizes some of the most closely
related works. Section 3 gives details of the main methodological
contributions of this paper. In section 4, we present and discuss
the results obtained in the empirical analysis. In section 5, we
draw a conclusion and provide an outlook.

2. BACKGROUND AND RELATED WORK
In this section, we present briefly the required background in hier-
archical reinforcement learning and give a review of related works
in the areas of skill discovery and intrinsic motivation.

2.1. HIERARCHICAL REINFORCEMENT LEARNING
Computational Reinforcement Learning (RL) (Sutton and Barto,
1998) refers to a class of learning methods that aims at learn-
ing behavior policies which are optimal with regard to a reward
signal, through interaction with an environment. The most pop-
ular problem class for RL are Markov Decision Processes (MDPs).
An MDP M can be formalized as a 4-tuple M = (S, A, Pa

ss′ , Ra
ss′)

where S is a set of states of the environment, A is a set of
actions, Pa

ss′ = P(st+ 1 = s′|st = s, at = a) is the 1-step state tran-
sition probability also referred to as the “dynamics,” and Ra

ss′ =
E{rt+ 1|st = s, at = a, st+ 1 = s′} is the expected reward. In RL,
these quantities are usually unknown to the agent but can be esti-
mated based on samples collected during exploration. If both S

and A are finite, we call M a discrete MDP, otherwise we call it
a continuous MDP. The goal of RL is to learn without explicit
knowledge of M a policy π∗ such that some measure of the long-
term reward is maximized. Popular approaches to RL include
value-function based methods, which are based on approximat-
ing the optimal action-value function Q∗(s, a) =∑s′ P

a
ss′ [Ra

ss′ +
γ maxa′ Q∗(s′, a′)], where γ ∈ [0, 1] is a discount factor, and
direct policy search methods, which search directly in the space
of policies based on, e.g., evolutionary computation (Whiteson,
2012).

This paper focuses on learning skills using Hierarchical RL
(Barto and Mahadevan, 2003). In Hierarchical RL, behavior is not
represented by a monolithic policy but by a hierarchy of policies,
where policies on the lowest layer correspond to simple skills and
policies on higher layer are based on these skills and represent
more complex behavior. One popular approach to Hierarchical
RL is the options framework (Sutton et al., 1999). An option o
is the formalization of a temporally extended action or skill and
consists of three components: the option’s initiation set Io ⊂ S
that defines the states in which the option may be invoked, the
option’s termination condition βo : S→ [0, 1]which specifies the
probability of option execution terminating in a given state, and
the option’s policy πo which defines the probability of executing
an action in a state under option o. In the options framework,
a policy on a higher layer may in any state s decide not solely
to execute a primitive action but also to call any of the lower-
layer options for which s ∈ Io. If an option is invoked, the option’s
policy πo is followed for several time steps until the option termi-
nates according to βo. The option’s policy πo is defined relative
to an option-specific “pseudo-reward” function Ro that rewards
the option for achieving the skill’s objective. Skill learning denotes
learning πo given Io, βo, and Ro. Skill discovery, on the other hand,
requires choosing appropriate Io, βo, and Ro for a new option o.
Skill discovery is very desirable since the quantities Io, βo, and Ro

need not be predefined but can be identified by the agent itself
and thus, skill discovery increase the agent’s autonomy. We give a
review of related works in the next section.

2.2. SKILL DISCOVERY
Most prior work on autonomous skill discovery is based on the
concept of bottleneck areas in the state space. Informally, bottle-
neck areas have been described as the border states of densely
connected areas in the state space (Menache et al., 2002) or as
states that allow transitions to a different part of the environ-
ment (Şimşek and Barto, 2004). A more formal definition is given
by Şimşek and Barto (2009), in which bottleneck areas are states
that are local maxima of betweenness—a measure of centrality
on graphs—on the transition graph. Once bottleneck areas have
been identified, typically one (or several) skills are defined that try
to reach this bottleneck, i.e., that terminate with positive pseudo-
reward if the bottleneck area is reached, can be invoked in a local
neighborhood of the bottleneck, and terminate with a negative
pseudo-reward when departing too far from the bottleneck.

Since betweenness requires complete knowledge of the tran-
sition graph and is computationally expensive, several heuristics
have been proposed to identify bottlenecks. One class of heuris-
tics are frequency-based approaches that compute local statistics of

Frontiers in Neurorobotics www.frontiersin.org July 2013 | Volume 7 | Article 11 | 2

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Metzen and Kirchner Incremental learning of skill collections

states like diverse density (McGovern and Barto, 2001) and rela-
tive novelty (Şimşek and Barto, 2004). An other class of heuristics
that is typically more sample-efficient are graph-based approaches
which are based on estimates of the domain’s state transition
graph. Graph-based approaches to skill discovery aim at parti-
tioning this graph into subgraphs which are densely connected
internally but only weakly connected with each other. Menache
et al. (2002) propose a top–down approach for partitioning the
global transition graph based on the max-flow/min-cut heuris-
tic. Şimşek et al. (2005) follow a similar approach but partition
local estimates of the global transition graph using a spectral
clustering algorithm and use repeated sampling for identifying
globally consistent bottlenecks. Mannor et al. (2004) propose a
bottom–up approach that partitions the global transition graph
using agglomerative hierarchical clustering. Metzen (2012) pro-
poses an extension of this approach called OGAHC. OGAHC is
incremental and can thus be performed several times during the
learning process. A further approach for identifying bottlenecks is
to monitor the propagation of Q-values in the planning phase of a
model-based RL architecture. For instance, Kirchner and Richter
(2000) have shown that the so-called significance values become
large close to bottlenecks of the domain.

Relatively few works on autonomous skill discovery in
domains with continuous state spaces exist. Frequency-based
approaches do not easily generalize to such domains since their
statistics are typically related to individual states and there exist
infinitely many such states in continuous domains. Similarly, the
1-to-1 relationship between states and graph nodes hinders the
direct applicability of graph-based approaches. Mannor et al.
(2004) have evaluated their agglomerative hierarchical clustering
approach in the mountain car domain by uniformly discretizing
the state space. However, this uniform discretization is subop-
timal since it suffers from alignment effects and the “curse of
dimensionality.” Learning an adaptive discretization in the form
of a transition graph that captures the domain’s dynamics using
the FIGE heuristic (see section 3.2) is shown to perform consider-
ably better (Metzen, in press). However, FIGE is a batch method
and requires that skill discovery is performed at a prespecified
point in time.

One skill discovery method that has been designed for con-
tinuous domains is “skill chaining” (Konidaris and Barto, 2009).
Skill chaining produces chains (or more general: trees) of skills
such that each skill allows reaching a specific region of the state
space, such as a terminal region or a region where an other skill
can be invoked. In which region of the state space a skill can be
invoked depends mainly on the representability and learnability
of the skill in the specific learning system and not directly on con-
cepts like bottlenecks or densely connected regions. Skill chaining
requires to specify an area of interest (typically the terminal region
of the state space) which is used as target for the skill at the root
of the tree. For multi-task domains with several goal regions or
domains without a goal region, it is unclear how the root of the
skill tree should be chosen.

