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Abstract: Honeybee venom has recently been considered an anti-neurodegenerative agent, primarily
due to its anti-inflammatory effects. The natural accumulation of amyloid-beta (Aβ) in the brain
is reported to be the natural cause of aging neural ability downfall, and oxidative stress is the
main route by which Aβ ignites its neural toxicity. Anti-neural oxidative stress is considered an
effective approach for neurodegenerative therapy. To date, it is unclear how bee venom ameliorates
neuronal cells in oxidative stress induced by Aβ. Here, we evaluated the neuroprotective effect of
bee venom on Aβ-induced neural oxidative stress in both HT22 cells and an animal model. Our
results indicate that bee venom protected HT22 cells against apoptosis induced by Aβ1–42. This
protective effect was explained by the increased nuclear translocation of nuclear factor erythroid
2-like 2 (Nrf2), consequently upregulating the production of heme oxygenase-1 (HO-1), a critical
cellular instinct antioxidant enzyme that neutralizes excessive oxidative stress. Furthermore, bee
venom treatment activated the tropomyosin-related kinase receptor B (TrkB)/cAMP response element-
binding (CREB)/brain-derived neurotrophic factor (BDNF), which is closely related to the promotion
of cellular antioxidant defense and neuronal functions. A mouse model with cognitive deficits
induced by Aβ1–42 intracerebroventricular (ICV) injections was also used. Bee venom enhanced
animal cognitive ability and enhanced neural cell genesis in the hippocampal dentate gyrus region
in a dose-dependent manner. Further analysis of animal brain tissue and serum confirmed that bee
venom reduced oxidative stress, cholinergic system activity, and intercellular neurotrophic factor
regulation, which were all adversely affected by Aβ1–42. Our study demonstrates that bee venom
exerts antioxidant and neuroprotective actions against neural oxidative stress caused by Aβ1–42,

thereby promoting its use as a therapeutic agent for neurodegenerative disorders.

Keywords: bee venom; BDNF; amyloid-beta; Nrf2; neurodegeneration

1. Introduction

Maintaining the yin-yang balance has been a holistic approach in Korean medicine
and traditional East Asian medicine to foster stable health, and a tilt in this stability would
emerge as a disease condition in the human body [1]. Oxidative stress produced in the body,
as residues from natural metabolism, constantly plays a damaging role in cellular regulation.
In intrinsic neuro-aging, oxidative stress caused by naturally deposited Aβ in the human
brain is considered the main cause of neurodegeneration [2,3]. If we could symbolize this
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damaging factor as the yin haft; then the cellular intrinsic antioxidant defenses, usually
reduced in neurodegenerative disorders [4–6], can be considered the opposite yang factor.
Targeting the upregulation of endogenous antioxidant enzymes to neutralize excessive
oxidative stress and invigorate neural cell redox balance has become a well-established
approach to slow down the progression of neurodegenerative diseases [5–8]. This strategy
interestingly reflects part of the East Asian medicine philosophy, a holistic therapy is not to
focus on interacting directly with the disease itself but to reinforce the weakened half in the
yin-yang balance to repel the illness by regaining energy harmony [9]. The present study
on bee venom and its antioxidant properties in neurodegeneration provides an example of
this focal point in Eastern and Western medical philosophy.

Bee venom medicine has long been used in Korea to relieve pain symptoms and
treat inflammatory diseases. Recent clinical and experimental studies have demonstrated
that bee venom and its derived active components are applicable to a wide range of
neurodegenerative disorders. The effects of bee venom on neural disease are known
primarily through the modulation of inflammatory responses [10].

It has been well established that neuro-oxidative stress ignited by naturally produced
Aβ deposited in the aging brain is a main factor in the development of neural disor-
ders [11,12]. Aβ intracerebroventricular (ICV) injection into healthy mice has become a
tool that mimics natural dementia [13–18]. Aβ aggregates were discovered to form ion-like
channels in cell membranes, thus encouraging Ca2+ influx and destabilizing intercellular
electrochemical balance [19–21]. Aβ was also discovered to produce mitochondrial mal-
formations via the inactivation of mitochondrial complexes I and IV [22,23]. Metal ions,
such as copper, can stimulate the production of further oxidative stress when bound to
Aβ [24]. In neurodegenerative progression, the overproduction of reactive oxygen species
(ROS) from these central occurrences interferes with cellular redox harmony, disrupts
biochemical pathways. As a result, increases MDA, LDH, and protein carbonyl levels, even-
tually initiates neuroinflammation [25], neuron cell death, and promotes neurocognitive
impairments [26–28].

Recent studies have indicated that antioxidant properties may provide a more holistic
strategy to the anti-inflammatory approach. Antioxidant and detoxification genes are
believed to preserve cellular homeostasis and eliminate toxins before they can cause damage
and activate inflammatory responses [29–31]. Nuclear factor erythroid 2-like 2 (Nrf2)
is a transcription factor that regulates heme oxygenase-1 (HO-1) expression, a crucial
antioxidant enzyme that plays a major role in neutralizing oxidative stress. Several studies
have demonstrated that Nrf2 contributes to the anti-inflammatory process by orchestrating
the recruitment of inflammatory cells [32,33]. Therefore, the identification of novel Nrf2
activators has become a key point in drug discovery to combat neurodegeneration [4,6,7].

