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Abstract

The impact of pesticides on the health of bee pollinators is determined in part by the capacity

of bee detoxification systems to convert these compounds to less toxic forms. For example,

recent work has shown that cytochrome P450s of the CYP9Q subfamily are critically impor-

tant in defining the sensitivity of honey bees and bumblebees to pesticides, including neoni-

cotinoid insecticides. However, it is currently unclear if solitary bees have functional

equivalents of these enzymes with potentially serious implications in relation to their capac-

ity to metabolise certain insecticides. To address this question, we sequenced the genome

of the red mason bee, Osmia bicornis, the most abundant and economically important soli-

tary bee species in Central Europe. We show that O. bicornis lacks the CYP9Q subfamily of

P450s but, despite this, exhibits low acute toxicity to the N-cyanoamidine neonicotinoid thia-

cloprid. Functional studies revealed that variation in the sensitivity of O. bicornis to N-cya-

noamidine and N-nitroguanidine neonicotinoids does not reside in differences in their affinity

for the nicotinic acetylcholine receptor or speed of cuticular penetration. Rather, a P450

within the CYP9BU subfamily, with recent shared ancestry to the Apidae CYP9Q subfamily,

metabolises thiacloprid in vitro and confers tolerance in vivo. Our data reveal conserved

detoxification pathways in model solitary and eusocial bees despite key differences in the

evolution of specific pesticide-metabolising enzymes in the two species groups. The discov-

ery that P450 enzymes of solitary bees can act as metabolic defence systems against cer-

tain pesticides can be leveraged to avoid negative pesticide impacts on these important

pollinators.
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Author summary

Bees have evolved sophisticated metabolic systems to detoxify the natural toxins encoun-

tered in their environment. Recent work has shown that specific enzymes (cytochrome

P450s) in these biotransformation pathways can be recruited to protect honey bees and

bumblebees against certain synthetic insecticides, including some neonicotinoids. How-

ever, it is unclear if solitary bees that carry out important pollination services have equiva-

lent enzymes that play a key role in defining their sensitivity to insecticides. In this study

we show that the genome of the solitary bee, Osmia bicornis, lacks the subfamily of cyto-

chrome P450 enzymes that break down certain neonicotinoids in eusocial bees. Despite

this, O. bicornis exhibits marked tolerance to the neonicotinoid thiacloprid as a result of

efficient metabolism by a P450 enzyme from an alternative subfamily. The discovery that

O. bicornis has key detoxification enzymes that determine its sensitivity to neonicotinoids

can be leveraged to safeguard the health of this important pollinator.

Introduction

Bee pollinators encounter a wide range of natural and synthetic xenobiotics while foraging or

in the hive, including phytochemicals, mycotoxins produced by fungi, and pesticides [1].

Understanding the toxicological outcomes of bee exposure to these chemicals, in isolation or

combination, is essential to safeguard bee health and the ecosystem services they provide. Like

other insects, bees have sophisticated metabolic systems that mediate the conversion of harm-

ful xenobiotics to less toxic forms, and these detoxification pathways can be critically impor-

tant in defining their sensitivity to xenobiotics including pesticides [2]. In an important recent

example of this cytochrome P450 enzymes belonging to the CYP9Q subfamily were shown to

play a key role in determining the sensitivity of honey bees and bumblebees to neonicotinoid

insecticides [3]. Prior work on honey bees showed that the same P450s also provide protection

against the toxic effects of certain insecticides from the pyrethroid and organophosphate clas-

ses that are used for the control of parasitic Varroamites [4]. Taken together these studies sug-

gest CYP9Q P450s may be important generalist detoxification enzymes. To date our

understanding of bee biochemical defence systems stems from work on eusocial species,

namely honey bees and bumblebees, with much less attention given to solitary species. How-

ever, the majority of bee species are solitary, and there is increasing awareness of the impor-

tance of solitary bees as pollinators of wild plants and certain crops [5–8]. It is currently

unknown to what extent the discoveries on the metabolic systems of honey bees and bumble-

bees extend to solitary bees, and thus if the use of eusocial species as a proxy for solitary species

in ecotoxicological studies is reliable.

The red mason bee, Osmia bicornis (syn. O. rufa) (Hymenoptera: Megachilidae) is the most

abundant and economically important solitary bee species in Central Europe [9]. This species

pollinates a range of wild plants and is also used for commercial pollination, particularly of

fruit crops (almond, peach, apricot, plum, cherry, apple and pear). Understanding O. bicornis-
pesticide interactions is particularly important as it has been recommended as a solitary bee

model for the registration of pesticides in Europe [10]. However, to date, investigations on this

topic have been hampered by a lack of genomic and transcriptomic resources for this species.

In this study we addressed this knowledge and resource gap by generating a high quality

genome assembly of O. bicornis. We then exploited this genomic resource to compare the

complement of P450 genes in O. bicornis with that of other bee species, and identify P450
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enzymes that are important determinants of O. bicornis sensitivity to neonicotinoid

insecticides.

Results

The genome of O. bicornis lacks the CYP9Q subfamily of P450s observed in

eusocial bees

To generate a high-quality genome assembly of O. bicornis we sequenced genomic DNA

extracted from a single haploid male bee using a combination of Illumina paired-end and

mate-pair libraries. Additional RNA sequencing (RNAseq) of male and female bees was also

performed in order to improve the quality of subsequent gene prediction. DNAseq data was

assembled to generate an O. bicornis genome of 212.9 Mb consistent with genome size esti-

mates derived from k-mer analysis of the raw reads (S1 Table). The final assembly comprised

10,223 scaffolds > 1 kb with a scaffold and contig N50 of 604 kb and 303 kb respectively (S2

Table). Structural genome annotation using a workflow incorporating RNAseq data predicted

a total of 14,858 protein-coding genes encoding 18,479 total proteins (S3 Table). The com-

pleteness of the gene space in the assembled genome was assessed using the Benchmarking

Universal Single-Copy Orthologues (BUSCO) pipeline [11] with greater than 99% of Arthro-

poda and Insecta test genes identified as complete in the assembly (S4 Table). Approximately

78% of the predicted genes could be assigned functional annotation based on BLAST searches

against the non-redundant protein database of NCBI (S1 Fig).