2.3. LIFELONG LEARNING AND INTRINSIC MOTIVATION
Thrun (1996) suggested the notion of lifelong learning in the
context of supervised learning for object recognition. In lifelong

learning, a learner experiences a sequence of different but related
tasks. Due to this relatedness, learned knowledge can be trans-
ferred across multiple learning tasks, which can allow generalizing
more accurately from less training data. The concept of lifelong
learning was extended to RL by, e.g., Sutton et al. (2007). In RL,
lifelong learning is often combined with shaping, which denotes a
process where a trainer rewards an agent for a behavior that pro-
gresses toward a desired target behavior which solves a complex
task. Thus, shaping can be seen as a training procedure for guid-
ing the agent’s learning process. Shaping was originally proposed
in psychology as an experimental procedure for training animals
(Skinner, 1938) and has been adopted for training of artificial
systems later on (Randløv Alstrøm, 1998). One disadvantage of
shaping is that an external teacher is required which selects tasks
of a specific complexity carefully by taking the current develop-
mental state of the agent into account. This reduces the agent’s
autonomy.

A different approach to lifelong learning, in which no exter-
nal teacher is required, is to provide the agent with a means for
intrinsic motivations. The term “intrinsically motivated” stems
from biology and one of its first appearances was in a paper by
Harlow (1950) on the manipulation behavior of rhesus monkeys.
According to Baldassarre (2011) “extrinsic motivations guide
learning of behaviors that directly increase (evolutionary) fitness”
while “intrinsic motivations drive the acquisition of knowledge
and skills that contribute to produce behaviors that increase fit-
ness only in a later stage.” Thus, similar to shaping, intrinsic
motivations contribute to learning not as a learning mecha-
nism per se, but rather as a guiding mechanism which guides
learning mechanisms to acquire behaviors that increase fitness.
According to Baldassarre “(intrinsic motivations) drive organ-
isms to continue to engage in a certain activity if their competence
in achieving some interesting outcomes is improving, or if their
capacity to predict, abstract, or recognize percepts is not yet
good or is improving. . ..” Accordingly, learning signals produced
by intrinsic motivations tend to decrease or disappear once the
corresponding skill is acquired.

Computational approaches to intrinsic motivation [see
Oudeyer and Kaplan (2007) for a typology] have become popu-
lar in hierarchical RL in the last decade resulting in the area of
Intrinsically Motivated Reinforcement Learning (IMRL) (Barto
et al., 2004). Work on intrinsic motivation in RL, however,
dates back to the early 1990s (Schmidhuber, 1991). IMRL often
employs a developmental setting [see, e.g., Stout and Barto (2010)
and Schembri et al. (2007)], which differs slightly from the usual
RL setting where the objective is to maximize the accumulated
external reward. In the developmental setting, the agent is given
a developmental period, which can be considered as its “child-
hood,” in which no external reward is given to the agent. This
allows the agent to explore its environment freely without having
to maximize the accumulated reward (exploitation). On the other
hand, the agent is not guided by external reward but needs to
have a means for intrinsic motivation. The objective in the devel-
opmental setting is to learn skills which allow to quickly learn
high-quality policies in tasks that are later on imposed onto the
agent. Thus, the objective can be seen as a kind of optimal explo-
ration for skill learning, in contrast to finding the optimal balance

Frontiers in Neurorobotics www.frontiersin.org July 2013 | Volume 7 | Article 11 | 3

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Metzen and Kirchner Incremental learning of skill collections

between exploration and exploitation as in usual RL. Different
mechanisms for intrinsic motivation have been proposed. A com-
plete review is beyond the scope of this paper, we discuss a
selected subset of methods and refer to Oudeyer et al. (2007) for a
review.

Barto et al. (2004) investigate how a hierarchically organized
collection of reusable skills can be acquired based on intrinsic
reward. Their notion of intrinsic reward is based on the nov-
elty response of dopamine neurons. More precisely, the intrinsic
reward for a salient event is proportional to the error of predicting
this salient event based on a learned skill model for this event. This
skill model is not only a passive model of the environment but it
is also dependent on the agent’s action preferences. As a result of
the intrinsic reward, once the agent encounters an unpredicted
salient event, it is driven to attempt to achieve this event until it
has learned to predict it satisfyingly.

Oudeyer et al. (2007) propose an intrinsic motivation sys-
tem that encourages the robot to explore situations in which
its current learning progress is maximized. More specifically,
the robot obtains a positive intrinsic reward for situations in
which the error rate of internal predictive models decreases and
a negative one for situations in which it increases. Thereby,
the robot focuses on exploring situations whose complexity
matches its current stage of development, i.e., situations which
are neither too complex (too unpredictable) nor too simple (too
predictable).

Hester and Stone (2012) propose a model-based approach
for a developing, curious agent called TEXPLORE-VANIR. This
approach uses two kinds of intrinsic reward that are derived from
the learned model. The first one rewards the agent for exploring
parts of the environment for which the variance in the model’s
prediction is large while the second one rewards the agent for
exploring parts of the environment that are novel to the agent.
The authors show empirically that these intrinsic rewards are
helpful for an agent in a developmental setting. Furthermore,
the intrinsic rewards also improve the performance of an agent
faced with an external task from the very beginning by providing
a reasonable explorative bias.

Stout and Barto (2010) propose “competence progress moti-
vation,” which generates intrinsic rewards based on the skill
competence progress, i.e., how strongly the agent’s competence
to achieve self-determined goals progresses. The authors show
on a simple problem that the approach is able to focus learning
efforts onto skills that are neither too simple not too difficult at
the moment. While the authors predefine the set of skills that
shall be learned, they note that “identifying what skills should
be learned is a very important problem and one that a complete
motivational system would address.” This problem is addressed in
this paper.

Note that intrinsic motivations need not be the only source of
motivation in a biologically-inspired robotic control architecture
such as the one shown in Figure 1; rather, extrinsic motivations
based on homeostatic need regulation and prediction of fitness-
enhancing visceral-body changes (compare Baldassarre, 2011)
should be taken into account as well. However, since we focus on
the “decision” layer of the architecture, we do not consider these
kinds of motivations in detail here.

3. METHODS
In this section, we present an architecture for an IMRL-agent
and propose new methods for skill discovery and intrinsic
motivation.

3.1. AGENT ARCHITECTURE
We consider an agent situated in an environment with state space
S and action space A. We are particularly interested in problems
where the state and/or the action space are continuous, more
specifically where S ⊆ R

ns and/or A ⊆ R
na . We assume that the

state transitions (the effects of executing an action in a state) have
the Markov property. During its lifetime, the agent may be faced
with different tasks in this environment; we assume that each
task Tj is specified by a reward function Rj = E(rt+ 1|st = s, at =
a, st+ 1 = s′) and the agent needs to maximize a long-term notion
of this reward. Note that each task thus corresponds to a MDP
Mj = (S, A,P,Rj), where all tasks share S, A, and P .

We adopt the developmental setting of IMRL (see section 2.3),
i.e., we assume that the agent has a developmental period before
it is faced with an external task. The agent-environment interac-
tion during the developmental period can be modeled as an MDP
without reward M\R = (S, A,P). Thus, we implicitly assume
that the developmental period takes place in the same environ-
ment where the agent has to solve tasks later on, i.e., we assume S,
A, and P to be identical. While no external objective is imposed
on the agent, the agent should use the developmental period nev-
ertheless for learning a repertoire of skills O that can later on help
in solving tasks Tj. Furthermore, we do not provide the agent with
a set of subgoals or salient events but require the agent to identify
these on its own.