Although previous studies have depicted bee venom as a potent anti-neurodegenerative
agent owing to its anti-inflammatory ability [10], the primitive progression of neuronal
damage is due to oxidative stress rather than inflammation [29–31,33]. Previous cardiology
and renal studies have suggested that melittin, the major component, takes up more than
half of bee venom’s dry weight and reinforces cellular redox balance under oxidative stress
by stimulating the nuclear translocation of Nrf2 and upregulating HO-1 expression [34,35].
In addition, the proficiency of bee venom to normalize depleted HO-1 production was
mentioned in other steatohepatitis [36], wound healing [37], and hepatitis [38] studies, but
it has not been examined in anti-neuro-disorder research.

Therefore, we propose that bee venom’s neuronal protective effects might be account-
able due to its potential to buttress cellular redox balance by upregulating cellular instrinsic
antioxidative stress barriers. Clarifying this uncharted aspect of bee venom mechanisms
plays a key role in promoting this drug candidate as a holistic and effective neurodegenera-
tive agent.
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2. Material and Methods
2.1. Materials

Dulbecco’s Modified Eagle Medium (DMEM), PBS, and TBS were purchased from Wel-
gene Inc. (Gyeongsan, Gyeongbuk, Korea). Trypsin-EDTA (0.25%), FBS, 2,7-dichlorofluorescein
diacetate (DCFDA), and penicillin–streptomycin were obtained from Invitrogen (Carlsbad,
CA, USA). Bee venom from Apis mellifera, Aβ1–42, and Fluoromount™ Aqueous Mounting
Medium were purchased from Sigma–Aldrich (St. Louis, MO, USA). The Quanti MAXTM

WST-8 Cell Viability Assay Kit was purchased from BIOMAX (Seoul, Korea). The specific
mouse primary antibodies (TrkB, p-TrkB, Bax, Bcl-2, 1-HO, Nrf2, CREB, p-CREB, iNOS, and
β-actin) and secondary anti-mouse IgG were purchased from Cell Signaling Technology, Inc.
(Danvers, MA, USA). BDNF, mAChR1, and lamin B antibodies were purchased from Merck
KGaA (Darmstadt, Germany). The Pro-PREP protein extraction solution was purchased
from iNtRON Biotechnology (Seoul, Korea). The first doublecortin antibody from Santa
Cruz Biotechnology (Dallas, TX, USA) and Alexa Fluor 488 secondary antibody (Thermo
Fisher Scientific, Waltham, MA, USA) were used. Cellular ROS, superoxide dismutase
(SOD), lipid peroxidation (MDA), lactate dehydrogenase (LDH), and protein carbonyl
activity required acetylcholine esterase (AChE) assay kits, AIF first antibody, CytoC first
antibody, and CleaCas3 first antibody, annexin V, and propidium iodide (PI) from Abcam
(Cambridge, UK). A nuclear extraction kit was purchased from Cayman Chemical Com-
pany, Inc. (Ann Arbor, MI, USA). An acetylcholine (Ach) level assay kit was purchased
from Cell Biolabs (San Diego, CA, USA).

2.2. Cell Culturing

The mouse hippocampal HT22 cell line was a gift from Professor Na Chang Su, College
of Korean Medicine, Dongshin University. Cells were cultured in DMEM supplemented
with FBS (10%) and penicillin–streptomycin (1%). The incubation conditions were 5%
CO2 and 37 ◦C in 96-well plates. The cells were cultured with the following conditions:
1 × 104 cells per well in 0.1 mL media, and 6-well plates with 3 × 105 cells per well in 3 mL
media. Twenty-four hours after cell seeding, further drug administration was carried out
as described in the following sections.

2.3. Cell Viability Assay and Drug Administration

To assess cell viability after seeding for 24 h in 96-well plates, bee venom was added
as follows: 0.15–50 µg/mL for a safety concentration test; for the cellular protection activity,
0.15–5 µg/mL, and 1 h later, 5 µM of Aβ1–42 was added. At different time points—0 h, 4 h,
8 h, 12 h, 16 h, 20 h, and 24 h after Aβ1–42 was added—cell availability was measured by
adding 100 µL WST-8 and incubating for 1 h. Absorbance at 450 nm was measured using a
Versa Max Microplate Reader (Molecular Devices, San Jose, CA, USA). The experiments
were repeated three times, and 2 mM Triton X was used to achieve absolute cell death as a
reference for the availability percentage calculation.

2.4. Cell Apoptosis and ROS Levels Assessment by Flow Cytometry

In 6-well plates, the experiment was performed 8 h after treatment with Aβ1–42. All
cells (floating and attached to the well bottom) were harvested and washed twice with
PBS. Cells (1 × 105) were collected and resuspended in 500 µL of 1× binding buffer. The
staining process was carried out by adding 5 µL of annexin V (detected by the FITC channel)
and 5 µL of propidium iodide (PI, detected by the phycoerythrin (PE) channel). For ROS
detection, 500 µL of 25 µM DCFDA (detected by the FITC channel) was used. The cells were
incubated at 37 ◦C for 15 min in the dark. Approximately 10,000 cells from each sample
were used to produce the data. Analysis was carried out using a Cytoflex flow cytometer
(Beckman Coulter, Inc., Brea, CA, USA.) according to a previous study protocol [39].
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2.5. Measurements of In Vitro Cell Apoptosis, Cell ROS, SOD, MDA, LDH, and Protein Carbonyl

For apoptosis, and ROS immunofluorescence imaging, the experiment was performed
8 h after treatment with Aβ1–42 in black 96-well plates with clear bottoms. For the apoptosis
assay, the cells were washed once with 200 µL assay buffer, after which 1 µL of CytoCalcein
450 solution was added (for live cell labeling, Ex/Em = 405/450 nm) + 1 µL of 7-AAD
solution (for late apoptosis and dead cells labeling, Ex/Em = 550/650 nm), + 2 µL of
Apopxin Green Indicator solution (for detecting apoptotic cells, Ex/Em = 490/525 nm), and
incubated at room temperature in the dark for 45 min. Subsequently, the cells were washed
once, and the wells were filled with 100 µL assay buffer and observed under a 50× objective.
For the cellular ROS assay, the cells were washed twice with assay buffer, and then each well
was filled with 200 µL of 25 µM DCFDA solution (Ex/Em = 490/525 nm) and incubated at
37 ◦C in the dark for 15 min. The DCFDA solution was then removed and replaced with
100 µL of assay buffer and observed with a 30× objective. An Invitrogen EVOS FL Auto
Imaging System fluorescence microscope (Thermo Fisher Scientific, Waltham, MA, USA)
was used.