The gene repertoire ofO. bicorniswas compared with other colony forming (Apis mellifera,

Apis florea, Bombus terrestris and Bombus impatiens) and solitary bee species (Megachile rotun-
data) by orthology inference (Fig 1A). The combined gene count of these species was 101,561

of which ~90% were assigned to 11,184 gene families. Of these 8,134 gene families were present

inO. bicornis and all other species, and a total of 163 gene families were specific toO. bicornis
compared to 21–97 in the other bee species (Fig 1A). Genes encoding cytochrome P450s were

identified from orthogroups, and individual bee genomes (see methods), and the complete com-

plement of P450s in each bee genome (the CYPome) was curated and named by the P450

nomenclature committee (S5 Table). The genome ofO. bicornis contains 52 functional P450s

(Fig 2B and S2 Fig), a gene count consistent with the other bee species and reduced in compari-

son to other insects, even including other hymenoptera [2]. As for other insect species bee P450

genes group into four main clades (CYP2, CYP3, CYP4 and mitochondrial clans) of which by far

the largest (comprising 33 P450s inO. bicornis) is the CYP3 clan of CYP6, CYP9 and CYP336

(Fig 1A and 1B, S2 Fig). Phylogenetic comparison of the CYP9 family within this clade inO.

bicornis and 11 other bee species [12] revealed thatO. bicornis lacks the CYP9Q subfamily found

in eusocial bee species that has been shown to define the sensitivity of honey bees and bumble-

bees to neonicotinoids (Fig 1C, S3 Fig) [3]. The most closely related subfamily inO. bicorniswas

CYP9BU (represented by CYP9BU1 and CYP9BU2), a newly described subfamily, that appears to

share a relatively recent common ancestor with the CYP9Q subfamily (Fig 1C, S3 Fig).

Despite the lack of CYP9Q P450s O. bicornis exhibits marked variation in

sensitivity to N-nitroguanidine and N-cyanoamidine neonicotinoids

In the absence of the CYP9Q subfamily of P450s it might be expected that O. bicornis would be

more sensitive to neonicotinoids (especially N-cyanoamidine compounds) than honey bees

and bumblebees. To test this we performed acute contact insecticide bioassays using imidaclo-

prid and thiacloprid as representatives of N-nitroguanidine and N-cyanoamidine neonicoti-

noids respectively. Significant differences were found in the tolerance of O. bicornis to the two
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compounds with adult female bees>2,000-fold more sensitive to imidacloprid (LD50 of

0.046 μg/bee) than thiacloprid (LD50 of>100 μg/bee) (Fig 2A). These values are similar to

those reported for honey bees and bumblebees [3,13,14] with imidacloprid classified as ‘highly

toxic’ to O. bicornis according to the categories of the U.S. Environmental Protection Agency,

but thiacloprid classified as ‘practically non-toxic’ upon contact exposure (Fig 2A). Thus these

results clearly show that, despite the lack of CYP9Q P450s, O. bicornis has high levels of toler-

ance to the N-cyanoamidine neonicotinoid thiacloprid.

Fig 1. Comparison of the CYPome of O. bicornis with other bee species. (A) Ortholog analysis of O. bicornis with five other bee species. 1:1:1 indicates

common orthologs with the same number of copies in different species, N:N:N indicates common orthologs with different copy numbers in different species,

UP indicates species specific paralogs, UC indicates all genes which were not assigned to a gene family, CS indicates clade specific genes. Pie charts show the

percentage of genes in the CYPome of each bee species in the CYP2, 3, 4 and mitochondrial clade. (B) Rooted maximum likelihood consensus phylogenetic

tree of the CYPome of the same species shown in panel A. Genes are coloured according to their adscription to different P450 clades. (C) Maximum

likelihood phylogenetic tree of the CYP9 family of P450s in the same species, P450s belonging to the CYP9Q subfamily are highlighted using filled diamonds.

https://doi.org/10.1371/journal.pgen.1007903.g001
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Variation in the sensitivity of O. bicornis to thiacloprid and imidacloprid

does not reside in differences in their affinity for the receptor or speed of

cuticular penetration

The molecular basis of the profound variation in the sensitivity of O. bicornis to imidacloprid

and thiacloprid could reside in differences in: a) their affinity for the target-site, the nicotinic

Fig 2. Toxicodynamics and pharmacokinetics of neonicotinoid sensitivity in O. bicornis. (A) LD50 values for imidacloprid and thiacloprid in

insecticide bioassays for O. bicornis, for comparison data is also shown for A.mellifera and B. terrestris. Sensitivity thresholds are depicted according

to EPA toxicity ratings [45]. Data for A.mellifera is taken from [13,14], data for B. terrestris is taken from [3]. Error bars display 95% CLs (n = 4). (B)

