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Connecting glass-forming ability of binary
mixtures of soft particles to equilibrium
melting temperatures
Yunhuan Nie1, Jun Liu1, Jialing Guo1 & Ning Xu 1✉

The glass-forming ability is an important material property for manufacturing glasses and

understanding the long-standing glass transition problem. Because of the nonequilibrium

nature, it is difficult to develop the theory for it. Here we report that the glass-forming ability

of binary mixtures of soft particles is related to the equilibrium melting temperatures. Due to

the distinction in particle size or stiffness, the two components in a mixture effectively feel

different melting temperatures, leading to a melting temperature gap. By varying the particle

size, stiffness, and composition over a wide range of pressures, we establish a comprehensive

picture for the glass-forming ability, based on our finding of the direct link between the glass-

forming ability and the melting temperature gap. Our study reveals and explains the pressure

and interaction dependence of the glass-forming ability of model glass-formers, and suggests

strategies to optimize the glass-forming ability via the manipulation of particle interactions.

https://doi.org/10.1038/s41467-020-16986-z OPEN

1 Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics,
University of Science and Technology of China, Hefei 230026, China. ✉email: ningxu@ustc.edu.cn

NATURE COMMUNICATIONS |         (2020) 11:3198 | https://doi.org/10.1038/s41467-020-16986-z | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16986-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16986-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16986-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16986-z&domain=pdf
http://orcid.org/0000-0002-1905-8558
http://orcid.org/0000-0002-1905-8558
http://orcid.org/0000-0002-1905-8558
http://orcid.org/0000-0002-1905-8558
http://orcid.org/0000-0002-1905-8558
mailto:ningxu@ustc.edu.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


In studies of glass transition and jamming transition1–5, binary
mixtures of particles are widely employed to avoid crystal-
lization. If the two components mix up randomly, the particle

size mismatch can frustrate the global structural order6. However,
under certain circumstance, some binary mixtures may undergo
phase separation or demixing during the solid formation, i.e., the
same types of particles aggregate. Although undesirable in dis-
ordered systems, phase separation has attracted much attention in
many fields7–14.

The glass-forming ability (GFA), i.e., the capacity of a material
to resist crystallization and maintain glassy, is fundamental in
studies of glasses. A binary mixture prone to phase separation
tends to form crystallites of the same type of particles, and hence
has a poor GFA. Because glasses are diverse and out of equili-
brium, it is difficult to establish a common understanding of the
GFA. Moreover, phase separation is one of the multiple forms of
crystallization. Under certain conditions, binary mixtures can also
form complex crystalline or quasicrystalline structures15,16, which
complicates further the understanding of the GFA to fight against
them. Among various interpretations, geometric and energetic
frustrations are thought to be essential to the determination of the
GFA17–23.

For binary mixtures, varying the size ratio γ of the large to
small particles is an effective way to cause geometric frustration.
However, it has been shown that a large γ often promotes phase
separation and thus results in poor GFAs for binary mixtures of
hard particles, mainly arising from entropy effects14,24–29. To
suppress phase separation, a moderate size ratio, 1 < γ < 2, is
usually adopted. However, it is still unclear if such ratios can
prevent phase separation and maintain glassy states after extre-
mely long equilibration. Even with these size ratios, the GFA is
sensitive to the particle composition. It has been suggested that
the GFA of binary mixtures is the best near the eutectic point or
triple point when particle composition is varied23.

In this work, we pay more attention to the energetic frustration
on the GFA by studying binary mixtures of soft particles inter-
acting via finite-range repulsions. In the zero temperature (T= 0)
and zero pressure (p= 0) limit, such soft particles behave like
hard ones30,31. Taking a mixture in the hard particle limit as the
reference, which has a decent GFA with certain values of particle
size ratio and composition, we vary the pressure (density) and
track the evolution of the GFA. When pressure increases, the
potential energy plays a more important role and offers soft
particles extra opportunities of phase separation. With the
intervention of potential energy, the particle size ratio γ, the cause
of geometric frustration, may excite and affect energetic frustra-
tion as well and hence affect the GFA. We aim at looking for
some simple energetic criteria of the GFA and proposing some
energy strategies to manipulate it, via the study of the effects of
pressure and particle interaction.