To measure SOD, MDA, LDH, and protein carbonyl levels in 6-well plates, the experi-
ment was performed 8 h after treatment with Aβ1–42; cell lysate and assay performance
were carried out according to the manufacturer’s instructions. The data were collected
using a VersaMax microplate reader (Molecular Devices, San Jose, CA, USA).

2.6. Preparation of Whole-Cell, Cytosolic, and Nuclear Proteins

Whole-cell, nuclear, and cytosolic proteins were collected to study the nuclear translo-
cation of Nrf2 [40]. In a 6-well plate, 8 h after Aβ1–42 treatment, cells were harvested. Part of
the cell pellet was lysed immediately to collect whole-cell proteins. The remaining part was
added to a hypotonic buffer containing phosphatase and protease inhibitors and incubated
for 10 min at 4 ◦C. Subsequently, the 10% Nonidet P-40 assay reagent was introduced to fa-
cilitate phase separation. Centrifugation was performed (14,000× g, 30 s), and supernatant
with cytosolic content was carefully collected and stored at −80 ◦C. The remaining mixture
was introduced into the nuclear extraction buffer and incubated for 30 min at 4 ◦C. This
was then centrifuged (14,000× g, 10 min), and the supernatant was collected as the nuclear
extract. The blot membranes of cytosolic and nuclear proteins were processed similarly,
and the imaging exposure time was used to express the true scale of protein expression
between nuclear and cytosolic proteins. To confirm the accepted separated nuclear and
cytosolic contents, the total cytosolic lamin B signal must be less than 5% of that in the
nuclear extract. Similarly, the total cytosolic β-actin signal must be less than 5% of that in
the nuclear extract.

2.7. Animals

Male ICR mice (7 weeks old) were purchased from Samtaco (Gyeonggi-do, Korea) and
housed with a maximum of five mice per cage under pathogen-free conditions (22–26 ◦C;
humidity: 50–60%), with a 12-h light/dark cycle and free access to standard food (Sangyang
Co., Osen, Korea) and water. Acclimation was carried out for five days before the experi-
ments were started. Behavioral experiments were conducted in accordance with the Guide
for Care and Use of Laboratory Animals of the National Research Council (NRC, 1996) and
were approved by the Committee of Animal Care and Experiment of Dongshin University,
Korea (DSU2019-04-02).

2.8. In Vivo Drug Administration

To stimulate aggregation, 1 mg Aβ1–42 was dissolved in 100 mL sterile physiological
PBS in a tube, which was sealed and incubated for four days at 37 ◦C [41]. After anesthesia,
Aβ1–42 ICV injections were performed as described, and the prepared Aβ1–42 solution (3 µL,
containing 3 µg aggregated Aβ1–42), was injected into the right cerebral ventricle using a 28-
gauge needle with stereotaxic coordinates (in mm), A: −0.22, L: 1.0, V: 2.5, from the bregma,
flow rate of 3 µL/5 min [17,42,43]. On day 1, except for the naïve group that received 3 µL of
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PBS, all mice were injected with 3 µL of a solution containing 3 µg of Aβ1–42. A bee venom
maximum safe dosage of approximately 13.19 mg/kg was previously determined [44].
Another study applied 0.1 mg/kg of bee venom into a mouse vascular neurodegenerative
model [45]. Therefore, we used 0.1 mg/kg of bee venom as well as a second dosage of
1 mg/kg to study any possible dose-dependent effects. Bee venom was administered via a
50 µL subcutaneous (SC) injection at a non-acupoint—the hypochondrium, 10 mm above
the iliac crest [46]—to avoid interference from acupuncture effects. Bee venom injections
were administered on days 3, 5, 7, 9, and 11. The mice were categorized into the following
groups according to treatment (n = 6):

Group 1—PBS ICV + PBS SC;
Group 2—3 µg Aβ1–42 ICV + PBS SC;
Group 3—3 µg Aβ1–42 ICV + bee venom 0.1 mg/kg SC;
Group 4—3 µg Aβ1–42 ICV + bee venom 1 mg/kg SC.

2.9. Morris Water Maze (MWM)

The spatial learning and memory capacity of the mice were assessed by MWM as
previously described, with minor modifications [47]. Briefly, a circular, black-painted water
tank (diameter: 120 cm; height: 50 cm) surrounded by white visual cues—a star, square,
rectangle, and circle—was used. The temperature was maintained at 25 ± 2 ◦C. The tank
was separated into four quadrants, and a black platform (diameter, 10 cm; height, 25 cm)
was in the northwest quadrant. Each time a mouse was introduced to the water maze
experiments, if it was unable to find the platform when time had run out, it would be
gently guided to the platform by hand and moved back to the cage, which was always kept
warm at 32 ◦C. The experimental procedure included 3 subsequent segments. (1) Adaptive
training: On day 6, the animals were left to swim for 100 s in the tank to find the visible
platform 1 cm above the water, three times a day; (2) Escape training: On days 7–10, mice
were left to swim for a maximum of 100 s to find the platform that was submerged 1 cm
below the water, two times a day;(3) Probe test: Immediately after the last hidden platform
test on day 10, the platform was removed and each mouse was left to swim freely for 120 s
to observe their swimming behavior, performed only once for each mouse.

