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Abstract: The natural agent, 1-(2-hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione (HMDB),
has been reported to have growth inhibitory effects on several human cancer cells. However,
the role of HMDB in cervical cancer remains unclear. Herein, we found that HMDB dose- and
time-dependently inhibited growth of HeLa cervical cancer cells, accompanied with G1 cell
cycle arrest. HMDB decreased protein expression of cyclins D1/D3/E and cyclin-dependent kinases
(CDKs) 2/4/6 and reciprocally increased mRNA and protein levels of CDK inhibitors (p15, p16, p21,
and p27), thereby leading to the accumulation of hypophosphorylated retinoblastoma (Rb) protein.
HMDB also triggered the accumulation of acidic vesicles and formation of microtubule-associated
protein-light chain 3 (LC3), followed by increased expression of LC3 and Beclin-1 and decreased
expression of p62, suggesting that HMDB triggered autophagy in HeLa cells. Meanwhile, suppression
of the expression of survivin and Bcl-2 implied that HMDB-induced autophagy is tightly linked
to apoptosis. Exploring the action mechanism, HMDB induced autophagy via the modulation
of AMP-activated protein kinase (AMPK) and mTOR signaling pathway rather than the class
III phosphatidylinositol 3-kinase pathway. These results suggest that HMDB inhibits HeLa cell
growth by eliciting a G1 arrest through modulation of G1 cell cycle regulators and by concomitantly
inducing autophagy through the mediation of AMPK-mTOR and Akt-mTOR pathways, and may be
a promising antitumor agent against cervical cancer.

Keywords: 1-(2-hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione; G1 arrest; autophagy; light chain
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1. Introduction

Cervical cancer is one of the leading causes of gynecologic cancer death in women worldwide
and approximately 500,000 new cervical cancer cases are deduced, contributing to 280,000 deaths each
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year [1]. More than 80% of cervical cancer patients are diagnosed in developing countries [2], and new
cases suffering from cervical cancer are approximately 150,000 in China per year, accounting for about
30% of new cases worldwide. More than 99.7% of cervical cancer cases contain one or more of the
oncogenic human papillomavirus (HPV) genotypes that cause cervical cancer [3]. HPV infection
has been considered as the most key factor responsible for the development of cervical cancer;
especially, HPV 16, 18, 31, and 33 infections are characterized as the primary risk factors highly
associated with cervical cancer. Among them, HPV-16 and -18 infections account for about 70% of
cervical cancer cases [4]. Two primary HPV viral oncoproteins, E6 and E7, are required for the
development of cervical cancer with the transformed phenotypes. For example, E6 protein induces p53
degradation by the ubiquitin-proteasome mediated pathway. E7 protein interacts with retinoblastoma
(Rb) protein and preventing Rb binding to cell cycle-related transcription factor E2F [5,6], which give
rise to the loss of Rb/E2F complexes, the release of E2F, and the subsequent progression of cell cycle
from G1 to S phase [7,8].

Abnormal regulation of cell cycle is a result of cancer development [9]. In mammals, cell cycle
progression is strictly for the regulation of a set of proteins, including cyclin-dependent kinases
(CDKs), cyclins, and CDK inhibitors (CKIs) that control cell cycle progression at G1, S, and G2/M
checkpoints [10]. In early stage of G1 phase, the D-type cyclins emerge and accumulate in the
nucleus due to mitogenic signal firing, and then forms cyclin-CDK4/6 complexes, resulting in the
initial phosphorylation of Rb proteins. In late stage of G1 phase, the cyclin E/CDK2 complex further
promotes the formation of highly phosphorylated Rb protein, thus releasing E2F and eventually leading
to the entry of the S phase. The mechanism how to regulate the activation of CDKs is well-established.
Generally, the activity of CDKs can be mediated by altering their phosphorylation status on a conserved
threonine residue or by interacting with CKIs [11]. CKIs consist of two families, including the Ink4
and the Cip/Kip families [12]. The p15, p16, p18, and p19 proteins which belong to the Ink4b family
bind to CDK4/6 to prevent the formation of CDK4/6-cyclin complexes. The high protein levels of the
Cip/Kip family (such as p21, p27, and p57) inactivate CDK2 activity, most probably by leading to the
stoichiometry in the CDK2-cycle E complexes [12]. In addition, CDK inhibitors induce autophagy in
cancer-associated fibroblasts and cancer cells [13,14].