We study two types of widely employed model glass-formers,
binary mixtures of soft particles interacting via harmonic or
repulsive Lennard-Jones (RLJ) repulsion. Both types of systems
with a diameter ratio γ= 1.4 and a 50:50 particle composition
have been used in many studies of glasses. At low pressures, both
systems exhibit a pressure-independent GFA, equal to that of the
hard particle counterparts. At high pressures, the GFA of RLJ
systems still remains almost constant, but remarkable phase
separation occurs in harmonic systems. Therefore, γ= 1.4 does
cause not only geometric but also energetic frustrations in soft
particle systems. By performing analytic calculations, we find that
the behaviors of the GFA can be explained by the pressure
dependence of the melting temperatures of the two components,
confirmed by our simulation results. This thus builds up a bridge
between non-equilibrium and equilibrium quantities and suggests
that the pressure dependence of the melting temperatures of

constituent components can be an energetic precursor to evaluate
the GFA of glass-formers. We also show that the GFA of the hard
particle limit can be achieved at high pressures by a proper
modulation of the particle stiffness. Combining our work and
previous studies on the composition effects23, we expect to
achieve a much more comprehensive understanding of the GFA
of binary mixtures with effects of composition, pressure, and
particle interaction being all included.

Results
Control variables of binary mixtures. We denote the two types
of particles in binary mixtures as A and B particles. The particle
composition is quantified by the concentration of B particles,
cB=NB/(NA+NB), with NA and NB being the numbers of A and
B particles, respectively. There are two quantities to make the
constituent A and B particles different. One is the particle size.
When the diameter ratio γ= σA/σB > 1, A and B particles differ in
size, where σA and σB are diameters of A and B particles,
respectively. The other is the particle stiffness, characterized by
the interaction energy scale ϵAA and ϵBB as defined in Eqs. (17)
and (18) of the Methods section. A particles are softer than B
particles if ϵAA < ϵBB. Here we manipulate the particle stiffness by
letting ϵAA= (1+ Δ)ϵAB and ϵBB= (1− Δ)ϵAB with Δ2[−1, 1].
One of our primary goals is to study and understand the pressure
dependence of the GFAs of widely employed model glass-formers
with γ= 1.4, cB= 0.5, and Δ= 0 (ϵAA= ϵBB= ϵAB). This
manipulation of particle stiffness can facilitate the analytic cal-
culations with Δ being an independent variable, from which the
solutions of Δ= 0 can be straightforwardly obtained.

In a rather different perspective from most of the previous
studies, we are mainly concerned about the effects of pressure and
particle interaction on the GFA. Here we mainly show results of
N=NA+NB= 4096 systems in two dimensions. Because the
simulations are rather expensive, we have only repeated part of
the simulations for larger systems and three-dimensional systems
and find consistent results. In the following, we will first present
results for harmonic and RLJ systems with γ= 1.4, cB= 0.5, and
Δ= 0. Then we will attack the special case with γ= 1 and cB=
0.5. By varying Δ, we are able to sort out potential energy effects
without the interference of geometric frustration caused by the
particle size distinction. Based on observations of γ= 1, we will
derive a generalized picture for γ > 1, from which the results of
systems with γ= 1.4, cB= 0.5, and Δ= 0 can be understood.
Finally, we will show that the same picture applies to different
values of cB.

Characterization of glass-forming ability. For given values of γ,
cB, Δ, and p, we start with a liquid equilibrated at about four times
of the melting temperature of B particles as defined later, and
then decrease the temperature by a small step δT and relax the
system for a duration Δt by performing molecular dynamics
simulations under constant temperature and pressure. The same
procedure is repeated until a solid-like state at a temperature
about one-tenth of the melting temperature is achieved. This
leads to a quench rate κ= δT/Δt. We compare the GFAs over a
wide range of pressures, which have been rarely studied before. It
is tricky how to choose a reasonable quench rate to include the
pressure effects. Here, we use a dimensionless quench rate ~κ as
defined and discussed in the Methods section, in purpose of
giving supercooled liquids at different pressures comparable
opportunities to relax their structures.