The ANY-maze (Stoelting Co., Wood Lane, IL, USA) animal behavior monitoring
software was used to record the indexes and form a distribution heat map for the last probe
test.

2.10. Collection of Animals Hippocampus and Blood Samples

After the MWM experiment, on day 11, all mice were anesthetized, their chests were
opened, and blood was collected from the hearts. After collection, whole blood was
allowed to clot by leaving it undisturbed at room temperature for 40 min. Subsequently,
serum was separated by centrifugation at 3000 rpm for 10 min at 4 ◦C. Hippocampuses
were also collected from the brains immediately. Within the groups, the hippocampuses
of a subset of animals were used for immunofluorescence analysis (these animals were
perfused with ice-cold 4% paraformaldehyde, and their hippocampuses were fixed with
4% paraformaldehyde overnight at 4 ◦C); the hippocampuses of the other animals were
immediately subjected to biochemical or Western blot analysis the same day.

2.11. Doublecortin Immunofluorescence Staining

Post-fixed brains were incubated with 30% sucrose in PBS for 1 d at 4 ◦C, which was
repeated once with 30% sucrose in PBS solution. The brains were frozen using dry CO2 ice
powder and sliced into 30-µm sagittal sections before being transferred to gelatin-coated
slides [48]. At room temperature, the sections were incubated with 5% bovine calf serum
(1 h) and, subsequently, with doublecortin primary antibody (1:100, 2 h), They were rinsed
in PBS twice for 15 min each, followed by incubation with Alexa Fluor 488 secondary
antibody (Ex/Em = 490/525 nm, 1:200, 2 h) and two additional PBS rinses for 15 min each.
The samples were topped in Fluoromount™ Aqueous Mounting Medium and covered
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with glass coverslips for microscopic imaging. The data were collected using the Invitrogen
EVOS FL Auto Imaging System (Thermo Fisher Scientific, Waltham, MA, USA) with a 30×
objective. The number of doublecortin-positive stained neurons was counted in the same
area of three slides per animal and three animals per group.

2.12. Western Blot Analysis

For the in vitro experiments, cells were grown in 6-well plates, and after 8 h of Aβ1–42
treatment, cell pellets were collected and lysed. For the in vivo samples, the mouse hip-
pocampuses were homogenized with lysate buffer immediately after collection and pro-
ceeded to the next steps on the same day. Western blotting was performed as described
previously [49]. The Amersham™ ImageQuant™ 800 biomolecular imager system (General
Electric, Boston, MA, USA) was used to obtain protein signals. ImageJ software (National In-
stitutes of Health, Bethesda, MD, USA) and the command directory “Process/Binary/Make
Binary” were used to convert the protein band images into a binary version and then
analyzed to collect signal intensities.

2.13. Measurements of ROS, MDA, NO, AchE, and Ach Levels in In Vivo Samples

Hippocampal lysate or serum samples were prepared, and assays were carried out
according to the manufacturer’s instructions. Data were collected using a VersaMax mi-
croplate reader (Molecular Devices, San Jose, CA, USA).

2.14. Statistical Analysis

Data are presented as the mean ± standard deviation (SD) for each group. Differences
in quantitative measurements were assessed by one-way analysis of variance followed by
the Kruskal–Wallis test using Prism software version 8.1. The number of repetitions was
given in this method. Differences were considered significant with p < 0.05.

3. Results
3.1. Bee Venom Exhibits Protective Effects on HT22 Cells against Cytotoxicity Induced by Aβ1–42

To begin the experiment, we determined the cellular safety concentrations of bee
venom. By testing bee venom concentrations of 0.15–50 µg/mL on HT22 cells and checking
the cell availability after 24 h, we concluded that the concentration of 5 µg/mL is the
maximum safe dosage (Figure 1A). Subsequently, for screening the protection effect of
bee venom against Aβ1–42-induced cytotoxic in HT22 cells, 0.15–5 µg/mL bee venom was
screened. As a result, bee venom at 0.5–5 µg/mL exhibited a dose-dependent effect on
HT22 cell availability at 12 to 24 h after Aβ1–42 challenge; therefore, this dosage was selected
for later in vitro experiments (Figure 1A). In addition, at 8 h after Aβ1–42 treatment, we
recorded the cell viability of the Aβ1–42-only treated group as 98.5 ± 3.5%; this level is
approximately 92.2% compared to that of the non-treatment HT22 cells group, whose cell
viability was measured at 108.0 ± 3.9%. We decided to use the cells developed at this time
point for further later analysis, rather than the 24 h time point after the Aβ1–42 treatment.