For this, two questions need to be addressed: (a) how are use-
ful and task-independent skills identified autonomously? and (b)
how does the agent select actions and skills when no external
reward is available? We address these questions in section 3.2 and
section 3.3, respectively. For now, we assume that two modules
for intrinsic motivation (IM) and skill discovery (SD) exist where
IM generates an intrinsic reward signal ri which the agent uses
in place of external reward and SD identifies new skills which
are added to the skill repertoire O and whose policy is learned
later on by the agent using option learning. The agent’s internal
architecture during its developmental period is depicted in the left
diagram in Figure 2.

Once an external task Tj is imposed onto the agent, the intrin-
sic reward and the skill discovery modules are disabled, and the
agent learns a hierarchical policy πe over the set of discovered
skills O that maximizes the external reward re (see right dia-
gram in Figure 2). Note that the agent continues to learn option
policies πo based on experience collected; however, the exter-
nal reward is ignored in skill learning such that options remain
task-independent.

3.2. ITERATIVE GRAPH-BASED SKILL DISCOVERY
A skill discovery method which can be used in the outlined archi-
tecture needs to exhibit the following properties: (1) it needs
to be suited for continuous domains, (2) it needs to be incre-
mental, i.e., the agent must be able to identify new skills at
any time and not just once after some predefined amount of

Frontiers in Neurorobotics www.frontiersin.org July 2013 | Volume 7 | Article 11 | 4

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Metzen and Kirchner Incremental learning of skill collections

FIGURE 2 | Left plot: Agent architecture employed during the developmental
period. No external reward is provided but the motivational system IM creates
an intrinsic reward ri . In parallel, new skills o are identified using the skill
discovery module SD and added to the skill pool O. The policy πi selects skills

according to their intrinsic reward; both πi and the policy πo of the active skill
are learned. Right plot: Agent architecture for learning to solve external tasks
Tj . A hierarchical policy πe is learned based on the external reward re using
the fixed set of skills O. The policy πo of the active skill is also improved.

experience was collected, and (3) it must not require that an exter-
nal reward signal or a goal region of a task exist. None of the
methods discussed in section 2.2 fulfills all these requirements.
In this work, we propose IFIGE, an incremental extension of
FIGE (Metzen, in press), which is combined with an extension
of OGAHC (Metzen, 2012) to continuous domains. This combi-
nation fulfills all of requirements given above. The key idea of the
approach is that a transition graph, which captures the domain’s
dynamics, is learned incrementally from experience using FIGE
and that the learned graphs are clustered into densely connected
subgraphs using OGAHC. These clusters correspond to subareas
of the domain’s state space and the connections between these
subparts form bottlenecks of the domain. Learning skills which
allow traversing these bottlenecks is a common approach to skill
discovery in discrete domains (compare section 2.2).

3.2.1. Incremental transition graph estimation in
continuous domains

A transition graph G = (V, E, w) can be seen as a model of
the domain’s 1-step state transition probability (the domain’s
“dynamics”), where the nodes v ∈ V represent “typical” states
of the domain and edges (v, v′)a ∈ E represent possible transi-
tions in the domain under a specific action a. The edge weights
w encode the corresponding probabilities Pa

vv′ . In a model-free
setting, G needs to be learned from experience. While this is
straightforward in domains with discrete state space, it is more
challenging in continuous domains. Force-based Iterative Graph
Estimation (FIGE) is an heuristic approach to this problem with
a solid theoretical motivation. FIGE learns transition graphs of
size vnum from a set of state transitions T = {(si, ai, s′i)}ni= 1 that
have been experienced by the agent while acting in the domain.
The transition graph is considered to be a generative model of
state transitions and FIGE aims at finding graph node positions
V which maximizes the likelihood of the observed transition
(Metzen, in press).

FIGE is summarized in Algorithm 1: the set of graph nodes V
with cardinality |V | = vnum is initialized such that it covers the

Algorithm 1 | Force-based Iterative Graph Estimation (FIGE)

1: Input: T = {(si , ai , s′i)}ni = 1, parameters vnum, K

2: V = INITIALIZE(T , vnum)

3: For i = 0 to K − 1 do

4: for all v ∈ V do

5: SV (v) = {s | (s, a, s′) ∈ T : NNV (s) = v
}

6: FS [v] =MEAN(SV (v)) − v

7: T→(v) = {NNV (s′)− s′ + s | (s, a, s′) ∈ T : NNV (s) = v
}

8: T←(v) = {NNV (s)− s + s′ | (s, a, s′) ∈ T : NNV (s′) = v
}

9: FG[v] = 0.5 · [MEAN(T→(v)) +MEAN(T←(v))
] − v

10: end for

11: V = V + αi · 0.5(FS [V] + FG[V])
12: end for

13: Na
vv ′ =

∣∣{(s, s′) | ∃ (s, a, s′) ∈ T : NNV (s) = v ∧NNV (s′) = v ′
}∣∣

14: E = {(v, v ′)a | v, v ′ ∈ V a ∈ A : Na
vv ′ > 0

}
15: wa

vv ′ = Na
vv ′/

∑
ṽ Na

vṽ

set of states contained in T uniformly by, e.g., maximizing the dis-
tance of the closest pair of graph nodes (line 2). Afterwards, for
K iterations, the graph nodes are moved according to two kind of
“forces” that act on them: the “sample representation” force (lines
5, 6) pulls each graph node v to the mean of all states SV for which
it is responsible, i.e., the states s for which it is the nearest neighbor
NNV (s) in V . Thus, this force corresponds to an intrinsic k-
means clustering of the observed states. The “graph consistency”
force (lines 7–9) pulls each graph node v to a position where for
all (s, a, s′) ∈ T with NNV (s) = v there is a vertex v′ such that
v′ − v is similar to s′ − s, i.e., both vectors are close to parallel.
Thus, this force encourages node positions which can represent
the domain’s dynamics well. The nodes are then moved accord-
ing to the two forces (line 11), where the parameter αi ∈ (0, 1]

Frontiers in Neurorobotics www.frontiersin.org July 2013 | Volume 7 | Article 11 | 5

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Metzen and Kirchner Incremental learning of skill collections

controls how greedily the node is moved to the position where the
forces would become minimal. In order to ensure convergence of
the graph nodes, αi should go to 0 for i approaching K. An edge
labeled with action a is added between two nodes v and v′ if there
exists at least one transition (s, a, s′) ∈ T with v being the nearest
neighbor of s in V and v′ being the nearest neighbor of s′ in V
(line 14). Furthermore, the edge weights are chosen as the empir-
ical transition probabilities P̂a

vv′ from node v to v′ under action a
(line 15). For details and a derivation of FIGE, we refer to Metzen
(in press).

The main drawbacks of FIGE are that the number of nodes
of the transition graph need to be pre-specified and that FIGE
is a batch algorithm and thus not well suited for incremental
skill discovery. We present now Incremental FIGE (IFIGE) which
does not suffer from these problems. IFIGE updates the graph’s
node positions after every experienced transition. Furthermore,
IFIGE stores for every graph node v a set of exemplar states Sv =
{si | i = 1, . . . , nv} and exemplar transitions Tv = {(si, ai, s′i) |
i = 1, . . . , nv}, with all si being “similar” to v and nv being set
typically to 25.