In the parameter space considered in this work, we have not
observed the formation of complex crystalline structures within
our simulation time window, so the crystallization mainly takes
the form of phase separation23. Therefore, the GFA can be well
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characterized by the degree of mixing of A and B particles against
phase separation in the resultant solid-like states, which is
quantified here by the parameters

χAðBÞ ¼
2
N

X
i

δnsi;ni ; ð1Þ

where the sum is over all A or B particles, δnsi;ni is the Kronecker
delta, ni is the number of nearest neighbors of particle i, and nsi is
the number of nearest neighbors which are the same type as
particle i. We calculate χA and χB for A and B particles separately.
Their values are close to 0 when two components mix up well.
With more particles being separated, the values grow up and
approaches 1 for well-separated states. Therefore, smaller values
of χA and χB mean better GFAs.

Although χA and χB can characterize the GFA well in our work,
we should realize that they may not work well to distinguish
glasses from complex crystals with A and B particles being
mixed15,16. This is the limitation of the parameters when studying
the GFA against the formation of complex crystals. In that case,
one needs to select appropriate parameters to characterize the
structural order to distinguish complex crystals from amorphous
solids, which is out of the scope of current work.

Glass-forming ability for γ= 1.4 and cB= 0.5 with Δ= 0.
Figure 1a, b compare the GFAs of binary mixtures of harmonic
and RLJ particles in two dimensions with γ= 1.4, cB= 0.5, and
Δ= 0, so there is no cause of strong energetic frustration. These
binary mixtures have been widely employed as good glass-
formers in previous studies.

In the T → 0 and p → 0 limit when particle overlap is tiny,
both harmonic and RLJ systems are equivalent to hard particle
systems30,31 and exhibit similar GFAs to that of the hard particle
counterpart with γ= 1.4 and cB= 0.5. As shown in Fig. 1a, b,
both χA(p) and χB(p) tend to approach a constant at low pressures
for both systems.

Because of aging, χA(p) and χB(p) evolve with the quench rate
~κ. Fig. 1 compares three values of ~κ. At low pressures, χB(p) (for
small particles) remains small when ~κ decreases, while χA(p) (for

large particles) grows up. As illustrated by snapshots in Fig. 1c, A
particles form clusters when ~κ is small, even at low pressures. It is
expected that with even smaller ~κ the clustering or phase
separation will be stronger. Here A and B particles have the same
concentration. The separation can be weakened by increasing cB
to around 0.623 in order to leave smaller rooms for A particles to
aggregate, as will be shown later, but it remains elusive whether
the separation is inevitable as long as the waiting time is
sufficiently long32,33.

The decrease of ~κ at fixed pressure is analogous to the
decrease of the compression rate at fixed temperature. The
emergence of phase separation at low pressures thus suggests
that with sufficiently slow compression rates binary mixtures of
hard particles with γ= 1.4 and cB= 0.5 will undergo phase
separation. Therefore, we show direct evidence suggesting that
such binary mixtures widely employed as good glass-formers
cannot prevent phase separation, so that thermodynamically
stable states may be phase-separated. Figure 1 also shows that,
although behaving similarly at low pressures, harmonic and
RLJ systems have significantly different GFAs at high pressures.
The GFA of RLJ systems still remains almost constant in
pressure. In contrast, harmonic systems undergo apparent
phase separation, with χB(p) increasing quickly when pressure
increases. Apparently, at high pressures, some energetic
frustration is excited strongly in harmonic systems, destabiliz-
ing the mixing of particles. The particle size distinction triggers
such energy effects. Moreover, note that harmonic and RLJ
systems have almost identical GFAs up to p ≈ 10−2, which is
already far beyond the hard particle limit where particle
interactions are not negligible. Then it is interesting to know
why harmonic and RLJ systems can have similar GFAs beyond
the hard particle limit, why RLJ systems can maintain an
almost constant GFA to high pressures, and why the GFA of
harmonic systems quickly drops at high pressures.