Specific binding of thiacloprid and imidacloprid to O. bicornis nAChRs. Error bars display standard deviation (n = 3). (C) Penetration of

radiolabelled thiacloprid and imidacloprid through the cuticle ofO. bicornis. The percentage of the initial 14C-imidacloprid and 14C-thiacloprid dose

recovered by external cuticular rinsing over 24 hours is shown by dashed lines. The percentage of 14C-imidacloprid and 14C-thiacloprid recovered

from combusted bees (i.e. internalized compound) is shown by solid lines. Error bars display standard deviation (n = 3). (D) Sensitivity ofO. bicornis
to imidacloprid and thiacloprid before and after pre-treatment with the insecticide synergist PBO (piperonyl butoxide). Error bars display 95% CLs

(n = 3).

https://doi.org/10.1371/journal.pgen.1007903.g002
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acetylcholine receptor (nAChR), b) their speed of penetration through the cuticle, or c) the

efficiency of their metabolism. We first examined the affinity of the two compounds for the

target-site using radioligand binding assays performed on O. bicornis head membrane prepa-

rations, and examined the displacement of tritiated imidacloprid by both unlabelled imidaclo-

prid and thiacloprid. Both compounds bound with nM affinity—IC50 of 8.3 nM [95% Cl 4.6,

15.1] for imidacloprid and 2.4 nM [95% Cl, 1.4, 4.1] for thiacloprid (Fig 2B). These values sug-

gest that thiacloprid binds with higher affinity than imidacloprid, however, no significant dif-

ference was observed between the slopes of the regression lines of the two compounds

(p = 0.3). This finding clearly demonstrates that the tolerance of O. bicornis to thiacloprid rela-

tive to imidacloprid is not a consequence of a reduced affinity of the former for the nAChR.

To explore the rate of penetration of these two compounds through the cuticle ofO. bicornis
the uptake of [14C]imidacloprid and [14C]thiacloprid after application to the dorsal thorax was

compared. No significant differences were observed in the amount of radiolabelled thiacloprid

and imidacloprid recovered from the cuticle or acetone combusted whole bees at any time point

post-application (the final uptake through the cuticle after 24h was 27% of [14C]imidacloprid and

28% of [14C]thiacloprid, Fig 2C). Thus, the differential sensitivity ofO. bicornis to imidacloprid

and thiacloprid is not a result of variation in their speed of penetration through the cuticle.

The tolerance of O. bicornis to thiacloprid is mediated by CYP9BU P450s

Insecticide synergists that inhibit detoxification enzymes have been used to explore the role of

metabolism in the tolerance of honey bees and bumblebees to certain neonicotinoids. Specifi-

cally, the use of the P450 inhibitor piperonyl butoxide (PBO) provided strong initial evidence

that P450s underpin the tolerance of both bee species to N-cyanoamidine neonicotinoids

[3,15]. We therefore examined the effect of PBO pre-treatment on the sensitivity of O. bicornis
to thiacloprid and imidacloprid in insecticide bioassays. No significant difference was observed

in the sensitivity of O. bicornis to imidacloprid with or without PBO, however, bees pre-treated

with PBO became >7-fold more sensitive to thiacloprid (Fig 2D), suggesting that P450s play

an important role in defining the sensitivity of O. bicornis to neonicotinoids.

As detailed above, based on phylogeny, CYP9BU1 and CYP9BU2 are clearly the most

closely related P450s in O. bicornis to the Apidae CYP9Q subfamily which metabolise thiaclo-

prid in honey bees and bumblebees (Fig 1C, S3 Fig). We therefore examined the capacity of

these P450s to metabolise thiacloprid and imidacloprid in vitro by individually coexpressing

them with house fly cytochrome P450 reductase (CPR) in an insect cell line. Incubation of

microsomal preparations containing each P450 and CPR with either thiacloprid or imidaclo-

prid, and analysis of the metabolites produced by liquid chromatography tandem mass spec-

trometry (LC-MS/MS), revealed that both CYP9BU1 and CYP9BU2 metabolise these

compounds to their hydroxylated forms (5-hydroxy thiacloprid and 5-hydroxy imidacloprid

respectively) (Fig 3A). Both P450s metabolised thiacloprid with significantly greater efficiency

than imidacloprid (Fig 3A) consistent with the relative sensitivity of O. bicornis to these com-

pounds. To provide additional evidence that these P450s confer tolerance to N-cyanoamidine

neonicotinoids in vivo, we created transgenic lines of Drosophila melanogaster expressing

CYP9BU1, or CYP9BU2 and examined their sensitivity to imidacloprid and thiacloprid. Flies

expressing the CYP9BU1 transgene were ~4 times less sensitive to thiacloprid than control

flies of the same genetic background without the transgene in insecticide bioassays (Fig 3B, S6

Table). In contrast flies expressing CYP9BU2 showed no significant resistance to thiacloprid.

In bioassays using imidacloprid no significant differences in sensitivity were observed between

flies with either of the two transgenes and control flies. These results demonstrate that the tran-

scription of CYP9BU1 confers intrinsic tolerance to thiacloprid in vivo.
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Expression profiling of O. bicornis P450s reveals constitutive expression of

CYP9BU1 in tissues associated with xenobiotic detoxification

Characterising when and where the neonicotinoid-metabolising P450s identified in this study

are expressed is an important step in understanding their capacity to protect O. bicornis in
vivo. To investigate this, we 1) explored changes in their expression in response to exposure to

sublethal doses of imidacloprid and thiacloprid, and 2) examined their expression in tissues

that are involved in xenobiotic detoxification, or are sites of insecticide action.