IFIGE starts with a single graph node V = {s0} and Ss0 =
Ts0 = ∅, where s0 is the start state. For any encountered transi-
tion (s, a, s′), the most similar graph node v = NNV (s), i.e., the
nearest neighbor of s in V , is determined, s is added to the set
of state exemplars Sv, and (s, a, s′) to Tv. If the size of Sv or Tv

exceeds nv, old exemplars are deleted. Afterwards, the position of
vertex v is updated using lines 5–9 of Algorithm 1 for T = Tv.
This changes the position of v; thus, IFIGE checks afterwards for
all state exemplars in Sv and transition exemplars in Tv whether
any other node in V would be a better representative and moves
the exemplars if required. Afterwards, IFIGE checks whether v is
responsible for a too large area of the state space by computing
the distance of the farthest pair in Sv. If this distance is above a
threshold ζ, v is removed from V and two new nodes v1 and v2

are added to V . v1 and v2 are chosen as the cluster centers of a
k-means clustering of Sv for k = 2. Sv and Tv are split into two
subsets accordingly. Splitting nodes ensures that the number of
graph nodes grows with the size of the state space explored by the
agent.

When the current transition graph needs to be generated for
skill discovery, IFIGE adds for all graph nodes v and any transition
(s, a, s′) ∈ Tv an edge between v and v′ = NNV\{v}(s′) for action
a. Edge weights are determined by counting the frequencies of
edges from v to v′ relative to all edges starting from v.

3.2.2. Online graph-based agglomerative hierarchical clustering
Based on the transition graph, we identify task-independent and
thus reusable skills using “Online Graph-based Agglomerative
Hierarchical Clustering” (OGAHC). We give a brief summary
of OGAHC and discuss how it can be extended to continuous
domains; for more details we refer to the original publication
(Metzen, 2012). OGAHC identifies skills by computing a parti-
tion P∗ of the nodes V of a given transition graph G with respect
to a prespecified linkage criterion l. Formally:

P∗ = arg min
P∈P(V)

|P| s.t. max
pi ∈ P, qi ⊂ pi

l(pi\qi, qi) ≤ ψ,

with P(V) being the set of all possible partitions of V and ψ being
a threshold which controls the granularity of the partition, i.e.,
the number of elements of the partition (called “cluster”). The
aim is thus to compute a partition of the graph nodes with mini-
mal cardinality such that the linkage between any pair of clusters
of the partition is small, i.e., below ψ. Since this problem is NP-
hard, we use agglomerative hierarchical clustering as proposed by
Mannor et al. (2004) for identifying an approximately optimal
solution. As proposed by Şimşek et al. (2005), we use the normal-
ized cut N̂cut as linkage. The N̂cut of two disjoint subgraphs A, B ⊂
G is an approximation of the probability that a random walk on G
transitions in one time step from a state in subgraph A to a state in
subgraph B or vice versa. Thus, we identify areas of the state space
(corresponding to clusters of the graph) such that a randomly
behaving agent would very unlikely leave one of these areas.

The connections of these clusters form bottlenecks of the graph
and thus also of the domain. OGAHC creates one skill prototype
for each pair of clusters c1, c2 ∈ P∗ which are connected in G; this
skill can be invoked any state s with NNV (s) ∈ c1 and terminates
in any state with NNV (s) /∈ c1. It terminates successfully if
NNV (s) ∈ c2 and fails otherwise. Thus, the skill’s objective is to
guide the agent through one of the domain’s bottlenecks from the
area corresponding to cluster c1 to the area of cluster c2.

Since the transition graph, which is the basis for OGAHC, is
learned from experience and thus changes over time, performing
the clustering only once is problematic: performing it early might
result in a bad clustering of the domain since the transition graph
might be inaccurate, while performing it late can overly increase
the amount of experience the agent requires for skill discovery.
Thus, it is desirable to perform the clustering several times during
learning. For this, OGAHC assumes “dense local connectivity in
the face of uncertainty,” which prevents premature identification
of bottlenecks and the corresponding skills, and adds constraints
to the clustering process, which ensure that subsequent parti-
tions remain consistent with prior ones. These constraints enforce
that graph nodes that have been assigned to different clusters in
one invocation of OGAHC remain in different clusters in later
invocations.

The main hindrance of OGAHC in domains with continuous
state space is that the constraints are based on the assumption
that the graph nodes do not change over time. This is not the
case when OGAHC is applied on top of IFIGE. This problem can
be alleviated by adapting the current partition to the changes in
the graph prior to any invocation of OGAHC. For this, let P∗(V)

be the partition of the graph nodes V of the last invocation of
OGAHC and V ′ the current node positions. We extend P∗(V)

to a (pre-)partition Ppre of V ′ by assigning nodes v′a, v′b ∈ V ′ to
the same cluster if NNV (v′a) and NNV (v′b) are in the same cluster
in P∗(V) . Now, OGAHC can be invoked with the usual con-
straints that nodes which are in different clusters in Ppre(V ′) must
be in different clusters in P∗(V ′). For nodes v′ ∈ V ′ whose near-
est neighbor NNV (v′) is very different from v′ , this constraint is
relaxed, i.e., these nodes can be assigned to any cluster in P∗(V ′).
This corresponds to a situation where the agent has visited a par-
ticular area of the state space for the first time and the prior
invocations of OGAHC put no restrictions on the bottlenecks in
this novel part.

Frontiers in Neurorobotics www.frontiersin.org July 2013 | Volume 7 | Article 11 | 6

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Metzen and Kirchner Incremental learning of skill collections

3.3. INTRINSIC MOTIVATION
In the context of this paper, intrinsic motivation refers to the
process of mapping a transition from state s under option o to
successor state s′ onto an intrinsic reward ri. We investigate two
different intrinsic motivation mechanisms, one based on the nov-
elty of a state under a skill and one based on the prediction error
of a learned skill model.

For the novelty based motivation criterion, the agent stores for
each option o the states it has encountered under this option so
far in the set So

1. When transitioning to state s′ under option o, the
intrinsic reward is computed via

ri = −
∑

j∈NN10
So

(s′)

exp

(
−||s

′ − sj||22
b2

)
,

where NN10
So

(s′) denotes the indices of the 10-nearest neighbors of
s′ in So and b is a domain-dependent scale parameter. Thus, the
intrinsic reward is upper-bounded by 0 with values close to 0 if the
10 nearest neighbor are very different (large euclidean distance)
from s′ and very small values when s′ is similar to several states
in So. Thus, the novelty criterion discourages to execute options
in regions of the state space where this option has been executed
already several times. This mechanism is similar to the mecha-
nism proposed by Hester and Stone (2012); however, in contrast
to their work, it is also suited for domains with continuous state
spaces.

For the prediction error criterion, the agent learns for each
option a model P̂o that predicts the successor state of states s when
following option o. The intrinsic reward is determined based on
the error of the model’s prediction via

ri = −1+ tanh(σ||s′ − P̂o(s)||22),

where σ is a domain-dependent scale parameter. The intrinsic
reward ri is large (close to 0) when the difference of predicted suc-
cessor P̂o(s) and actual successor s′ is large. The intrinsic reward
becomes small (close to −1) when the model correctly predicts
the effect of executing option o in state s. Thus, the prediction
error criterion encourages to execute options whose effects are
unknown or unpredictable in the current area of the state space.
Note that in contrast to the novelty criterion, for the prediction
error criterion the intrinsic reward in a state depends on the
option’s policy.