Cell apoptosis assays were conducted to further confirm the neuroprotective effects
of bee venom. The results revealed that in a dose-dependent manner, bee venom at
0.5–5 µg/mL reduced apoptosis levels in HT22 cells that were under stress induced by
Aβ1–42 (Figure 1B,D). Western blotting analysis indicated that the Bax/Bcl-2 protein ratio
increased three-fold once cells were introduced with Aβ1–42 but decreased when treated
with bee venom (Figure 1E). Other apoptosis-associated proteins, such as AIF, Calpain,
CytoC, and CleaCas3 are also key apoptosis markers that have been studied in HT22
cells [40,50]. Bee venom had dose-dependently regulated the overexpression of these
proteins, indicating a good anti-apoptosis effect.
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Figure 1. Bee venom protected HT22 cells against Aβ1–42 induced apoptosis (A) Experiments screened
for cellular safety concentration and possible protective effect against Aβ1–42-stress induced in HT22
cells. First experiment—screening for bee venom cellular safety. The results indicate that 5 µg/mL
was the highest concentration that did not significantly alter HT22 cell availability after 24 h of
incubation (bee venom was pre-treated and cell viability was examined after 24 h). For protective
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effects of bee venom against Aβ1–42 stress. The results indicate that 0.5–5 µg/mL bee venom dose-
dependently ameliorated HT22 cell availability (bee venom was introduced 1 h before 5 µM Aβ1–42

challenge, cell availability was examined every 4 h for one day). (B) Apoptosis-inhibitory effects of
bee venom on Aβ1–42 induced HT-22 cells by flow cytometry analysis with (C) summarized statistics
results. The results indicate that 0.5 to 5 µg/mL of bee venom dose-dependently ameliorated HT22
cell apoptosis under Aβ1–42 (5 µM) stress-induced conditions (8 h after Aβ1–42 (5 µM) challenge, cells
underwent immunofluorescence staining, and cyto flowmetery analysis was carried out). (D) Fluores-
cence microscopy analysis of the apoptosis level of cells from different treatment groups, an imaging
supplement to parts (B,C) (8 h after Aβ1–42 (5 µM) challenge, cells underwent immunofluorescence
staining and analysis). (E) Western blot analysis of key apoptosis proteins. The results indicate that
bee venom (0.5–5) µg/mL dose-dependently stabilized the expression of pro- and anti-apoptosis
proteins under Aβ1–42 stress challenge (8 h after Aβ1–42 (5 µM) challenge, cells were lysed, and
Western blot was performed). Data are shown as mean ± SD in triplicate. # p < 0.01 vs. control;
* p < 0.05 or ** p < 0.01 vs. Aβ1–42 only-treated group.

3.2. Bee Venom Reduces Oxidative Stress Expressions of HT22 Cells during Aβ1–42 Challenge

Aβ1–42 aggregations stimulate cellular redox imbalance, which is considered a main
route of neurodegeneration disorder. Our experiments recorded a sharp rise in cellular
ROS when HT22 cells were introduced with Aβ1–42, whereas bee venom (0.5 to 5 µg/1 mL)
significantly reduced cellular ROS levels (Figure 2A). Further analysis of key oxidative
markers showed that bee venom dose-dependently inhibited the overexpression of the im-
portant oxidative stress markers MDA and LDH. Protein carbonyl, an end-result indicator
of a cellular oxidative stress damage reaction chain, is a specific oxidative stress marker in
various diseases, including Alzheimer’s disease [51]. Our results indicate that 0.5–5 µg/mL
bee venom significantly downregulated cellular protein carbonyl levels (Figure 2B).

3.3. Bee Venom Induces Intrinsic Antioxidant Regulation Nrf2/HO-1 of HT22 Cells against
Aβ1–42-Induced Oxidative Stress Challenge

Damaging oxidative stress is widely considered a key factor in neuro-aging stud-
ies [24]. The ability of whole honeybee venom to regulate cellular antioxidant defense
has not been well addressed in neurology. To explain the mechanisms by which this drug
candidate shields HT22 cells against oxidative stress induced by Aβ1–42, we analyzed the
upregulation of the Nrf2/HO-1 pathway under bee venom pre-treatment. Consistent with
previous studies, Nrf2 nuclear translocation was significantly blocked in Alzheimer pro-
gression [4,5]. Our results indicate that Aβ1–42 treatment reduced Nrf2 migration into the
cellular nucleus, resulting in the downregulation of HO-1 antioxidant enzyme production.
In contrast, bee venom (0.5–5 µg/mL) pre-treatment dose-dependently enhanced Nrf2
nuclear translocation. At 5 µg/mL, bee venom treatment markedly increased Nrf2 nuclear
translocation and HO-1 production by nearly three-fold compared to Aβ1–42 treatment
alone (Figure 2C).

3.4. Effect of Bee Venom on the TrkB/CREB/BDNF Pathway

In neural cellular protective physiology, the TrkB/CREB/BDNF signaling pathway
is known as the key regulator pathway in maintaining neurogenesis and cell functions
and is significant for reinforcing Nrf2/HO-1 upregulation [6,28,40,52]. Bee venom dose-
dependent treatment significantly recovered the phosphorylation of p-TrkB, p-CREB, and
BDNF expression compared to Aβ1–42 treatment alone (Figure 2D). Taken together, our
results show that bee venom demonstrated a potent neuroprotective effect in HT22 cells
under Aβ1–42 stress induced via Nrf2/HO-1 upregulation and the TrkB/CREB/BDNF
pathways.
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Figure 2. Bee venom upregulates Nrf2/HO-1 and BDNF/TrkB/CREB pathways in HT22 cell in
Aβ1–42 induced stress (A) Flow cytometry and fluorescence microscopy imaging analysis to determine
cellular ROS levels, and summarized statistics results calculated with flow cytometry data. The results
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indicated that bee venom (0.5–5 µg/mL) dose-dependently normalized the expression of oxidative
stress under Aβ1–42 challenge (8 h after Aβ1–42 (5 µM) challenge, immunofluorescence analysis
by DCFDA staining was performed). (B) Assay results of MDA, LDH, and protein carbonyls
levels. The results indicate that bee venom (0.5–5 µg/mL) dose-dependently downregulated MDA,
LDH, and protein carbonyl parameters under Aβ1–42 stress challenge (8 h after Aβ1–42 (5 µM)
challenge, measuring kits for MDA, LDH, and protein carbonyls were applied to determine the
parameters). (C) Effect of bee venom on nuclear translocation of Nrf2 and production of HO-1
antioxidant enzyme. The results suggest that bee venom (0.5–5 µg/mL) dose-dependently enhanced
Nrf2 nuclear translocation and increased the expression of the antioxidant enzyme HO-1 in HT22
cells under Aβ1–42 (5 µM) challenge (8 h after Aβ1–42 (5 µM) challenge, whole-cell, cytosolic, and
nuclear proteins were obtained, and Western blot was conducted). (D) Effects of bee venom on
the activation of brain-derived neurotrophic factor signaling. The results suggest that bee venom
enhanced the performance of the BDNF/TrkB/CREB pathway during Aβ1–42 (5 µM) challenge (8 h
after Aβ1–42 (5 µM) challenge, cells were lysed, and Western blot was performed). Data are shown as
mean ± SD in triplicate. # p < 0.01 vs. control; * p < 0.05 or ** p < 0.01 vs. Aβ1–42 only-treated group.