To investigate if the expression of any genes encoding P450s could be induced by neonicoti-

noid exposure RNAseq was performed on adult female O. bicornis 24 h after exposure to the

LD10 of thiacloprid, imidacloprid or the solvent used to dissolve insecticides alone (as a con-

trol). Differentially expressed genes (corrected p value of<0.05) between control and treat-

ments were identified and are shown in full in S7 Table and S8 Table. In general, changes in

gene expression were modest with just 27 genes significantly upregulated after imidacloprid

exposure and 16 genes upregulated after thiacloprid exposure. The function of these differen-

tially expressed genes was either unknown or is unrelated to xenobiotic detoxification, and no

P450 showed a significant increase in expression upon exposure to either neonicotinoid (Fig

4A, S7 Table and S8 Table). These findings suggest that constitutive rather than induced

expression of the P450s identified in this study is more important in their role in pesticide

detoxification.

The expression of neonicotinoid-metabolising P450s in the brain, midgut and Malpighian

tubules of O. bicornis was assessed by quantitative PCR (Fig 4B). CYP9BU1 was found to be

highly expressed in the Malpighian tubules, the functional equivalents of vertebrate kidneys,

consistent with a primary role in xenobiotic detoxification. In contrast CYP9BU2 was

expressed at equivalent levels in the Malpighian tubules, the midgut and the brain (Fig 4B).

Fig 3. Identification of neonicotinoid metabolising P450s in O. bicornis. (A) Metabolism of thiacloprid and imidacloprid by recombinantly expressed CYP9BU1 and

CYP9BU2. Production of 5-hydroxy thiacloprid and 5-hydroxy imidacloprid is displayed per pmol of P450 (�P<0.05, ����P<0.0001; paired t test). Error bars display

standard deviation (n = 3). (B) Sensitivity of transgenic flies expressing CYP9BU1 and CYP9BU2 to thiacloprid and imidacloprid in insecticide bioassays. Data is

expressed as resistance ratio (RR) compared to a control line (flies of the same genetic background but without the transgene). Significant changes in sensitivity between

control and transgenic lines are indicated by an asterisk and are based on non-overlapping 95% fiducial limits of LC50 values (n = 5). See also S6 Table.

https://doi.org/10.1371/journal.pgen.1007903.g003
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Discussion

The genomes of all bee species sequenced to date have a considerably reduced complement of

cytochrome P450s compared to those of other insect species [12,16]. This suggests that, like

humans [17], bees may depend on a relatively small subset of generalist P450s for the detoxifi-

cation of xenobiotics [2]. An emerging body of work on eusocial bees has provided strong sup-

port for this hypothesis, with P450s of the CYP9Q subfamily identified as metabolisers of

insecticides from three different classes [3,4], and key determinants of honey bee and bumble

bee sensitivity to neonicotinoids [3]. In this study we examined the extent to which these find-

ings apply to solitary bees, using the red mason bee, O. bicornis as a model. Consistent with

data from honey bees and bumblebees sequencing of the O. bicornis genome revealed a

reduced P450 inventory in comparison to most other insects, however, in contrast to these spe-

cies no members of the CYP9Q P450 subfamily were present in the curated CYPome. We

interrogated the recently published genomes of several other solitary and eusocial bee species

[12] and confirmed that the CYP9Q subfamily is ubiquitous in the CYPome of sequenced

Fig 4. Expression of O. bicornis P450s after exposure to neonicotinoids and in different tissues. (A) Expression heat map of O. bicornis P450s after exposure

of female bees to imidacloprid (IMI), thiacloprid (THI) or insecticide dilutent (Ctrl). Expression in each of the four replicates per treatment is derived from

scaled FPKM values for each P450 transcript. A maximum likelihood tree ofOsmia bicornis P450s is shown to the left of the heatmap. (B) Relative expression

(fold change) of O. bicornis thiacloprid metabolising CYP9 genes in different tissues of female bees measured by quantitative PCR. Significant differences

(p<0.01) in expression between tissues is denoted using an asterisk above bars as determined by one-way ANOVA with post hoc Tukey HSD.

https://doi.org/10.1371/journal.pgen.1007903.g004
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social bees (represented by 2–3 genes in most species) but missing in all solitary bee genomes

apart fromHabropoda laboriosa, a species in the family Apidae, which has a single CYP9Q

gene (CYP9Q9) (S3 Fig). Solitary bees are the ancestral state from which social bees evolved

[12] suggesting the CYP9Q subfamily expanded after social bees diverged from solitary bees. A

rapid birth–death model of evolution is characteristic of xenobiotic-metabolizing P450s, in

contrast to P450s with endogenous functions [18], and the expansion of the CYP9Q subfamily

in social bees may have occurred to allow xenobiotics specifically associated with this life his-

tory to be detoxified. In relation to this, recent analysis of the CYPomes of ten bee species has

suggested that the expansion of the CYP6AS subfamily in perennial eusocial bees resulted

from increased exposure to phytochemcials, as a result of the concentration of nectar into

honey, pollen into beebread and plant resins into propolis [19].

The finding that most solitary bees lack the CYP9Q subfamily raises important questions

about their capacity to metabolise and, by extension tolerate, certain pesticides. Thus, a key

finding from our study is that despite the absence of the CYP9Q subfamily O. bicornis exhibits

similar levels of sensitivity to the neonicotinoids imidacloprid and thiacloprid as honey bees

and bumblebees, and, like these species, marked tolerance to the latter compound. We show

that the observed variation in the sensitivity of O. bicornis to thiacloprid and imidacloprid

does not result from differences in their affinity for the nAChR, or speed of cuticular penetra-

tion, but rather variation in their speed/efficiency of metabolism by cytochrome P450s. Func-

tional characterisation revealed that, in the absence of the CYP9Q subfamily, O. bicornis
employs P450s from the CYP9BU subfamily to detoxify the N-cyanoamidine neonicotinoid

thiacloprid. While the CYP9BU subfamily is currently unique to O. bicornis phylogeny shows

it is more closely related to the CYP9Q subfamily, with which it appears to share a recent com-

mon ancestor, than any other bee P450 subfamily. Given that we show that CYP9BU1 appears

to be particularly effective in metabolising N-cyanoamidine neonicotinoids it will be important

to explore which P450s other solitary bee species, such as the economically important leafcut-

ter bee,Megachile rotundata, use to detoxify pesticides in the absence of this subfamily (S3

Fig).