The option model P̂o stores internally a set To = {(sj, s′j)} of
transitions encountered under option o. The model’s prediction
is based on 10-nearest neighbors regression:

Po(s) = s+ 1

10

∑
j∈NN10

To
(s)

(s′j − sj),

1In order to keep the size of So limited, we remove states from So once |So| >
2500. The heuristic for selecting the state that is removed is to remove one of
the states of the (approximate) closest state pair in So. This results in covering
the effective state space of the problem approximately uniform.

where NN10
To

(s) denotes the indices of the 10-nearest neighbors of
s in the start states in To. If the size of To exceeds a threshold (in
the experiments 2500) and a transition from s to s′ is added, the
oldest transition among NN10

To
(s) is removed. This is required to

keep the memory consumption limited and, more importantly, to
track the non-stationarity in the target function that is induced by
learning the option o concurrently and thus changing o’s policy.

4. RESULTS
In this section, we present an empirical evaluation of the pro-
posed methods in two continuous and challenging RL benchmark
domains. We evaluate both the behavior of the agent during the
developmental period and its performance in external tasks. We
have chosen these benchmark domains since they allow other
researchers to compare their methods easily to our results.

4.1. 2D MULTI-VALLEY
4.1.1. Problem domain
The 2D Multi-Valley environment (see Figure 3) is an extension
of the basic mountain car domain. The car the agent controls is
not restrained to a one-dimensional surface, however, but to a
two-dimensional surface. This two-dimensional surface consists
of 2× 2 = 4 valleys, whose borders are at (π/6± π/3,π/6±
π/3). The agent observes four continuous state variables: the
positions in the two dimensions (x and y) and the two corre-
sponding velocities (vx and vy). The agent can choose among the
four discrete actions northwest, northeast, southwest,
southeast which add (±0.001,±0.001) to (vx, vy). In each
time step, due to gravity 0.004 cos(3x) is added to vx and
0.004 cos(3y) to vy. The maximal absolute velocity in each dimen-
sion is restrained to 0.07. The four valleys correspond naturally to
clusters of the domain since transitioning from one valley to the
other is unlikely under random behavior, i.e., represents a bot-
tleneck. Thus, we would expect that one skill is created for each
combination of adjacent valleys.

4.1.2. Developmental period
During its developmental period, the agent can explore the
domain freely while engaging in skill discovery and following its
intrinsic motivations. Initially, the agent has only a single option

FIGURE 3 | 2D Multi-Valley domain. Gray-scale contours depict the height
of the two-dimensional surface. The black boxes denote the target regions
of the different tasks and the white lines the boundaries of the valleys.
Shown is one example trajectory with color-coded actions.

Frontiers in Neurorobotics www.frontiersin.org July 2013 | Volume 7 | Article 11 | 7

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Metzen and Kirchner Incremental learning of skill collections

oe in its skill pool O, which can be invoked in any state of the envi-
ronment, i.e., Ioe = S, and terminates with probability βoe (s) =
0.05. This option can be considered to be the agent’s exploration
option, which can always be invoked if the agent prefers to explore
the environment over learning a specific skill. We set the greedi-
ness of IFIGE to αi = 0.25 and the split node distance to ζ = 0.3.
For OGAHC, we set the maximal linkage to ψ = −0.075 and
performed skill discovery every 5000 steps.

Each option’s value function has been represented by an
CMAC function approximator consisting of 10 independent
tilings with 72 · 52 tiles, where the higher resolutions have been
used for the x and y dimensions. The pseudo-reward for each
option’s policy has been set to ro = −1 for each step and ro =
−1000 if an option terminates unsuccessfully, i.e., leaves its
initiation set Io without reaching its goal cluster c2. Value func-
tions have been initialized to −100. For learning the higher-level
policy πi, a lower resolution of 52 · 32 tiles has been used and the
value functions have been initialized to 0. The discounting fac-
tor has been set to γ = 0.99 and all policies were ε-greedy with
ε = 0.01. The value functions were learned using Q-Learning and
updated only for currently active options with a learning rate
of 1. The scale-parameters of the intrinsic motivation mecha-
nisms have been set to b = 0.1 (novelty) and σ = 104 (prediction
error). All parameters have been chosen based on preliminary
investigations.

Figure 4 shows the transition graphs generated by IFIGE
after 20,000, 30,000, and 50,000 developmental steps. The two-
dimensional embeddings of the graphs have been determined
using Isomap (Tenenbaum et al., 2000). The four valleys of the
domain clearly correspond to four densely connected subgraphs
of the transition graph. The figure also shows that it would be dif-
ficult to determine a single point in time at which skill discovery
should be performed: for instance, are the valleys (0, 1) and (1, 0)

explored sufficiently after 30,000 steps to perform graph cluster-
ing? Since skill discovery with OGAHC is incremental, i.e., can be
performed several times during learning, this choice need not be
made.

Figure 5 shows the success ratio, i.e., how often a skill reaches
its goal cluster, of the skills discovered during the developmental
period. Initially, skills are unlikely to reach their goal area, with
success ratios of approximately 0.25. Under both intrinsic moti-
vation systems, the agent invests time in learning skill policies
and the success ratio increases to 0.7 for the prediction error
and 0.8 for the novelty criterion after approximately 105 steps of
development. Note that success ratios of 1.0 are not possible since

for some states in s ∈ Io, there is no way of reaching the option’s
goal area without leaving the initiation set, e.g., when the agent is
moving with high velocity in the direction of the wrong neighbor
valley. A possible explanation for the different performance under
the two motivational systems is given below.

Figure 6 shows the ratio of selecting the option oe

(“Exploration”) or any of the other, discovered options in
O (“Skill Learning”) under the policy πi for different intrinsic
motivations. Initially, no skills have been discovered and the agent
thus has to explore. Once the first skills have been discovered, the
agent focuses onto learning these skills. Over time, as the skill
policies converge, a better predictive model for these skills can
be learned. Similarly, the more time is spend on learning a skill,
the less novel states are encountered under this skill. Accordingly,
both intrinsic motivation mechanisms reduce the ratio of skill
learning and focus on exploration again in order to discover
new skills. Note that at this point in time, there are no further
skills to be discovered in this domain but this is unknown to
the agent.

In general, the prediction error-based motivation chooses the
exploration option more often and reduces skill learning more
abruptly than the novelty criterion. This can be explained by
the fact that the exploration policy changes more strongly over
time and it is thus harder to learn a model of this option. Once
the policies of the other skills have settled, they are chosen only
rarely. However, the results in Figure 5 suggest that this happens
too early as the final “fine-tuning” of the skill policies is not

FIGURE 5 | Success ratio of learned skills over developmental period.

Shown are mean and standard error of mean averaged over 10 independent
runs.

FIGURE 4 | Two-dimensional embedding (determined using Isomap) of the learned transition graphs. Densely connected subgraphs correspond to the
four valleys.