Autophagy, a process for major intracellular degradation, occurs when cells undergo stress
conditions, such as nutrient starvation, exposure of radiation or cytotoxic compounds, or suffering from
cancer, to promote cell survival or to result in type II programmed cell death [15]. During autophagy,
the cytoplasm components or organelles for determined degradation are conveyed to the double-membrane
vesicle, known as autophagosome, and then acidified for maturation to pass into acidic vesicular
organelles (AVOs) [16]. Eventually, the AVOs fused with lysosomes to form autophagolysosomes which
digest their internal components by lysosomal hydrolases [17,18]. Beclin-1 and microtubule-associated
protein 1A/1B-light chain 3 (LC3), two hallmarks of autophagy, regulate the beginning of mammalian
autophagy [19]. Beclin-1 plays a role in involving in the signaling pathway required for the induction
of autophagy and in the onset of autophagosome formation [19,20]. The overexpression of Beclin-1
inhibits the proliferation and growth of HeLa cells in vitro and in vivo, while inducing autophagy and
subsequent apoptosis of HeLa cells [21]. LC3 consists of a soluble form, LC3I, and a lapidated
form, known as LC3II. The presence of LC3II is directly linked to autophagy, because LCII is
recruited in the formation of autophagosomes. The cellular stress triggers LC3I conjugated to
phosphatidylethanolamine to constitute the lapidated LC3II, which is a component of autophagosomes
and so far conceived as a marker of autophagy [20,22]. Compared to normal cervical epithelial tissues
and cervical squamous carcinoma tissues, Beclin-1 is highly expressed in 96.2% (25/26) versus 28.0%
(14/50) of cervical cancer patients, and LC3 is highly expressed in 76.9% (20/26) and 26.0% (13/50) of
cervical cancer patients, respectively [23], suggesting the induction of autophagy may be an accessible
tactic for cervical cancer therapy.

1-(2-Hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione (HMDB) is a β-diketone structural
compound that has growth inhibitory effects on several human cancer cells [24,25]. HMDB was
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suggested to function as an anticancer drug via modulating the mitochondrial functions that are
regulated by reactive oxygen species, upregulating CCAAT/enhancer binding protein delta (CEBPD),
growth arrest DNA damage-inducible gene 153 (GADD153), BAD, and p21, and downregulating
BCL2L1 (BCL-XL) [26]. However, the growth-inhibitory and autophagy-inducing effects of HMDB
on cervical cancer have not yet been elucidated. To this end, the HeLa cervical cancer cell line was
employed as an in vitro model to explore the anti-cancer effect of HMDB, focusing on the induction
of autophagy and the resultant growth inhibition. Moreover, the effects of HMDB on the activation
of several kinases and the following signaling pathways critically responsible for cell autophagy
were explored. The present study may provide novel evidence that HMDB may be a potent cancer
chemopreventive agent against some types of cervical carcinomas.

2. Results

2.1. Inhibition of Cell Growth and Cell Cycle Progression at G1 Phase of HeLa Cells by
1-(2-Hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione (HMDB)

To investigate the growth inhibitory activity of HMDB (Figure 1a), we first examined
the growth-inhibitory effect of HMDB on HeLa cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) (MTT) and trypan blue exclusion assays, respectively. Human HeLa
cervical cancer cells were treated with various concentrations of HMDB at the indicated time points.
As shown in Figure 1b,c, HeLa cell growth was inhibited by HMDB in a dose- and time-dependent
manner. HMDB also time-dependently reduced the expression of nuclear antigen proliferating cell
nuclear antigen (PCNA), a hallmark of proliferation expressed in proliferating cells. Next, to determine
whether HMDB has an effect on cell cycle, we analyzed the effect of HMDB on the cell cycle distribution
by flow cytometry using PI staining. As shown in Figure 1d, HMDB at 40 µM caused G1 cell cycle
arrest in a time-dependent manner. In particular, approximately 58.6% of the untreated HeLa cells were
in the G1 phase, while the cells exposed to 40 µM HMDB exhibited a considerably greater proportion of
G1 cells (approximately 80.02%). The increased number of cells in the G1 phase after HMDB treatment
was tightly associated with the decreased number of cells in the S and G2/M phases compared to
the control.
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Figure 1. HMDB inhibited proliferation of HeLa cells via inducing the G1 cell cycle arrest. (a) The 
chemical structure of HMDB; and (b) the effect of HMDB on cell viability of HeLa cells. Cells were 
treated with a variety of dosages of HMDB for 0–24 h or (c) with 40 μM HMDB for different time 
periods. Cell survival was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) assay and trypan blue exclusion assays, respectively. The protein levels of PCNA 
were determined by Western blotting; and (d) a histogram of the cell cycle distribution. HeLa cells 
were treated with 40 μM HMDB for 0, 6, 12, and 24 h. Cell distribution at G1, S and G2/M phase was 
determined using flow cytometry. All of the data resulted from repeating independent experiments 
three times and results are expressed as mean ± SE. Values were statistically significant (versus 
HMDB treatment) for * p < 0.05, ** p < 0.01, *** p < 0.001 as compared with the control group. 

2.2. Modulation of the Expression of G1 Cell Cycle Checkpoint Regulators by HMDB in HeLa Cells 

Given that HMDB induces G1 cell cycle arrest in HeLa cells, we investigated whether HMDB 
treatment changes the expression profile of cell cycle regulatory proteins such as cyclin D, cyclin E, 
and their associated CDK4/6 and CDK2, required for G1 to S transition in cell cycle. HeLa cells were 
treated with 40 μM HMDB for the indicated time points and then cell extracts were harvested for 
Western blotting. As demonstrated in Figure 2a, HMDB distinctly reduced the protein expression of 
cyclin D1/D3/E, and CDK4/6/2 in a time-dependent manner. These results indicate that inhibition  
of the expression of G1 phase-related cyclins and CDKs might be a critical event in the 
HMDB-mediated growth arrest in HeLa cells. 