Work on other insect species has shown that insecticide-metabolising P450s may be consti-

tutively expressed or induced upon exposure to xenobiotic substrates [20]. We found no

evidence of induction of any O. bicornis P450s in response to exposure to sublethal concentra-

tions of thiacloprid or imidacloprid suggesting that constitutive expression of these enzymes

provides protection against neonicotinoids. Their detoxification capacity may be further

enhanced by expression in tissues with specialised roles in metabolism/excretion, and it is

notable that CYP9BU1 is expressed at particularly high levels in the Malpighian tubules. The

overexpression of CYP9BU1 in these osmoregulatory and detoxifying organs is highly consis-

tent with a primary role in xenobiotic metabolism and parallels the high expression of

CYP9Q3 in this tissue—the primary metaboliser of neonicotinoids in honey bees [3].

In summary, we show that the solitary bee O. bicornis is equipped with key biochemical

defence enzymes that provide protection against certain insecticides. Together with previous

work this demonstrates that while the underlying P450s involved may be different in O. bicor-
nis and eusocial bees, the overarching detoxification pathways used by these species to metabo-

lise neonicotinoids is conserved. Identification of the P450s responsible for the observed

tolerance of O. bicornis to N-cyanoamidine neonicotinoids can be used to support ecotoxico-

logical risk assessment and safeguard the health of this important pollinator. For example, the

recombinant enzymes developed in our study can be used to screen existing pesticides to iden-

tify and avoid synergistic pesticide-pesticide interactions that inhibit these enzymes [21], and

to examine the metabolic liability of future lead compounds as part of efforts to develop pest-

selective chemistry. The genomic resources, tools and knowledge generated in this study are
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particularly timely as O. bicornis has recently been proposed as a representative solitary bee

species for inclusion in future risk assessment of plant protection products in Europe [10].

Materials and methods

Sequencing and de novo assembly of the O. bicornis genome

Genomic DNA was extracted from a single male bee using the E.Z.N.A Insect DNA kit

(Omega Bio-Tek) following the manufacturer’s protocol. DNA quantity and quality was

assessed by spectrophotometry using a NanoDrop (Thermo Scientific), Qubit assay (Thermo-

Fisher) and gel electrophoresis. Sufficient DNA from a single male bee was obtained for the

preparation of a single PCR-free paired-end library and 5 long mate pair Nextera libraries that

were sequenced on an Illumina HiSeq 2500 using a 250bp read metric at Earlham Institute,

Norwich, UK. To improve the quality of subsequent gene prediction RNA sequencing was also

performed. For this RNA was extracted from female and male O. bicornis 24 h after emergence

using the Isolate RNA Mini Kit (Bioline) according to the manufacturer’s instructions. The

quantity and quality of RNA was checked as described above. RNA was used as a template for

the generation of barcoded libraries (TrueSeq RNA library preparation, Illumina) and RNA

samples sequenced to high coverage on an Illumina HiSeq2500 flowcell (100 bp paired-end

reads). All sequence data have been deposited under NCBI BioProject PRJNA285788.

Reads were assembled using DISCOVAR_de-novo–v 52488 [22] using default parameters.

All sequences >500 bp from the initial draft assembly were used in scaffolding with 5 Illumina

Nextera mate-pair libraries using Redundans–v 0.12a [23] with default parameters. To further

increase the contiguity of the draft genome we applied a third scaffolding step, making use of

the RNAseq data. Transcriptome contig sequences of O. bicornis and protein sequences of a

closely related speciesMegachile rotundata, were mapped sequentially using L_RNA_scaf-

folder [24] and PEP_scaffolder [25]. The first round of gene prediction was performed using

BRAKER–v 2.1.0 [26] utilising RNAseq data to improve gene calling. To generate training sets

for ab-initio gene modellers AUGUSTUS [27] and SNAP [28], we searched core eukaryotic

and insecta orthologous genes in the O. bicornis assembly using CEGMA–v 2.5.0 [29] and

BUSCO–v 3.0.0 [11] respectively. BUSCO gene models were used to train AUGUSTUS–v

2.5.5, and SNAP (https://github.com/KorfLab/SNAP) was trained using the CEGMA gene

models. Another set of hidden markov gene models was generated by GeneMark-ES–v 4.32.0

[30]. In addition, a custom O. bicornis specific repeat library was built from the assembly using

RepeatModeler–v 1.0.4 [31]. To make use of expression data and exploit spliced alignments in

genome annotation, expressed transcripts assembled from RNAseq data were further mapped

to the O. bicornis genome using PASA–v 2.3.3 [32]. We initially ran MAKER2 [33] with just

the O. bicornis assembly and EST data, collected from NCBI, followed by three consecutive

iterations with the draft genome sequence, transcriptome dataset, models from BRAKER,

SNAP and GeneMark-ES, the O. bicornis specific repeat library and the Swiss-Prot database

(accessed at May 23, 2016). Between iterations, the BRAKER and SNAP models were

retrained. As BRAKER models are originally predicted from AUGUSTUS, we used AUGUS-