3.5. Bee Venom-Enhanced Learning and Memory Function of Aβ1–42-Induced Cognitive
Impairment in Mice Behavior Experiment

To mimic cognitive deficit in a mouse model, Aβ1–42 ICV injections were performed to
induce an Alzheimer-like stage. MWM tests were sequentially carried out from days 7 to 10.
Bee venom 0.1–1 mg/kg treatments significantly reduced the escape latency of mice on day
10 (Figure 3A), along with improved distribution in the target quadrant and the platform
crossing time in the probe test session (Figure 3B) compared to Aβ1–42 treatment alone.

3.6. In Vivo Immunohistochemistry Study

Located inside the hippocampus, the dentate gyrus region is commonly studied thanks
to its key role in the formation, recall, and discrimination of episodic memory [53]. The
results indicate that Aβ1–42 ICV injection decreased the number of doublecortin-positive
cells in the dentate gyrus by nearly three-fold, whereas bee venom injection (0.1 and
1 mg/kg) dose-dependently recovered this index (Figure 3C).

3.7. Oxidative and Inflammation Markers in Mouse Hippocampus and Serum

Aβ1–42 injections significantly increased ROS, MDA, and NO levels in the hippocampal
tissue and/or mouse serum. We observed that bee venom treatment ameliorated these
ROS levels in a dose-dependent manner (Figure 4A). This proved the effectiveness of bee
venom in downgrading the amount of damaging oxidative stress in vivo.

3.8. Study on In Vivo Cholinergic System

Neurodegeneration is characterized by a significant shortage of acetylcholine and key
neuroreceptors, such as M1 muscarinic acetylcholine receptors (mAchR 1) [54], as well as
an overexpression of acetylcholinesterase (AchE) [55]. In the hippocampal samples, we
observed Aβ1–42 ICV injection resulted in approximately 40% loss in mAchR 1 expression
(Figure 4C), a 1.6-fold increase in AchE activity, and a 70% decrease in ACh levels. However,
they were all effectively stabilized by bee venom pretreatment (Figure 4B).

3.9. Effect of Bee Venom Treatment on the Expressions of Key Marker Proteins

Immunohistochemistry imaging revealed the capacity of bee venom to enhance hip-
pocampal neurogenesis. We further confirmed this via the upregulation of key neurotrophic
proteins, such as BNDF and p-CREB. As shown in Figure 4C, the results suggest that BNDF
and p-CREB in the hippocampus were depleted in the Aβ1–42-only-treated group but were
significantly upregulated in the bee venom-treated groups.

Inflammation is a crucial link that promotes neurodegeneration and is induced by
Aβ1–42 [13–18]. In the previous section, the overexpressed hippocampal NO concentration
was shown to be reduced by bee venom, which was confirmed by the reduction of iNOS
protein expression due to bee venom, after being negatively altered by Aβ1–42 (Figure 4C).
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Figure 3. Bee venom recovers animal cognitive function and hippocampal neuronal development
depleted by Aβ1–42 ICV pre-treatment (A) Protective effects of bee venom on memory in Aβ1–42

-treated mice studied in a Morris water maze experiment. Two tests (A,B) exhibited a decrease in
learning and memory performance when induced with Aβ1–42 ICV, and bee venom (0.1–1 mg/kg)
significantly reversed this cognitive dysfunction. (A) Animal escape latency performance on days
7 to 10. To conduct this experiment, mice were administered bee venom (0.1 or 1 mg/kg SC) after
Aβ1–42 treatment (5 µg/mouse, ICV), an adaptive training was conducted on day 6, and the escape
training test was performed on days 7 to 10. (B) A probe test was conducted at the end of day 10 to
bolster behavior assessments (the platform was removed, and mice were allowed to swim freely for
120 s to ascertain their remembrance of the disappeared platform location). A color scale denotes the
average allocation position of animals in each group. The circle positioned in the upper-left quadrant
is the removed platform location. (C) Protective effects of bee venom on neuronal cells in the dentate
gyrus region against Aβ1–42 induced stress. The results indicate that Aβ1–42 ICV treatment reduced
neuron neurogenesis significantly, and this was drastically reversed by bee venom (brain sections
were stained with doublecortin protein antibody, and the same areas of hippocampal dentate gyrus
region were observed under a fluorescence microscope). Data are shown as mean ± SD in triplicate.
# p < 0.01 vs. control; * p < 0.05 or ** p < 0.01 vs. Aβ1–42-only-treated group.
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Figure 4. Bee venom regains mouse hippocampus biochemiscal stability of Aβ1–42 ICV pre-treatment
mice (A) Major antioxidant parameters ROS, NO, and MDA were examined in in vivo samples: The
results show that Aβ1–42 ICV treatment significantly increased oxidative stress in the hippocampus
and serum, which was reversed by bee venom treatment (hippocampus extract and serum were
prepared, and ROS, NO, and MDA levels were examined with respective measuring kits instructions).
(B) Levels of AchE activity and Ach content in the mouse hippocampal. The cholinergic system
exhibited amelioration against Aβ1–42 ICV-induced neurodegeneration as bee venom was admin-
istered (hippocampus extract were prepared, AchE and Ach levels were examined with respective
measuring kits instructions). (C) Levels of BDNF, p-CREB, iNOS, and mAchR1 protein expression
in mouse hippocampus. Bee venom dose-dependently exhibited protective effects against Aβ1–42-
induced neuro-imbalance in vivo (Western blot analyses were conducted on protein extracts from
hippocampal tissue). Data are shown as mean ± SD in triplicate. # p < 0.01 vs. control; * p < 0.05 or
** p < 0.01 vs. Aβ1–42-only-treated group.