The phosphorylation of the Rb protein mediated by G1-related cyclin/CDK complexes is 
necessary for cell cycle progression from G1 to S phase. To assess whether the down-regulation of 
the expression of cyclins and CDKs by HMDB can lead to the dephosphorylation of the Rb protein, 
the phosphorylation status of the Rb protein was determined by Western blotting using specific 
antibodies against the phosphorylated Rb protein after exposure of exponentially-growing HeLa 
cells to HMDB. As illustrated in Figure 2b, the Rb phosphorylation at Ser780, 807, and 811, 
associated with the regulation of G1 cell cycle progression were time-dependent inhibited by 
HMDB from 6–24 h treatment, paralleled with a decrease in the protein levels of cyclin D1/D3/E and 
CDK4/6. These findings provide evidence that HMDB induces cell cycle arrest at G1 phase via 
downregulating the expression of cyclins (D1, D3, and E) and CDKs (CDK4 and CDK6). 

CKIs are well characterized to prevent the progression of cell cycle from binding and 
inactivating CDKs alone or cyclin/CDK complexes. To assess the effect of HMDB on the expression 
of CKIs, we incubated HeLa cells with 40 μM HMDB for the indicated times and then examined 
determined the protein and mRNA expression levels of CKIs (p15, p16, p21, and p27) by Western 
blotting and qPCR, respectively. As shown in Figure 2c,d, HMDB clearly resulted in the increase in 
both protein and mRNA expression of all these CKIs in a time-dependent manner. These results 
indicate that HMDB may cause the induction of steady-state levels of these CKIs by regulating the 
transcription of these proteins. 

Figure 1. HMDB inhibited proliferation of HeLa cells via inducing the G1 cell cycle arrest. (a) The
chemical structure of HMDB; and (b) the effect of HMDB on cell viability of HeLa cells. Cells were
treated with a variety of dosages of HMDB for 0–24 h or (c) with 40 µM HMDB for different time
periods. Cell survival was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay and trypan blue exclusion assays, respectively. The protein levels of PCNA
were determined by Western blotting; and (d) a histogram of the cell cycle distribution. HeLa cells
were treated with 40 µM HMDB for 0, 6, 12, and 24 h. Cell distribution at G1, S and G2/M phase was
determined using flow cytometry. All of the data resulted from repeating independent experiments
three times and results are expressed as mean ˘ SE. Values were statistically significant (versus HMDB
treatment) for * p < 0.05, ** p < 0.01, *** p < 0.001 as compared with the control group.

2.2. Modulation of the Expression of G1 Cell Cycle Checkpoint Regulators by HMDB in HeLa Cells

Given that HMDB induces G1 cell cycle arrest in HeLa cells, we investigated whether HMDB
treatment changes the expression profile of cell cycle regulatory proteins such as cyclin D, cyclin E,
and their associated CDK4/6 and CDK2, required for G1 to S transition in cell cycle. HeLa cells were
treated with 40 µM HMDB for the indicated time points and then cell extracts were harvested for
Western blotting. As demonstrated in Figure 2a, HMDB distinctly reduced the protein expression of
cyclin D1/D3/E, and CDK4/6/2 in a time-dependent manner. These results indicate that inhibition of
the expression of G1 phase-related cyclins and CDKs might be a critical event in the HMDB-mediated
growth arrest in HeLa cells.

The phosphorylation of the Rb protein mediated by G1-related cyclin/CDK complexes is
necessary for cell cycle progression from G1 to S phase. To assess whether the down-regulation
of the expression of cyclins and CDKs by HMDB can lead to the dephosphorylation of the Rb
protein, the phosphorylation status of the Rb protein was determined by Western blotting using
specific antibodies against the phosphorylated Rb protein after exposure of exponentially-growing
HeLa cells to HMDB. As illustrated in Figure 2b, the Rb phosphorylation at Ser780, 807, and 811,
associated with the regulation of G1 cell cycle progression were time-dependent inhibited by HMDB
from 6–24 h treatment, paralleled with a decrease in the protein levels of cyclin D1/D3/E and CDK4/6.
These findings provide evidence that HMDB induces cell cycle arrest at G1 phase via downregulating
the expression of cyclins (D1, D3, and E) and CDKs (CDK4 and CDK6).