Frontiers in Neurorobotics www.frontiersin.org July 2013 | Volume 7 | Article 11 | 8

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Metzen and Kirchner Incremental learning of skill collections

finished and the success ratio is smaller than for the novelty
criterion. Thus, the results indicate that using the prediction error
for intrinsic motivation can be detrimental in situations where
different option policies explore to different degrees since the
prediction error criterion will favor the options with stronger
exploration. Thus, it is recommended to base motivation on cri-
teria like novelty or on the change of prediction error rather than
on the error itself.

FIGURE 6 | Ratio of skill learning to exploration during developmental

period. Shown is mean over 10 independent runs.

4.1.3. Task performance
In its “adulthood,” the agent is faced with a multi-task scenario:
in each episode, the agent has to solve one out of 12 tasks. Each
task is associated with a combination of two distinct valleys; e.g.,
in task (0, 1) the agent starts in the floor2 of valley 0 and has to
navigate to the floor of valley 1 and reduce its velocity such that∣∣∣∣(vx, vy)

∣∣∣∣
2 ≤ 0.03. In each time step, the agent receives an exter-

nal reward of re = −1. Once a task is solved, the next episode
starts with the car remaining at its current position and one of
the tasks that starts in this valley is drawn at random. Episodes
have been interrupted after 104 steps without solving the task and
a new task was chosen at random. The current task is commu-
nicated as an additional state space dimension to the agent. The
agent uses this task information and the reward re for learning
the task policy πe but ignores those information when improving
πo such that skills remain reusable in different tasks. The explo-
ration option oe used in the developmental period was removed
from the skill set O such that the agent can only choose among
self-discovered skills.

Figure 7 shows the results for different intrinsic motivation
mechanisms and different lengths of the developmental period.
As baseline, “No Skills” shows the performance of an agent
that learns a monolithic policy for each task separately. For a
very short developmental period of 10,000 steps, the hierarchi-
cal agent, which uses skills learned in the developmental period,
learns initially faster than the monolithic agent, however, it con-
verges to considerably worse policies. This is probably due to
the fact that not all relevant skills have been discovered in the
developmental period. See Jong et al. (2008) for a discussion of
why an incomplete set of skills might have a detrimental effect

2The floor of valley 0 (see Figure 3) corresponds to the region ((−1/6±
2/15)π, (−1/6± 2/15)π).

FIGURE 7 | Cost (negative return) of IMRL agent in the 12 tasks 2D

Multi-Valley domain for different intrinsic motivation systems and

different lengths of the developmental period. “No Skills” shows the
performance of a monolithic agent that does not learn skills and has no

developmental period. The horizontal black line shows the average cost of
the policy learned by the monolithic agent after 5000 episodes. Shown is the
mean over 10 independent runs that have been smoothened by a moving
window average with window length 50.

Frontiers in Neurorobotics www.frontiersin.org July 2013 | Volume 7 | Article 11 | 9

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Metzen and Kirchner Incremental learning of skill collections

on an agent’s performance. For 30,000 developmental steps, the
skills acquired under the novelty motivation allow already to
achieve close-to-optimal performance while the ones from the
prediction-error motivation do not. This corresponds to the dif-
ferent qualities of the learned skills under the two motivation
systems (compare Figure 5). For 50,000 or more developmen-
tal steps, the performance of the hierarchical agent approaches
the optimal performance considerably faster than the monolithic
agent, irrespective of the intrinsic motivation system used. This
is interesting since after 50,000 steps, the learned skills are far
from optimal (compare Figure 5). Apparently, also skills with
sub-optimal policies can help the agent considerably. It should
also be noted that even though a close-to-optimal performance
is reached relatively fast, the performance remains slightly below
the optimum which is reached by the monolithic agent after 5000
episodes. This is probably due to the (temporal) abstraction intro-
duced by the skills which on the one hand helps the agent in
learning faster but on the other hand also reduces the class of
representable policies.

4.2. OCTOPUS
4.2.1. Problem domain
In the octopus arm domain3 (Yekutieli et al., 2005), the agent
has to learn to control an Octopus arm. The base of the arm is
restricted and cannot be actuated directly. The agent may control
the arm in the following way: elongating or contracting the entire
arm, bending the first half of the arm in either of the two direc-
tions, and bending the second half of the arm in either of the two
directions. In each time step, the agent can set the elongation and
the bending of the first and second half of the arm to an arbitrary
value in [−1, 1], resulting in 3 continuous action dimensions. The
agent observes the positions xi, yi and velocities ẋi, ẏi of 24 selected
parts of its arm (denoted by small black dots in Figure 8) and
the angle and angular velocity of the arm’s base. Thus, the state
space is continuous and consists of 98 dimensions. Because of the
high-dimensional and continuous state and action spaces and the
complex dynamics of the domain, the octopus arm problem is a
challenging task. It can also be seen as an easy simulation-based
benchmark for actual robotic manipulation tasks.

3Source code available via http://cs.mcgill.ca/dprecup/workshops/ICML06/
octopus.html.

FIGURE 8 | Visualization of the octopus arm task. The circles represent
target objects used in different tasks which yield an external reward when
touched.

4.2.2. Developmental period
Similar to the developmental period in the 2D multi-valley
domain, the agent can explore the domain freely while engaging
in skill discovery and following its intrinsic motivations. However,
the basis for skill discovery is not to identify bottlenecks (there
are no bottlenecks in this domain) but to cluster the transition
graph into regions which correspond to similar qualitative states.
Thus, a different linkage criterion lG has been used: for two sub-
graphs A and B of the transition graph G, the linkage is set
to lG(A, B) = 1/|A ∪ B|2∑v,v′ ∈A∪B dsp(v, v′), i.e., the average
length of the shortest paths dsp between two nodes in A ∪ B. This
linkage results in clusters with similar states in the sense that the
agent can traverse from one state of the cluster to the other with
a small number of steps. The maximum linkage ψ of a cluster in
OGAHC has been set to 3.0 and skill discovery with OGAHC was
performed every 10,000 steps. The greediness of IFIGE has been
set to αi = 0.25 and the split node distance to ζ = 7.5. Intrinsic
motivation was based on the novelty mechanism with b = 1
and the length of the developmental period was set to 50,000
steps.

Because of the continuous action space, we have used direct
policy search based on evolutionary computation for learning
option policies πo. The value for j-the action dimension is deter-
mined via aj = tanh(

∑98
k= 0 wjksk), where sk is the value of the

k-th state dimension and s98 = 1 is a bias. The policy’s weights
wjk have been optimized using 16+ 40 evolution strategy (ES)
and each weight vector has been evaluated 10 times. The pseudo-
reward for each option’s policy has been set to ro = −1 for each
step and ro = −100 if an option terminates unsuccessfully. The
ES’ objective is to maximize the pseudo-reward accumulated in
10 steps, after which the option is interrupted.

As in the multi-valley domain, the agent has initially only
a single option oe in its skill pool O, which can be invoked
in any state of the environment, i.e., Ioe = S, and terminates
with probability βoe(s) = 0.1. πoe selects actions uniform ran-
domly from the action space. The higher-level policy πi, which
determines the option that is executed, has been learned using Q-
Learning with discounting factor γ = 0.99 and exploration rate
ε = 0.01. Because of the high dimensionality of the state space,
the value function was not represented using a CMAC function
approximator but using a linear combination of state values, i.e.,
Q(s, o) =∑98

k= 0 woksk. The learning rate has been set to 0.1.