4. Discussion

Natural aging neurodegenerative diseases, including Alzheimer’s disease, result in
decreased human cognitive function, reduced human life span, and an overall decline in
well-being [56]. The brain is sensitive to oxidative stress, and in comparison to other organs,
the brain contains many oxidized unsaturated fatty acids and lipid peroxidation content.
Regular brain activity also consumes higher oxygen per unit weight, and this nonstop
metabolism constantly produces damaging oxidative stress [57].

During aging, Aβ is a byproduct of the degradation of the amyloid-beta precursor
protein—an important functional protein that is concentrated in neuronal synapses. Accu-
mulated Aβ naturally forms aggregates over time and alters the intercellular redox balance
of neurons [24]. Neural cellular physiological processes, including defensive mechanisms
and neurogenesis signaling activities, are regulated by electrophiles and ROS. Current
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trends strongly consider imbalanced ROS and excessive electrophiles as leading triggers
of neural cell injury, whereas oxidative stress is crucial for the onset and progression of
chief cerebrovascular and neurodegenerative disorders. These include Alzheimer’s dis-
ease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease, stroke, and
aging. Nrf2 activation and nuclear translocation are decreased in neurodegenerative dis-
orders. Nrf2 is the key modulator of the xenobiotic-activated receptor and is responsible
for stimulating the antioxidative response pathway, neutralizing excessive oxidative stress,
and maintaining cellular redox balance. Overwhelming oxidative stress and the defeat of
the cellular intrinsic antioxidant defense barrier subsequently results in neuroinflamma-
tion [29–31,33]. Therefore, a holistic approach exists if a drug candidate exhibits neural cell
Nfr2/HO-1 upregulation [4,5].

Previous cardiology and renal studies have suggested that melittin, the major compo-
nent, makes up more than half of bee venom’s dry weight, stimulates the nuclear translo-
cation of Nrf2 [34,35], and further upregulates HO-1 expression. Bee venom has proven
itself in upregulating the expression of BDNF via activation of ERK [45], which suggests
a positive effect on the TrkB/CREB/BDNF pathway, which promotes neural cell health
and is key to reinforcing the regulation of cellular intrinsic antioxidant defense [6,57–59].
Therefore, bee venom has great potential for protecting neuron cells, such as HT22, against
neurodegeneration promoted by Aβ-induced oxidative stress by regulating the Nrf2/HO-1
pathway, which is supported by the TrkB/CREB/BDNF pathway. In addition, a similar
antioxidative protective effect might be observed in an Aβ-induced in vivo model, followed
by a series of positive effects on the recovery of depleted cognitive memory, anatomical
neurogenesis, neurotrophic factors, and the cholinergic system, as well as the normalization
of an over-stimulated inflammation reaction.

We previously published an article that suggested melittin to upregulate both Nrf2/HO-
1 and BDNF/TrkB/CREB, and slow down amyloid-beta neuro damage. Nrf2/HO-1 path-
way normalization, is a strong pillar in anti-neurodegeneration strategies [4,5,7]. Knowing
fully the characteristic of a medicine is important as it is the basement from which a razor-
sharp clinical therapeutic plan can be developed. Therefore, even though melittin is the
major component of bee venom, without a conducting proper study, it should not be taken
for granted that bee venom can also upregulate Nrf2/HO-1 to protect neuro-disorder
conditions.

As mentioned, the ability of bee venom to normalize depleted HO-1 levels and combat
ROS production was mentioned in other steatohepatitis [36], wound healing [37], and
hepatitis [38] studies, but has not been examined in anti-neuro-disorder research. In the
current in vitro study, our results demonstrate that bee venom reversed ROS, MDA, SOD,
and protein carbonyl production induced by Aβ1–42. To further explain these phenomena,
we examined the effects of bee venom on the activation of the Nrf2/HO-1 signaling
pathway. HO-1 is an intrinsic antioxidant enzyme that is considered the first line of cellular
defense against oxidative damage [60]. Nrf2 is a transcription factor for HO-1. In the
primitive stage, Nrf2 is locked within the Nrf2-Keap1 complex, and appropriate cellular
protection stimulation can lead to the liberation of Nrf2 from the complex, thus promoting
this transcription factor to migrate into the nucleus. Bee venom markedly upregulated
the expression of Nrf2 in the nucleus, thus enhancing the overall production of HO-1
antioxidant enzyme activity, suggesting that the positive effect of bee venom on Aβ1–42-
induced HT22 cell injury was attributed to its antioxidant properties.