CKIs are well characterized to prevent the progression of cell cycle from binding and inactivating
CDKs alone or cyclin/CDK complexes. To assess the effect of HMDB on the expression of CKIs,
we incubated HeLa cells with 40 µM HMDB for the indicated times and then examined determined
the protein and mRNA expression levels of CKIs (p15, p16, p21, and p27) by Western blotting and
qPCR, respectively. As shown in Figure 2c,d, HMDB clearly resulted in the increase in both protein
and mRNA expression of all these CKIs in a time-dependent manner. These results indicate that
HMDB may cause the induction of steady-state levels of these CKIs by regulating the transcription of
these proteins.
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were determined by qRT-PCR for the indicated time. All of the results that come from independent 
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significant for * p < 0.05, ** p < 0.01, *** p < 0.001 as compared with the control group (without  
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Figure 2. Effects of HMDB on the expression of G1-related cyclins, cyclin-dependent kinases (CDKs),
and CDK inhibitors (CKIs). (a) Relative protein expression levels of cyclin D1/D3/E, and CDK4/6/2
expressed in the G1 phase; (b) the total and phosphorylated forms of retinoblastoma (Rb) with specific
antibodies for each; and (c) the change in the protein expression levels of CKIs (p15, p16, p21, and p27).
HeLa cells were exposed to 40 µM HMDB for the indicated times. Then, cellular extracts were
harvested and the protein levels were visualized by Western blotting using antibodies against G1 cell
cycle regulators as indicated. The β-actin acts as an internal control for evaluating protein loading;
and (d) the changes in mRNA expression levels of CKIs, including p15, p16, p21, and p27, by HMDB.
The relative amounts of target mRNA, collected from HMDB-treated HeLa cells, were determined
by qRT-PCR for the indicated time. All of the results that come from independent experiments three
times are expressed as mean ˘ SE. The relative amounts of protein levels on the Western blots were
quantitated with a computerized densitometer (ImageQuant LAS4000 Digital System, GE Healthcare,
Uppsala, Sweden) compared to the control group. Values were statistically significant for * p < 0.05,
** p < 0.01, *** p < 0.001 as compared with the control group (without HMDB treatment).

2.3. Induction of Cytoplasmic Vacuolation, Formation of Autolysosomes, and Accumulation of Acidic Vesicles
in HMDB-Treated HeLa Cells

As shown in Figure 3a, upper panel, we observed that HMDB induced a time-dependent
increase in the formation of intracellular vacuoles in HeLa cells. In addition, we found that the
vacuolar content was acidic through a neutral red staining shown in the lower panel, suggesting
the presence of lysosomal content. Combined with the growth inhibition by HMDB, we suggested
that HMDB-induced vacuolization in HeLa cells may be autophagic. To demonstrate that these
acidic vesicles induced by HMDB are linked to autophagy, the formation of autolysosomes was
detected by monodansylcadaverine (MDC) and acridine orange (AO) staining, respectively, which are
two remarkable signs of autophagy. As shown in Figure 3b, HMDB elicited a time-dependent increase
in MDC- and AO-stained cells, respectively; suggesting autophagy-mediated cell death may be, at least
partly, involved in the action mechanism of HMDB-induced growth inhibition in HeLa cells.
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Figure 3. HMDB increased the number of massive vacuoles with acid content and the accumulation
of autolysosomes in HeLa cells. (a) The cells were treated with 40 µM HMDB for the indicated times.
Morphological changes and representative photographs of HeLa cells after neutral red staining in
response to HMDB were observed by light contrast microscopy; (b) microphotograph of cells stained
with monodansylcadaverine (MDC) and acridine orange (AO). Scale bar, 50 µm.

2.4. Formation of Autophagic Vacuoles with the Increases in Microtubule-Associated Protein 1 Light Chain 3
(LC3) and Beclin-1 Expression Induced by HMDB

Immunofluorescence staining disclosed that HMDB-treated HeLa cells accommodated the
acquisition of numerous large autophagic vacuoles in the cytoplasm. To further ascertain that
HMDB may induce autophagy in HeLa cells, we assessed the expression and distribution of
LC3-II, a hallmark of autophagy present in the autophagosomal membrane. The results showed
that HMDB resulted in a time-dependent increase in LC3-II expression in the cytoplasm of HeLa cells
(Figure 4a). The protein levels of LC3-II, Beclin-1 (an autophagic mediator promoting the nucleation
of the autophagosomal membrane) and p62 expressed during the early stage of autophagy were
also monitored by Western blotting. As shown in Figure 4b, HMDB increased the expression of
autophagosome-associated LC3-II and the primary pro-autophagic protein Beclin-1 in HeLa cells
in a time-dependent manner after 40 µM HMDB treatment. Meanwhile, the levels of p62 protein,
a maker of autophagic degradation, were decreased in response to HMDB treatment. Furthermore,
the expression levels of B-cell lymphoma 2 (Bcl-2, an inhibitor of Beclin-1 as well as an anti-apoptotic
factor) and survivin (a molecule that inhibits autophagy-dependent apoptosis) were determined by
Western blotting. Incubation of HeLa cells with HMDB at different time intervals revealed that HMDB
led to decreases in the expression levels of Bcl-2 and survivin (Figure 4c). These results suggest that
HMDB-induced autophagy plays a suppressive role in HeLa cell survival through apoptosis. Then,
we assess whether HMDB induces HeLa cells undergoing apoptosis, apoptosis was determined by the
terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The results showed
that HMDB resulted in a sustained increase in apoptotic cells in a dose-dependent manner (Figure 4d).
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Furthermore, HMDB dose-dependently increased cleaved forms of caspase-3 and Poly (ADP-ribose)
polymerase (PARP), the hallmarks of apoptosis (Figure 4e). Collectively, these results provide evidence
that HMDB-induced autophagy is tightly linked to apoptosis.
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Figure 4. HMDB induced autophagy and apoptosis in HeLa cells. (a) HeLa cells were treated with
40 µM HMDB for the indicated times, fixed and incubated with rabbit anti-LC3-II primary antibody.
After incubation with Alexa Fluor 488 phalloidin (green) for conjugated anti-rabbit secondary
antibodies, immune-labeled cells were monitored by microscopy; (b) HeLa cells were treated with
40 µM HMDB and then the protein expression levels of LC3-II, Beclin-1, and p62 were determined by
Western blotting for the indicated times; (c) the cells were treated with 40 µM HMDB for different times.
Cells were harvested and lysed for the detection of the indicated protein expression by Western
blotting; (d) the cells were treated with 40 µM HMDB for the indicated times, and then the apoptotic
cells were examined by TUNEL assay; and (e) the apoptosis-related proteins, cleaved caspase-3,
and poly (ADP-ribose) polymerase (PARP), were assessed using Western blotting. The densities of the
band on the Western blots from three independent experiments were calculated using a computerized
densitometer (ImageQuant LAS4000 Digital System, GE Healthcare, Uppsala, Sweden). Nuclei were
stained with 41,6-diamidino-2-phenylindole (DAPI).
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2.5. HMDB-Induced Autophagy Is Linked to the Mediation of AMPK/mTOR and Akt/mTOR Signaling