4.2.3. Task performance
Different tasks can be imposed onto the agent; in this work, we
require that the agent learns to reach for certain objects that
are located at different positions (compare Figure 8). The agent
obtains an external reward of −0.01 per time step and a reward
of 100 for reaching the target object. The episode ends after 1000
time steps or once the target object is reached.

Figure 9 depicts an example trajectory of the octopus arm
learned by the IMRL agent for reaching a target located at position
C: the goal is reached after 22 steps and the agent invokes three
different skills during this trajectory. The skill executed in the first
11 steps contracts the arm and brings it into an ∩-shape. The skill
chosen for the next 6 steps unrolls the first part of the arm until
an S-shape is reached. The skill executed in the last 5 steps unrolls
the second half of the arm such that the target object is reached by

Frontiers in Neurorobotics www.frontiersin.org July 2013 | Volume 7 | Article 11 | 10

http://cs.mcgill.ca/dprecup/workshops/ICML06/octopus.html
http://cs.mcgill.ca/dprecup/workshops/ICML06/octopus.html
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Metzen and Kirchner Incremental learning of skill collections

FIGURE 9 | Example trajectory of the octopus arm controlled by the IMRL agent. The trajectory corresponds to a sequence of three skills. Yellowly colored
arms correspond to states at the beginning of skill execution while redly colored arms correspond to states at the end of skill execution.

FIGURE 10 | Return of IMRL agent in the Octopus domain under the

“novelty” motivation after 50,000 developmental steps. The circle
patches indicate the respective targets used in the runs (compare Figure 8).
“No Skills” shows the performance of an agent that does not learn skills and

has no developmental period. The horizontal black line shows the average
cost of the policy learned by the monolithic agent after 2500 episodes. All
curves show median performance over 5 independent runs and have been
smoothened by a moving window average with window length 25.

an ∪-shape. Note that bending the arm directly into an ∪-shape
would not be successful but result in a state like the one depicted
in Figure 8.

Figure 10 shows the learning curves of the IMRL agent and a
monolithic agent, which learns a flat global policy with the same
parametrization as the skill policies, for different target positions
in the Octopus domain. Given sufficient time, the monolithic
agent can learn policies of similar quality as the IMRL agent.
Thus, close-to-optimal behavior can be represented by a flat
global policy. However, in general, the IMRL agent learns close-
to-optimal policies faster and the learning curves exhibit less
variance across all tasks. Thus, the temporal abstraction of the
skills that were learned in the developmental period seem to make
learning close-to-optimal behavior easier by providing a useful
explorative bias. On the other hand, as in the multi-valley domain
these abstractions may impair performance slightly in the long
run.

5. CONCLUSION AND FUTURE WORK
We have presented a novel skill discovery approach suited for
continuous domains that can be used by an IMRL agent in
its developmental period. Our empirical results in two contin-
uous RL domains suggest that the IMRL agent benefits from
the discovered skills once it is faced with external tasks: close-
to-optimal behaviors can be learned in less trials because of
the explorative bias provided by the temporal abstractions of

the skill hierarchy. However, this explorative bias is only help-
ful if the developmental period was sufficiently long: if the
learning and discovery of skills is interrupted prematurely,
an IMRL agent might perform worse than an agent which
learns a monolithic policy from scratch. Furthermore, we have
compared two intrinsic motivation mechanisms and presented
evidence that intrinsic motivation allows to reasonably deter-
mine how much time should be spend on learning specific
skills.

This work can be extended in numerous ways: for instance,
instead of performing skill discovery only in the developmen-
tal period, the agent could also discover novel skills and learn
based on intrinsic motivation while he is faced with an external
task. This, however, requires trading off intrinsic and external
rewards and facing the exploration-exploitation dilemma. We
leave this to future work; however, we would like to emphasize
that the proposed skill discovery approach is in no way restricted
to the developmental setting. A further direction of future work
would be to combine the proposed skill discovery approach
with more sophisticated intrinsic motivation mechanisms such
as competence progress intrinsic motivation (Stout and Barto,
2010) or other means for empirically estimating the learning
progress (see, e.g., Lopes et al., 2012). Furthermore, it would
be desirable to learn more complex hierarchies of skills, where
skills can invoke other skills. The dendrogram generated by the
hierarchical clustering in OGAHC could be an interesting starting

Frontiers in Neurorobotics www.frontiersin.org July 2013 | Volume 7 | Article 11 | 11

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Metzen and Kirchner Incremental learning of skill collections

point for this. For being useful in a realistic robotic setup, the
proposed methods would need to be integrated into a control
architecture with, e.g., reactive behaviors and predictive control,
such as the one shown in Figure 1. This should allow to deal better
with non-markovian, noisy, and partial observable problems.

ACKNOWLEDGMENTS
This work was supported through a grant of the German Federal
Ministry of Economics and Technology (BMWi, FKZ 50 RA
1217). The authors would like to thank Yohannes Kassahun for
helpful comments on this work.

REFERENCES
Baldassarre, G. (2011). “What are

intrinsic motivations? A bio-
logical perspective,” in IEEE
International Conference on
Development and Learning. Vol. 2
(Frankfurt am Main), 1–8. doi:
10.1109/DEVLRN.2011.6037367

Barto, A. G., and Mahadevan, S.
(2003). Recent advances in
hierarchical reinforcement learning.
Dis. Event Dyn. Syst. 13, 341–379.
doi: 10.1023/A:1022140919877

Barto, A. G., Singh, S., and Chentanez,
N. (2004). “Intrinsically motivated
learning of hierarchical collec-
tions of skills,” in Proceedings of
the 3rd International Conference
of Developmental Learning
(LaJolla, CA), 112–119. doi:
10.1.1.117.6436

Harlow, H. F. (1950). Learning and
satiation of response in intrinsically
motivated complex puzzle perfor-
mance by monkeys. J. Compar.
Physiol. Psychol. 43, 289–294. doi:
10.1037/h0058114

Hester, T., and Stone, P. (2012).
“Intrinsically motivated model
learning for a developing curi-
ous agent,” in Proceedings
of the 11th International
Conference on Development and
Learning (San Diego, CA). doi:
10.1109/DevLrn.2012.6400802

Jong, N. K., Hester, T., and Stone,
P. (2008). “The utility of tem-
poral abstraction in reinforcement
learning,” in Proceedings of the 7th
Conference on Autonomous Agents
and Multiagent Systems (Estoril),
299–306.

Kirchner, F. (1998). Q-learning of
complex behaviours on a six-
legged walking machine. J. Robot.
Auton. Syst. 25, 256–263. doi:
10.1016/S0921-8890(98)00054-2

Kirchner, F., and Richter, C. (2000). “Q-
surfing: exploring a world model by
significance values in reinforcement
learning tasks,” in Proceedings
of the European Conference on
Artificial Intelligence (Berlin),
311–315.