TUS to train BRAKER models in each successive MAKER2 iteration according to the best-

practice MAKER2 workflow. Finally, BRAKER and MAKER2 prediction sets, including PASA

alignments, alignment ofM. rotundata proteins using exonerate–v 2.4.0 were combined to

generate a non-redundant gene set using EvidenceModeler–v 1.1.1 [34]. The final annotation

set for O. bicornis was compared to other bee genomes to characterize orthology. The prote-

omes of Apis mellifera, Apis florea, Bombus terrestris, Bombus impatiens,Megachile rotundata,

were downloaded from NCBI, and OrthoFinder–v 1.1.8 [35] was used to define orthologous

groups of genes between these peptide sets. P450 sequences were recovered from the bee
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species using three approaches: 1) Text searches of existing annotation, 2) mining P450 gene

sequences from ortholog data generated above, and 3) iterative BLAST searches using A.melli-
fera curated P450 genes as queries. All obtained sequences were then manually inspected and

curated to generate a final list of P450 genes for each species which were named by the P450

nomenclature committee. Accession numbers are provided in S5 Table.

Phylogenetic analysis

For phylogenetic analysis, manually curated protein sequences of cytochrome P450 genes were

aligned using MUSCLE v3.8.31 [36]. FMO2-like (Protein ID: XP_016772196.1) and

CYP315A1 from A.mellifera were used as an outgroup for phylogenies displayed in Fig 1 and

S3 Fig respectively. An initial likelihood phylogenetic tree was created using the R package

“phangorn: Phylogenetic Reconstruction and Analysis” v.2.4.0 [37]. Parameters including pro-

portion of variable size (I) and gamma rate (G) were optimized using amino acid substitution

matrices JTT for Fig 1 and S3 Fig and LG for S2 Fig based on minimum Bayesian information

criterion (S9 Table) [37]. Finally rooted (Fig 1 and S3 Fig) or unrooted (S2 Fig) consensus

trees of 1,000x bootstrapping using nearest-neighbor interchange were created and visualized

using the R package “ggtree” v1.12.0 [37,38].

Acute contact toxicity bioassays

O. bicornis cocoons were purchased from Dr Schubert Plant Breeding (Landsberg, Germany)

and stored at 4˚C in constant darkness. To trigger emergence cocoons were transferred to an

incubator (25˚C, 55% RH, L16:D8) with emerged bees fed ab libitum with Biogluc (62% sugar

concentration consisting of 37.5% fructose, 34.5% glucose, 25% sucrose, 2% maltose, and 1%

oligosaccharides) (Biobest), soaked into a piece of cotton wool inside a plastic dish. Males

(which are usually first to emerge) were removed from cages and discarded to reduce any

unnecessary stress to the females used in insecticide bioassays.

Acute contact toxicity bioassays on unmated 2 day old female O. bicornis were conducted

following the OECD Honey Bee Test guidelines, with modification where necessary [39]. Bees

were anaesthetised with CO2 for 5–10 seconds to allow application of insecticide. 1 μL of tech-

nical grade imidacloprid was applied to the dorsal thorax of each bee at concentrations of

0.0001, 0.001, 0.01, 0.1, 1, and 10 μg/μL. No mortality was observed using the same concentra-

tions of thiacloprid so a limit test of 100 μg/bee was performed. Control bees were treated with

1 μL 100% acetone. Three replicates of 10 bees were tested for each concentration. Tested indi-

viduals were placed back into cages in the incubator (25˚C, 55% RH, L16:D8), with five bees

per cage. In piperonyl butoxide (PBO) synergist bioassays, bees were first treated with the max-

imum sublethal dose (in this case 100 μg/μL) of PBO followed by insecticide one hour later.

Synergist bioassays included an additional control group treated only with PBO. Mortality was

assessed 48 and 72 hours after application. Probit analysis was used to calculate the LD50 val-

ues, slope, and synergism ratio (where relevant) for each insecticide (Genstat v.18 (VSNI

2015)).

Radioligand competition binding studies

[3H]imidacloprid (specific activity 1.406 GBq μmol−1) displacement studies were conducted

using membrane preparations isolated from frozen (−80˚C) O. bicornis heads, following previ-

ously published protocols [13]. Briefly, bee heads weighing 10 g were homogenized in 200 ml

ice-cold 0.1 M potassium phosphate buffer, pH 7.4 containing 95 mM sucrose using a motor-

driven Ultra Turrax blender. The homogenate was then centrifuged for 10 min at 1200 g and

the resulting supernatant filtered through five layers of cheesecloth with protein concentration
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determined using Bradford reagent (Sigma) and bovine serum albumin (BSA) as a reference.

Assays were performed in a 96-well microtitre plate with bonded GF/C filter membrane (Pack-

ard UniFilter-96, GF/C) and consisted of 200 μl of homogenate (0.48 mg protein), 25 μl of

[3H]imidacloprid (576 pM) and 25 μl of competing ligand. Ligand concentrations used ranged

from 0.001 to 10 000 nM and were tested in triplicate per competition assay. The assay was

started by the addition of homogenate and incubated for 60 min at room temperature. Bound

[3H]imidacloprid was quantified by filtration into a second 96-well filter plate (conditioned

with ice-cold 100 mM potassium phosphate buffer, pH 7.4 (including BSA 5 g litre−1)) using a

commercial cell harvester (Brandel). After three washing steps (1 ml each) with buffer the

96-well filter plates were dried overnight. Each well was then loaded with 25 μl of scintillation

cocktail (Microszint-O-Filtercount, Packard) and the plate counted in a Topcount scintillation

counter (Packard). Non-specific binding was determined using a final concentration of 10 μM

unlabelled imidacloprid. All binding experiments were repeated twice using three replicates

per tested ligand concentration. Data were analysed using a 4 parameter logistic non-linear fit-

ting routine (GraphPad Prism version 7 (GraphPad Software, CA, USA)) in order to calculate

IC50-values (concentration of unlabelled ligand displacing 50% of [3H]imidacloprid from its

binding site). Non-linear regression model fitting and statistical comparison of the slopes

obtained was performed in the drc package in R [40].