The class III phosphatidylinositol 3-kinase (PI-3K), which complexes with Beclin-1 is necessary for
the initiation of autophagy. Next, we used the class III PI-3K and autophagy inhibitor, 3-methyladenine,
to examine the detailed mechanism by which HMDB induces autophagy. HeLa cells were pretreated
with 1 mM 3MA for 1 h, followed by exposure to 40 µM HMDB for 24 h. Then the cell lysates were
applied to Western blotting to monitor the protein expression of LC3-II, Beclin-1, and p62. As shown in
Figure 5a, pretreatment with 3MA decreased the protein levels of Beclin-1 and LC3-II, and recovered
p62 protein levels in HeLa cells; however, 3MA cannot prevent the elevation of Beclin-1 and LC3-II
expression levels induced by HMDB in HeLa cells.
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Figure 5. Modulation of class III PI-3K and AMPK/Akt/mTOR signaling was linked to HMDB-induced
cell cycle arrest and autophagy in HeLa cells. (a) The cells were pretreated with 1 mM autophagy
inhibitor, 3-methyladenine, followed by 40 µM HMDB treatment for 24 h. The expression of the
indicated proteins was determined by Western blotting; (b) HeLa cells were incubated in the presence
of 40 µM HMDB for various time points. Cell extracts were harvested for determining the indicated
protein expression by Western blotting. The densities of the band on the Western blots from three
independent experiments were calculated using a computerized densitometer (ImageQuant LAS4000
Digital System).

The interplay of AMPK (a sensor and positive regulator of autophagy) and the mTOR pathway
have been well-known to regulate the occurrence of autophagy. AMPK can phosphorylate Raptor
(regulatory associated protein of mTOR), an essential component of mTOR complex 1 (mTORC1),
the activity of which blocks autophagy or can phosphorylate TSC2 (tuberous sclerosis complex 2) that
directly inhibits Ras homolog enriched in brain (Rheb)-mediated mTORC1activation. To evaluate
the signaling pathways responsible for the induction of HMDB-mediated autophagy, we assessed
the activation statuses of the main regulators involved in the mTOR signaling pathway in HeLa cells.
HMDB triggered the phosphorylation/activation of AMPK reciprocally accompanied with the
downregulation of the phosphorylation statuses of Raptor, mTOR and S6K (mTOR downstream
substrate) in a time-related manner. HMDB also had an inhibitory effect on the phosphorylation of
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Akt that negatively regulate TSC2 to release its inhibition on Rheb (Figure 5b). These results suggested
that the activation of AMPK and inhibitory modification of Akt-mTORC-S6K signaling axis by HMDB
may contribute to autophagic induction and growth inhibition in HeLa cells.

3. Discussion

Cervical cancer is developed from malignant cells that form in the cervix. Although a majority
of cervical cancer patients have benefited from neoadjuvant chemotherapy together with concurrent
chemotherapy and radiotherapy, the survival rate remains poor in cervical cancer patients with relapse
or recurrence [27]. Resistance to chemotherapy is one of the common causes of treatment failure
in patients suffering from cervical cancer [28,29]. HMDB has been proven to inhibit cell growth in
various human cancer cells [25]. Here, we demonstrate that HMDB inhibits proliferation through
inducing G1 cell cycle arrest and autophagy in HeLa cervical cancer cells. The results clearly indicate
that HMDB induced a G1 cell cycle arrest through downregulating the expression of cyclin D1/D3/E
and CDK2/4/6 and subsequently resulting in the hypophosphorylation of Rb protein. Meanwhile,
the protein and mRNA levels of CKIs, including p15, p16, p21, and p27, were upregulated by HMDB
treatment. These results suggest that the growth-inhibitory effect of HMDB might stem from the
blockade of the G1 to S phase transition in HeLa cells through mediating the expression of CKIs binding
to their relative cyclin/CDK complexes, a crucial event for inactivating the activity of cyclin/CDK
complexes and restricting the progression of cell cycle [30]. Rb not only controls the G1 to S transition in
the cell cycle, but also plays a critical role during cellular senescence in response to cancer therapeutics
such as CDK inhibitors [31]. In addition, autophagy is an effector mechanism of senescence [32].
Given that HMDB retained the phosphorylation status of Rb in a low level and induced the occurrence
of autophagy in HeLa cells, the growth inhibition of HeLa cells by HMDB might be involved to be a link
between Rb-mediated autophagy and senescence followed by the consequential tumor suppression;
however, this issue requires further research.