The TrkB/CREB/BDNF pathway is commonly studied due to its antioxidant properties,
owing to its capacity to significantly reinforce Nrf2/HO-1 upregulation [40,52,57,59,61,62].
TrkB activation can stimulate the simultaneous upregulation of intracellular antioxidant
defenses and brain-derived neurotrophic factor neuro-proliferative mechanisms [6]. In
the current study, the presence of Aβ1–42 significantly depleted the TrkB/CREB/BDNF
pathway. Remarkably, bee venom pre-treatment stimulated the production of p-TrkB and
p-CREB, and in turn, increased the expression of BDNF [63]. Moreover, BDNF has been
shown to bind to subsets of TrkB receptors, thus further upregulates neural proliferation
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and enhanced neurogenesis, increasing the neuronal cell’s ability to combat oxidative
stress [64,65]. As mentioned, in previous studies of bee venom in cell models which
seem to lack the significance of BDNF/TrkB/CREB, such as studies on steatohepatitis [36],
wound healing [37], and hepatitis [38], bee venom also showed a remarkable ability to
upregulate the Nrf2/HO-1 pathway. If this assumption is correct, it hints that bee venom
could upregulate HO-1 production as the primary effect. However, it is unclear whether
bee venom could directly enhance the TrkB/CREB/BDNF route itself, or if this effect is
a result of cell redox stabilization thanks to maintained HO-1 levels. The recovery of this
dominant neurotrophic not only ameliorates neuron cell metabolisms but also provides
enhancement back to the Nrf2-ARE system through vibrant neurotrophic downstream
signaling pathways that promote proliferation, such as the PI3K/Akt, MAPK (Ras/ref/Erk),
and PLCγ (PKC or CaMK) [6]. Drug strategies targeting a single pathway usually do not
achieve holistic results, and the evidence that bee venom enhances the cellular intrinsic
antioxidative barrier as well as the neurotrophic system suggests that bee venom is an
effective medicine for neurodegenerative disorders.

For in vivo research, the ICV injection of Aβ1–42 into mouse brains was established as a
means of inducing oxidative stress and neuroinflammation, suppressing neurogenesis, and
promoting cognitive impairments. This model depicts significant grades of Alzheimer’s
progression symptoms and neurodegeneration results in general [13–18].

In this study, bee venom significantly restored the memory and learning capabilities
of animals with cognitive impairment induced by Aβ. The neuroprocessing proficiency
of mice is directly associated with hippocampal functioning, and Alzheimer’s disease
patients also show signs of significant hippocampal dysfunction [66]. The hippocampal
dentate gyrus is regarded as a key element in the development, recall, and prejudice of
episodic memory and was, therefore, chosen for this study [53]. The significant increase
in neurogenesis in this crucial hippocampal region proves the effect of bee venom at an
anatomical scale.

The overexpression of oxidative stress level is closely related to pathological progres-
sion. To confirm the antioxidant effects of bee venom on the in vivo model, we measured
ROS and MDA levels in the hippocampus and serum; these parameters were sharply in-
creased due to Aβ1–42 ICV, and bee venom pre-treatment clearly decreased these oxidative
stress markers. Bee venom also reduced the amount of NO buildup and iNOS protein
expression in the hippocampus, which implies a reduction in neuronal-derived nitric oxide,
a vital factor promoting neural diseases [67,68].

The balance of the cholinergic system is the foothold in cognitive function [69]. Previ-
ous studies have revealed that Alzheimer’s patients express significantly downregulated
levels of mAChR 1; moreover, it is the main neuroreceptor in the cholinergic system [69].
Within the synaptic cleft, ACh attaches to postsynaptic mAChRs, and the synaptic appa-
ratus is linked to the cyclic adenosine monophosphate/protein kinase A/CREB pathway.
This crossing echoes the reality that the cholinergic system and neural neurotrophic factor
signaling are reciprocal entities. The dysfunction of one can have a negative effect on the
other, and they both synergistically facilitate the basis for brain cognitive tasks [70]. In our
present study, bee venom significantly upregulated mAChR1 expression and regulated
AChE and ACh levels, which were negatively disrupted by Aβ1–42. To confirm the effects
of bee venom on neuron biochemistry, we assessed the intercellular neurotrophic factor
pathway CREB/BDNF [71], which was upregulated by treatment with bee venom. This is
in line with a previous study that showed that bee venom successfully recovered BDNF
levels in a mouse model of vascular dementia [45]. Consistent with the in vitro exper-
iments, our in vivo results show that bee venom-treated mice also expressed increased
hippocampal p-CREB and BDNF levels, which suggests a significant recovery of brain
neuron metabolism.

In this study, we exhibited bee venom to upregulate the Nrf2 into the nucleus and to
upregulate HO-1 production, which, as mentioned, is a phenomenon observed by many
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researchers [36–38]. The explanation of the mechanisms by which bee venom upregulates
Nrf2 is recommended for research in the future.

5. Conclusions

In neuro-aging, oxidative stress provoked by naturally deposited Aβ is thought to
initiate neurodegenerative diseases and cognitive downfalls. The cellular antioxidant
system is the first line of defense in many disorders, including neurodegeneration. Here,
we revealed for the first time that the wide neuroprotective effects of bee venom are
primarily possible due to its ability to promote Nrf2 nuclear translocation and increase
HO-1 antioxidant enzyme production, a process that is also closely reinforced by the
TrkB/CREB/BDNF pathway. This ability of bee venom to help regain cellular redox
balance promotes its use as a holistic anti-neurodegeneration agent.
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