Pharmacokinetic studies

Bees were anaesthetised with CO2 for 5–10 seconds to allow application of insecticide.

5,000 ppm of [14C]imidacloprid or [14C]thiacloprid was applied to the dorsal thorax of each

bee using a Hamilton repeating dispenser. Three replicates of five bees were placed into cages

and fed a 50% sucrose solution from vertically hanging 2 ml syringes. Control bees were

treated with acetone. Radiolabelled insecticide was rinsed off of each group of bees at set time

intervals (0, 2, 4 and 24 hours after application) with acetonitrile water (90:10) three times.

The acetone-washed bees were then individually combusted at 900˚C in an Ox 120c oxidizer

(Harvey Instruments Co., USA) followed by liquid scintillation counting of the released 14CO2

in an alkaline scintillation cocktail (Ultima Gold, PerkinElmer) using a liquid scintillation ana-

lyser (Perkin Elmer Tri-Carb 2910 TR). The levels of excreted [14C]imidacloprid or [14C]thia-

cloprid, and/or metabolites, were measured by wiping cages with filter papers dipped in

acetone and 0.5 mL aliquots of cuticular rinse or filter papers were added to 3 mL of scintilla-

tion fluid cocktail and the radioactivity was quantified by liquid scintillation analysis as above.

An unpaired t-test was used to compare the penetration of the two compounds at each time

point.

PCR validation of candidate P450s

Sequences of O. bicornis candidate genes were verified by PCR as follows: Adult female O.

bicornis were flash frozen in liquid nitrogen and stored at -80˚C prior to extractions. RNA was

extracted from a pool of 3–5 bees using the RNeasy Plus kit (QIAGEN) following the manufac-

turer’s protocol. The quantity and quality of RNA were assessed as described above. First-

strand cDNA was synthesised at a concentration of 200 ng/μL by reverse transcription using

SuperScript III Reverse Transcriptase (Invitrogen) according to the manufacturer’s protocol.

25μL reactions contained 1.5U DreamTaq DNA Polymerase (Thermofisher), 10mM of for-

ward and reverse primers (S10 Table) and 200 ng of cDNA. PCR reaction temperature cycling

conditions were 95˚C for 2 minutes, followed by 35 cycles of 95˚C for 20 seconds (denatur-

ation), 60˚C for 20 seconds (annealing), and 72˚C for 7.5 minutes (elongation). PCR products

were visualised on a 1% agarose gel and purified using QIAquick PCR purification kit
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(QIAGEN). Samples were sequenced by Eurofins (Eurofins Scientific group, Belgium) and

analysed using Geneious v8.1.3 software (Biomatters Ltd, New Zealand).

Functional expression of candidate P450s

O. bicornis P450 genes and house fly NADPH-dependent cytochrome P450 reductase (CPR)

(GenBank accession no. Q07994) genes were codon optimised for expression in lepidopteran

cell lines, synthesized (Geneart, CA, USA) and inserted into the pDEST8 expression vector

(Invitrogen). The PFastbac1 vector with no inserted DNA was used to produce a control virus.

The recombinant baculovirus DNA was constructed and transfected into Trichoplusia ni
(High five cells, Thermo Fisher) using the Bac-to-Bac baculovirus expression system (Invitro-

gen) according to the manufacturer’s instructions. The titre of the recombinant virus was

determined following protocols of the supplier. High Five cells grown to a density of 2 x 106

cells ml-1 were co-infected with recombinant baculoviruses containing each bee P450 and CPR

with a range of MOI (multiplicity of infection) ratios to identify the optimal conditions. Con-

trol cells were co-infected with the baculovirus containing vector with no insert (ctrl-virus)

and the recombinant baculovirus expressing CPR using the same MOI ratios. Ferric citrate

and δ-aminolevulinic acid hydrochloride were added to a final concentration of 0.1 mM at the

time of infection and 24 h after infection to compensate the low levels of endogenous heme in

the insect cells. After 48 h, cells were harvested, washed with PBS, and microsomes of the

membrane fraction prepared according to standard procedures and stored at −80˚C [41].

Briefly, pellets were homogenised for 30 s in 0.1 M Na/K-phosphate buffer, pH 7.4 containing

1 mM EDTA and DTT and 200 mM sucrose using a Fastprep (MP Biomedicals), filtered

through miracloth and centrifuged for 10 min at 680g at 4˚C. The supernatant was then centri-

fuged for 1 h at 100,000g at 4˚C, with the pellet subsequently resuspended in 0.1M Na/K-phos-

phate buffer pH 7.6 containing 1 mM EDTA and DTT and 10% glycerol using a Dounce tissue

grinder. P450 expression and functionality was estimated by measuring CO-difference spectra

in reduced samples using a Specord 200 Plus Spectrophotometer (Analytik Jena) and scanning

from 500 nm to 400 nm [41]. The protein content of samples was determined using Bradford

reagent (Sigma) and bovine serum albumin (BSA) as a reference.