Autophagy inhibits the growth of certain cancer cells [33]. In this study, we found that HMDB
increased the formation of intracellular vesicles as well resulted in growth inhibition, suggesting that
these presented vesicles are autophagic. By means of neutral red staining, HMDB-induced intracellular
vesicles were composed of acidic content, presumably coming from lysosome. In additional,
lysosome aggregation was present in HDMB-treated HeLa cells by MDC and AO staining. These results
suggest that HDMB treatment promotes the combination of autophagosomes and acidic lysosomes
arising at the late stage of autophagy. Moreover, our data provide additional evidence that HMDB-induced
autophagosome formation is tightly linked to the modulation of protein expression of Beclin-1,
LC3-II, and p62/SQSTM1. During autophagy, Beclin-1 and LC3-II are localized on the membrane of
autophagosome accompanied with the downregulation of p62/SQSTM1 [34]. Beclin-1 has repeatedly
been reported as a target for applied therapies because its low expression may be attributed to the
development of human cancer. Inactivation of Beclin-1 was reported to enhance tumorigenesis in
mice [35]. In cervical cancer, Beclin-1 expression was significantly decreased in samples of malignant
cervical cancer tissues compared to that in normal or cervical intraepithelial neoplasia tissues [36].
Moreover, positive expression of Beclin-1 in human cervical carcinoma has benefits for patients,
resulting in a better prognosis [37]. The proautophagic function of Beclin-1 can be negatively
regulated by Bcl-2, another well-known anti-apoptosis factor. Beclin-1 contains a BH3 motif required
to bind Bcl-2, Bcl-XL, and Mcl-1, and Bcl-2 binds to Beclin-1 from its BC groove. By interaction
with Beclin-1, Bcl-2 can block Beclin-1 interacting with class III PI-3K and decrease class III PI-3K
activity, thereby negatively regulating autophagy [38]. Although HMDB had no effect on class III
PI-3K-mediated LC-3II expression, it showed a time-dependent inhibition on Bcl-2 expression that
may release the pro-autophagic activity of Beclin-1. Meanwhile, downregulation of Bcl-2 by HMDB
raises a possibility that HMDB could trigger the induction of autophagy-dependent apoptosis in
HeLa cells. To this end, the effect of HMDB on survivin expression was investigated. Survivin has been
reported to be overexpressed in cervical cancer and participates in the development and progression
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of cervical cancer by inhibiting autophagy-dependent apoptosis. Evidence that HMDB suppressed the
expression of survivin as well as that of Bcl-2 in a time-dependent manner in HeLa cells (Figure 4c),
accompanied with the increased number of TUNEL-positive cells and cleaved forms of caspase-3
and PARP (Figure 4d,e) suggested HMDB might at least partly inhibit cell growth of HeLa cells via
inducing the autophagy-dependent apoptosis.

AMPK and Akt are well known to negatively and positively regulate the mTOR pathway,
respectively [39]. The mTOR signaling pathway is a regulator of several cellular processes,
including proliferation, autophagy, and survival [40]. An intriguing finding based on our results
is the induction of AMPK phosphorylation by HMDB as early as 6 h after the initiation of treatment
accompanied with the suppression of phosphorylation of Akt, mTOR, Raptor, and S6K, suggesting that
HMDB induces autophagy through inducing AMPK activation and subsequently blocking AKT and
mTOR activation. The regulation of both Akt and mTOR signaling pathways by HMDB implicates
another therapeutic benefit. The mechanism of resistance to mTORC1 inhibitors in endometrial cancer
may result from a negative feedback loop emerging from receptor tyrosine kinase/PI3K/Akt/S6K
signaling pathway [41,42]. This implies that losing the feedback inhibition of Akt/mTOR signaling
resulted from the use of mTORC1 inhibitors may reduce their therapeutic capacities and lead to the
following chemoresistance. Therefore, an agent with the ability to inhibit both mTORC1 and Akt,
such as HMDB, could be beneficial for the treatment of cervical cancer.