Köhler, T., Rauch, C., Schröer, M.,
Berghöfer, E., and Kirchner, F.
(2012). “Concept of a biologi-
cally inspired robust behaviour
control system,” in Proceedings
of 5th International Conference on
Intelligent Robotics and Applications

(Montreal, QC), 486–495. doi:
10.1007/978-3-642-33515-0_48

Konidaris, G., and Barto, A. G. (2009).
“Skill discovery in continuous
reinforcement learning domains
using skill chaining,” in Advances
in Neural Information Processing
Systems (NIPS). Vol. 22 (Vancouver,
BC), 1015–1023.

Lopes, M., Lang, T., Toussaint, M., and
Oudeyer, P.-Y. (2012). “Exploration
in model-based reinforcement
learning by empirically estimating
learning progress,” in Advances
in Neural Information Processing
Systems (NIPS) (Lake Tahoe,
Nevada), 206–214.

Mannor, S., Menache, I., Hoze, A.,
and Klein, U. (2004). “Dynamic
abstraction in reinforcement learn-
ing via clustering,” in Proceedings
of the 21st International Conference
on Machine Learning (Banff, AB),
560–567. doi: 10.1145/1015330.101
5355

McGovern, A., and Barto, A. G.
(2001). “Automatic discovery
of subgoals in reinforcement
learning using diverse den-
sity,” in Proceedings of the 18th
International Conference on Machine
Learning (Williamstown, MA),
361–368.

Menache, I., Mannor, S., and
Shimkin, N. (2002). “Q-Cut –
dynamic discovery of sub-goals
in reinforcement learning,” in
Proceedings of the 13th European
Conference on Machine Learning
(Helsinki, Finland), 295–306. doi:
10.1007/3-540-36755-1_25

Metzen, J. H. (2012). Online skill
discovery using graph-based clus-
tering. J. Mach. Learn. Res. W&CP
24, 77–88.

Metzen, J. H. (in press). “Learning
graph-based representations for
continuous reinforcement learning
domains,” in Proceedings of the
European Conference on Machine
Learning, (ECML 2013), (Prague:
Springer).

Oudeyer, P.-Y., and Kaplan, F. (2007).
What is intrinsic motivation?
A typology of computational
approaches. Front. Neurorobot. 1:6.
doi: 10.3389/neuro.12.006.2007

Oudeyer, P.-Y., Kaplan, F., and Hafner,
V. (2007). Intrinsic motivation
systems for autonomous men-
tal development. IEEE Trans.

Evol. Comput. 11, 265–286. doi:
10.1109/TEVC.2006.890271

Randløv, J., and Alstrøm, P. (1998).
“Learning to drive a bicycle
using reinforcement learning and
shaping,” in Proceedings of the
15th International Conference on
Machine Learning (Madison, WI),
463–471.

Schembri, M., Mirolli, M., and
Baldassarre, G. (2007). “Evolution
and learning in an intrinsically
motivated reinforcement learn-
ing robot,” in Proceedings of
the 9th European Conference
on Advances in Artificial Life
(Lisbon, Portugal), 294–303. doi:
10.1007/978-3-540-74913-4_30

Schmidhuber, J. (1991). “Curious
model-building control systems,”
in Proceedings of the International
Joint Conference on Neural Networks
(Singapore: IEEE), 1458–1463.

Şimşek, Ö., and Barto, A. G. (2004).
“Using relative novelty to iden-
tify useful temporal abstractions
in reinforcement learning,” in
Proceedings of the 21st International
Conference on Machine Learning
(Banff, AB), 751–758. doi:
10.1145/1015330.1015353

Şimşek, Ö., and Barto, A. G. (2009).
“Skill characterization based on
betweenness,” in Advances in Neural
Information Processing Systems
(NIPS). Vol. 22 (Vancouver, BC),
1497–1504.

Şimşek, Ö., Wolfe, A. P., and Barto,
A. G. (2005). “Identifying useful
subgoals in reinforcement learning
by local graph partitioning,” in
Proceedings of the 22nd International
Conference on Machine Learning
(Bonn, Germany), 816–823. doi:
10.1145/1102351.1102454

Skinner, B. (1938). The Behavior
of Organisms: An Experimental
Analysis. The Century
Psychology Series. New York,
NY: Appleton-Century-Crofts.

Stout, A., and Barto, A. G. (2010).
“Competence progress intrinsic
motivation,” in Proceedings of the
9th IEEE International Conference
on Development and Learning
(Ann Arbor, MI), 257–262. doi:
10.1109/DEVLRN.2010.5578835

Sutton, R. S., and Barto, A. G.
(1998). Reinforcement Learning: An
Introduction. Cambridge, MA: The
MIT Press.

Sutton, R. S., Koop, A., and Silver, D.
(2007). “On the role of track-
ing in stationary environments,” in
Proceedings of the 24th International
Conference on Machine Learning
(Corvallis, OR: ACM), 871–878.
doi: 10.1145/1273496.1273606

Sutton, R. S., Precup, D., and Singh, S.
(1999). Between MDPs and semi-
MDPs: a framework for temporal
abstraction in reinforcement learn-
ing. Artif. Intell. 112, 181–211. doi:
10.1016/S0004-3702(99)00052-1

Tenenbaum, J. B., Silva, V. D., and
Langford, J. C. (2000). A global
geometric framework for nonlinear
dimensionality reduction. Science
290, 2319–2323. doi: 10.1126/sci-
ence.290.5500.2319

Thrun, S. (1996). “Is learning
the n-th thing any easier than
learning the first?” in Advances
in Neural Information Processing
Systems (NIPS) (Cambridge, MA:
MIT Press), 640–646.

Whiteson, S. (2012). “Evolutionary
computation for reinforcement
learning,” in Reinforcement
Learning: State of the Art (Berlin:
Springer), 325–358.

Yekutieli, Y., Sagiv-Zohar, R.,
Aharonov, R., Engel, Y., Hochner,
B., and Flash, T. (2005). A dynamic
model of the octopus arm. I.
Biomechanics of the octopus reach-
ing movement. J. Neurophysiol. 5,
291–323.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 21 May 2013; accepted: 10 July
2013; published online: 26 July 2013.
Citation: Metzen JH and Kirchner F
(2013) Incremental learning of skill col-
lections based on intrinsic motivation.
Front. Neurorobot. 7:11. doi: 10.3389/
fnbot.2013.00011
Copyright © 2013 Metzen and
Kirchner. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License,
which permits use, distribution and
reproduction in other forums, provided
the original authors and source are cred-
ited and subject to any copyright notices
concerning any third-party graphics etc.

Frontiers in Neurorobotics www.frontiersin.org July 2013 | Volume 7 | Article 11 | 12

http://dx.doi.org/10.3389/fnbot.2013.00011
http://dx.doi.org/10.3389/fnbot.2013.00011
http://dx.doi.org/10.3389/fnbot.2013.00011
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

	Incremental learning of skill collections based on intrinsic motivation
	Introduction
	Background and Related Work
	Hierarchical Reinforcement Learning
	Skill Discovery
	Lifelong Learning and Intrinsic Motivation

	Methods
	Agent Architecture
	Iterative Graph-Based Skill Discovery
	Incremental transition graph estimation in continuous domains
	Online graph-based agglomerative hierarchical clustering

	Intrinsic Motivation

	Results
	2D Multi-Valley
	Problem domain
	Developmental period
	Task performance

	Octopus
	Problem domain
	Developmental period
	Task performance

	Conclusion and Future Work
	Acknowledgments
	References