Metabolism assays and UPLC-MS/MS analysis

Metabolism of thiacloprid and imidacloprid was assessed by incubating recombinant P450/

CPR (5 pmol/well) or control virus/CPR (5 pmol/well) with each insecticide (25 μM) in the

presence of an NADPH regeneration system at 30±1˚C, shaking, for 1 hour. Three replicates

were performed for each data point and the total assay volume was 200 μL. Samples incubated

without NADPH served as a control. The reactions were terminated by the addition of ice-

cold acetonitrile (to 80% final concentration), centrifuged for 10 min at 3000 g and the super-

natant analyzed by tandem mass spectrometry as described previously [42]. LC-MS/MS analy-

sis was performed on a Waters Acquity UPLC coupled to a Sciex API 4000 mass spectrometer

and an Agilent Infinity II UHPLC coupled to a Sciex QTRAP 6500 mass spectrometer utilizing

electrospray ionization. For the chromatography on a Waters Acquity HSS T3 column (2.1x50

mm, 1.8 μm), acetonitrile/water/0.1% formic acid was used as the eluent in gradient mode. For

detection and quantification in positive ion mode, the MRM transitions 253 > 186, 269> 202

(thiacloprid, OH-thiacloprid), and 256> 175, 272 > 191 (imidacloprid, OH-imidacloprid)

were monitored. The peak integrals were calibrated externally against a standard calibration

curve. Recovery rates of parent compounds using microsomal fractions without NADPH were

normally close to 100%. Substrate turnover was determined using GraphPad Prism version 7

(GraphPad Software, CA, USA).
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Transgenic expression of CYP9BU1 and CYP9BU2 in Drosophila
melanogaster
CYP9BU1 and CYP9BU2 were codon optimised for D.melanogaster expression and cloned

into the pUASTattB plasmid (GenBank: EF362409.1). These constructs were used to create

transgenic fly lines, which were then tested in insecticide bioassays against imidacloprid and

thiacloprid, as described previously [3].

P450 expression studies

To examine if P450 expression in O. bicornis is induced by exposure to sublethal concentra-

tions of neonicotinoids, imidacloprid and thiacloprid were dissolved in acetone to the highest

concentration possible, before being diluted to the LD10 of imidacloprid (0.0001 μg/bee) and

thiacloprid (0.01 μg/bee) with 50% sucrose (w/v) in order to limit the amount of acetone con-

sumed by bees. Prior to commencing oral bioassays bees underwent a 24 hour ‘training’ period

in the Nicot cages to enable them to learn to feed from the syringes. This was followed by a

16h starvation period to encourage subsequent feeding. 15μL of the insecticide/sucrose solu-

tion was supplied orally to the bees in disposable plastic syringes. Control bees were fed 15μL

of a sucrose solution containing the same volume of acetone used to make up the insecticide/

sucrose solutions. When all of the solution had been consumed the bees were fed ab libitum
with a 50% sucrose solution for 24 h. After this period for each condition four replicates com-

prising 5 bees per replicate were snap frozen in liquid nitrogen and RNA extracted from each

replicate as above. RNA was used as a template for the generation of barcoded libraries (True-

Seq RNA library preparation, Illumina) which were sequenced across two lanes of an Illumina

HiSeq2500 flowcell (100 bp paired end reads). Sequencing was carried out by Earlham Insti-

tute, Norwich, UK. To identify genes differentially expressed between control and the treat-

ment the Tuxedo workflow was used to map with TopHat against the annotated reference

genome, to estimate gene expression with Cufflinks and test for differential expression with

Cuffdiff [43].

To examine the expression of candidate P450 genes in tissues with a known role in detoxifi-

cation or the site of insecticide action the brain, midgut and Malpighian tubules were extracted

from flash frozen adult female O. bicornis. RNAlater-ICE (Life technologies) was used to pre-

serve RNA during dissections. RNA was extracted as above and first-strand cDNA synthesised

using SuperScript III Reverse Transcriptase (Invitrogen) according to the manufacturer’s pro-

tocol. Quantitative RT-PCR was carried out using a Rotor Gene 6000 machine with the ther-

mocycling conditions: 3 minutes at 95˚C followed by 40 cycles of 95˚C for 20 seconds

(denaturation), 60˚C for 20 seconds (annealing), and 72˚C for 7.5 minutes (elongation). A

final melt-curve step was included to rule out any non-specific amplification. 15μL reactions

consisted of 6μL cDNA (10ng), 7μL of SYBR Green Master Mix (Thermofisher Scientific) and

0.25μM of the forward and reverse primers. All primers were designed using the Prime3

primer design tool (http://biotools.umassmed.edu/bioapps/primer3_www.cgi) and are listed

in S10 Table. All primers were designed to amplify a ~200bp region of each target gene with

low percentage identity to other target genes. The efficiency of each primer set was examined

using a standard curve (concentrations 100–0.01ng of cDNA). Elongation Factor α1 and elon-

gation factor γ1 were used as housekeeping genes as these were found to exhibit stable expres-

sion between different tissues. Each data point consisted of three technical replicates and four

biological replicates. Data were analysed using the ΔΔCT method [44] using the geometric

mean of the two housekeeping genes to normalise data.
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genes correctly mapped after combining evidence from BLAST and GO-Slim. (C) Species dis-

tribution of BLAST hits against O. bicornis protein coding genes.
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S2 Fig. Unrooted maximum likelihood consensus phylogenetic tree of O. bicornis P450

genes. Genes are coloured according to their adscription to different P450 clades (CYP2: Blue;

CYP3: Red; CYP4: Green; Mitochondrial: Purple).

(TIF)

S3 Fig. Rooted maximum likelihood consensus phylogenetic tree of the CYP9 family of

P450 gene in 12 bee species. Members of the CYP9Q and CYP9B subfamilies are highlighted

using red circles.
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S4 Fig. K-mer distribution plot generated, from short-read sequencing data, using Geno-

mescope (http://qb.cshl.edu/genomescope/).
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