To sum up, our results show a paralleled event that HMDB modulates several cellular signaling
pathways and targets cell proliferation in human HeLa cervical cancer cells by involving in cell cycle
arrest and induction of cell death via autophagy and apoptosis. The mechanism (Figure 6) by which
HMDB induces G1 cell cycle arrest is due to the mediation of G1 cell cycle regulators, including the
changes in the expression of D- and E-type cyclins, CDKs, CKIs, and Rb phosphorylation. We provide
additional evidence that the autophagic cell death induced by HMDB is due to the activation of AMPK
and the subsequent inhibition of mTORC1 activity. On the basis of these findings, we conclude that
HMDB might potentially serve as a therapeutic agent for cervical cancer.
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4. Materials and Methods

4.1. Chemicals and Reagents

1-(2-Hydroxy-5-methylphenyl)-3-pheyl-1,3-propanedione (HMDB) was purchased from Aldrich
Chemical Co. (Milwaukee, WI, USA). The purity of the compound is >97% by high performance
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liquid chromatography (HPLC), and dissolved in dimethyl sulfoxide (DMSO). Propidium iodide,
RNaseA, and 3-methyladenine (3MA) were available from Sigma-Aldrich (St. Louis, MO, USA).
Antibodies against β-actin, Bcl-2, PCNA, and survivin were obtained from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). Antibodies against LC3A/B, phospho-AMPK (Thr172), AMPK, phospho-Akt
(Ser473), Akt, phospho-mTOR (Ser2448), mTOR, phospho-Raptor (Ser792), Raptor, phospho-p70 S6K
(Thr389), p70 S6K, and all G1 cell cycle regulators were from Cell Signaling Technology (Beverly,
MA, USA). Antibodies against Beclin-1 and SQSTM1/p62 were purchased from GeneTex, Inc. (Irvine,
CA, USA).

4.2. Cell Culture

HeLa cells were purchased from American Type Culture Collection (ATCC) and were cultured
in Dulbecco’s minimal essential medium (DMEM) supplemented with 10% fetal calf serum (Gibco
BRL, Grand Island, NY, USA), 100 units/mL of penicillin, and 100 µg/mL of streptomycin (Gibco BRL,
Grand Island, NY, USA), and kept at 37 ˝C in a humidified atmosphere of 5% CO2 in air according to
ATCC recommendations. For all results, the cells cultured showed no more than 20 passages.

4.3. MTT Assay

The cells were seeded into 96-well plates at 5 ˆ 103 cells/well for 24 h. HMDB was added
with various concentrations, and the cells were incubated for the indicated times. After treatment,
cell viability was assessed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
assay as follows: 20 µL of MTT solution (5 mg/mL, Sigma, St. Louis, MO, USA) was added to each
well and incubated for 24 h at 37 ˝C. Then the supernatant was removed, and the MTT-formazan
crystals formed by metabolically viable cells were dissolved in 200 µL of dimethyl sulfoxide (DMSO).
The absorbance was monitored by a microplate reader at a wavelength of 570 nm.

4.4. Trypan Blue Dye Exclusion Assay

The cells were cultured in 6-well plates at the density of 5 ˆ 104 cells per well in triplicate.
After 24 h, cells were treated with 40 µM HMDB for the indicated times. After treatment of
HMDB, cells were washed with phosphate-buffered saline (PBS) and a solution of 0.125% trypsin,
0.05% ethylenediaminetetraacetic acid (EDTA) for 2 min, and then incubated with trypan blue solution
(1:1 dilution) for 10 min. After staining, cells were transferred to a hemocytometer (Bright-lineTM;
Hausser Scientific, Horsham, PA, USA) and counted by microscopy (Observer-A1; Carl Zeiss,
Oberkochen, Germany). The cells stained with the trypan blue dye are defined as dead cells.
The percentage of living cells represented the number of living cells divided by the total number of
counted cells.

4.5. Cell Cycle Analysis

Cell cycle population was determined by flow cytometry as follows. After exposing to HMDB
for 0, 6, 12, and 24 h, HeLa cells were washed twice with PBS, and then fixed in 70% ethanol for
additional 2 h at ´20 ˝C. Following fixation, cells were washed with PBS again, incubated with 1 mL
of PBS containing 0.5 µg/mL RNase A and 0.5% Triton X-100 for 30 min at 37 ˝C. Then the cells were
stained with 50 µg/mL propidium iodide (PI). The stained cells were estimated by a FACScan laser
flow cytometer equipped with Cell Quest software (Becton Dickinson, San Jose, CA, USA).

4.6. Western Blotting

After HeLa cells were treated with the indicated concentration of HMDB for the indicated
times, the cells were collected followed with PBS washing. Then, the cells were incubated in a lysis
solution containing 50 mM Tris-HCl, pH 8.0, 5 mM EDTA, 150 mM NaCl, 0.5% NP-40, 0.5 mM
phenylmethanesulfonyl fluoride, and 0.5 mM dithiothreitol for 30 min at 4 ˝C. Equal amounts of
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total proteins (50 µg) were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE), followed by transferring to polyvinylidene difluoride (PVDF) membranes (Immobilon P,
Millipore, Bedford, MA, USA) and incubating with primary antibodies. The membrane was further
washed with PBST, incubated with corresponding peroxidase-conjugated goat anti-mouse or anti-rabbit
secondary antibodies, and visualizing by enhanced chemiluminescence staining. The β-actin acts
as an internal control to normalize protein loading. The density of the band on the blots was
quantitated with a computerized densitometer (ImageQuant LAS4000 Digital System, GE Healthcare,
Uppsala, Sweden).

4.7. RNA Extraction, cDNA Synthesis, and qRT-PCR

Total RNA from HMDB-treated HeLa cells was prepared using TRIzol reagent (Sigma),
followed by the manufacturer’s instructions as below. Total RNA (5 µg) was applied to reverse
transcription to generate cDNA by incubating the reaction mixture (25 µL) at 42 ˝C for 90 min
containing Moloney murine leukemia virus (M-MLV) reverse transcriptase and oligo (dT) 18 primer.
Then, real-time qPCR was executed in a 20 µL final volume for each primer (as below) using the
Fastart Universal SYBR Green Master Mix (Roche, Indianapolis, IN, USA) and detected by an ABI 7000
sequence detection system. The primer sequences for p15, p16, p21, p27, and β-actin (β-actin is internal
control) are as follows: β-actin (51-AGTTGCGTTACACCCTTTCTTG-31, 51-CACCTTCACCGTTCCAG
TTTT-31), p15 (51-GGCAGTCGATGCGTTCACTC-31, 51-CAGGGCTTCCAGAGAGTGTC-31), p16 (51-TT
CCTGGACACGCTGGT-31, 51-CAATCGGGGATGTCTGAG-31), p21 (51-GCGACTGTGATGCGCTA
AT-31, 51-TAGGGCTTCCTCTTGGAGAA-31), p27 (51-ATGTCAAACGTGCGAGTGTCTAA-31, 51-TTA
CGTTTGACGTCTTCTGAGG-31). The PCR program is designed including the first reaction at 50 ˝C
for 2 min and at 95 ˝C for 10 min, and then incubating for 40 thermal cycles between 95 ˝C for 15 s
and 60 ˝C for 1 min. The relative cDNA expression for each sample was computerized using the
formula 2´∆∆Ct, where ∆∆Ct = ∆Ct(target gene) ´ ∆Ct(β-actin gene), which represents the target
cDNA expression normalized to β-actin cDNA levels.

4.8. Neutral Red Staining

Neutral red (Sigma-Aldrich, St. Louis, MO, USA) staining is designed to monitor the relative
amounts of lysosomes or acidic vacuoles that are stained with the supravital dye neutral red. Briefly,
following HMDB treatment, cells were washed and suspended in PBS. Next, cells were stained with
neutral red (33 µg/mL) and visualized by phase contrast microscopy.

4.9. Monodansylcadaverine and Acridine Orange Staining

HeLa cells were treated with 40 µM HMDB for 0, 6, 12 and 24 h. After washing with
fresh culture medium, the cells were stained with the autofluorescent dye containing 0.05 mM
monodansylcadaverine (MDC) (Sigma-Aldrich, St. Louis, MO, USA) in PBS at 37 ˝C for 1 h, and then
fixed with cold 4% paraformaldehyde for 15 min. For acridine orange staining, the cells were stained
with 1 µg/mL acridine orange (AO) (Sigma-Aldrich, St. Louis, MO, USA) at 37 ˝C for 15 min, and then
fixed with cold 4% paraformaldehyde for 15 min. The stained cells were washed with PBS three times
and visualized under a contrast microscope.

4.10. Immunofluorescent Staining

HeLa cells were grown to approximately 70% confluence on a coverslip, and then incubated
with to the indicated concentrations of HMDB for the indicated times. For immunostaining,
the treated cells were washed with cold PBS, and fixed with 4% paraformaldehyde for 15 min at
room temperature. Furthermore, the fixed cells were stained with rabbit anti-LC3 antibody for
24 h, rinsed with cold PBS, followed with incubation with goat anti-rabbit secondary antibody
conjugated with fluorescein isothiocyanate or rhodamine (Sigma, St. Louis, MO, USA) for 30 min
at room temperature. The immunolabeled cells were mounted on a glass slide with DAPI
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Dapi-Fluoromount-G (Southern Biotech, Birmingham, AL, USA) and observed using a fluorescence
microscope (Carl Zeiss MicroImaging GmbH, Jena, Germany).

4.11. TUNEL Assay

DNA fragmentation analysis was performed by terminal deoxynucleotidyl transferase dUTP
nick end labeling (TUNEL) assay using an in situ labeling cell death kit (Roche Applied Science,
Indianapolis, IN, USA). As follows, cells were grown at a density of 5 ˆ 104 cells on a coverslip (25 mm
size), followed with the incubation with 40 µM HMDB for the indicated times. The treated cells were
washed with cold PBS, and rinsed with 4% paraformaldehyde for 15 min at 37 ˝C. Then the cells were
incubated with a permeabilization solution containing 0.1% Triton X-100 in 0.1% sodium citrate for
5 min at 4 ˝C, and then applied to the TUNEL reaction buffer for 60 min at 37 ˝C in a humidified
atmosphere in the dark. Afterward, the results were observed using a fluorescence microscope (Carl
Zeiss MicroImaging GmbH, Jena, Germany).

4.12. Statistical Analysis

Quantitative data taken on the values from three or more replicates repeated experiments were
representative as the mean value with the respective standard error of the mean (SE). One-way analysis
of variance (ANOVA) using Tukey’s post hoc multiple comparisons was applied for multiple group
comparison, and the analyzed values were considered statistically significant at p < 0.05.
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