Harmonic and RLJ repulsions are distinct in their respectively
bounded (soft-core) and unbounded natures. The soft-core
nature of harmonic repulsion induces rich phase behaviors at
high densities34–38. Unlike RLJ particles whose melting (crystal-
lization) or glass transition temperature always increases with the
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Fig. 1 Pressure and quench rate dependence of the glass-forming ability. a, b are for harmonic and RLJ systems, respectively, with γ= 1.4, cB= 0.5, and
Δ= 0. The solid and empty symbols are χA and χB, respectively. Circles, squares, and diamonds are for dimensionless quench rate ~κ ¼ 8:16 ´ 10�11, 8.16 ×
10−10, and 8.16 × 10−9, respectively. The lines are guides for the eye. The vertical dot-dashed line in a shows the crossover pressure pn≈ 0.14 (also shown
in Fig. 2a for comparison), at which the melting temperatures of A and B particles intersect and χA is approximately equal to χB, as discussed in the text.
c Snapshots of solid-like states for harmonic systems. From top to bottom, ~κ decreases. From left to right, pressure p increases with the values being shown
at the bottom. The yellow and blue disks are A (large) and B (small) particles. To distinguish particles, we have moderately decreased the particle
diameters by 10–25%.
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increase of pressure39–43, harmonic particles exhibit reentrant
liquid-solid transitions with the transition temperatures being
non-monotonic in pressure and some related extraordinary
phenomena36–38,44–49. We will show that it is just this non-
monotonic behavior that makes harmonic systems to have
dramatically distinct GFA from RLJ systems.

Melting temperature gap between components. In this subsec-
tion, we will introduce two effective melting temperatures, Tm,A(p)
and Tm,B(p), for A and B particles, respectively. We will see that
they are not the actual equilibrium melting temperatures, which
should be obtained from complicated calculations of the equili-
brium phase diagram and would vary with cB23,50. They are instead
derived from the equilibrium melting temperature of mono-
component systems and the simple conversion of units. However,
they turn out to work well to characterize the GFA.

An interesting feature shown in Fig. 1a is that χA(p) and
χB(p) of harmonic systems intersect at roughly the same
pressure pn at different quench rates. When p < pn, χA > χB, so A
particles are easier than B particles to form clusters. When p >
pn, χA < χB. The clustering or nucleation starts below the
melting temperature. If χB > χA, B particles may experience a
longer time than A particles to nucleate, suggesting that the
melting temperature of B particles is higher, and vice versa.
Therefore, we doubt whether Fig. 1a implies that B particles
have a lower (higher) melting temperature than A particles
when p < pn (p > pn). If this is the case, melting temperature
would play an important role in the determination of the GFA,
but the question is how A and B particles can feel different
melting temperatures in the same mixture.

Note that temperature is the energy, and we are concerned
about pressure effects. As defined in the Methods section, for
two-dimensional mixtures, the temperature and pressure are in
units of ϵABk

�1
B and ϵABσ

�2
B , respectively. However, A and B

particles also have their own temperature and pressure units,
which are ϵAAk

�1
B and ϵAAσ

�2
A for A particles and ϵBBk

�1
B and

ϵBBσ
�2
B for B particles, respectively. Therefore, in the mixture at a

pressure p in units of ϵABσ
�2
B , A and B particles effectively feel

different pressure values, PA and PB, in their own units:

PA ¼ p
ϵAB
σ2B

� �
σ2A
ϵAA

¼ p
γ2

1þ Δ
; ð2Þ

PB ¼ p
ϵAB
σ2B

� �
σ2B
ϵBB

¼ p
1

1� Δ
: ð3Þ

Let us denote Tm(p) as the melting temperature of mono-
component systems, i.e., when γ= 1 and Δ= 0 so that A and B
particles are identical. In the mixture, since A and B particles feel
different pressures in their own units, the corresponding melting
temperatures are Tm(PA) and Tm(PB), respectively. In the
common units of ϵABk

�1
B , the melting temperatures that A and

B particles feel are thus

Tm;AðpÞ ¼ TmðPAÞ
ϵAA
kB

� �
kB
ϵAB

¼ Tm p
γ2

1þ Δ

� �
ð1þ ΔÞ; ð4Þ

Tm;BðpÞ ¼ TmðPBÞ
ϵBB
kB

� �
kB
ϵAB

¼ Tm p
1

1� Δ

� �
ð1� ΔÞ: ð5Þ

This leads to a melting temperature gap

ΔTmðpÞ ¼ Tm;AðpÞ � Tm;BðpÞ
¼ Tm p γ2

1þΔ

� �
ð1þ ΔÞ � Tm p 1

1�Δ

� 	ð1� ΔÞ: ð6Þ

Apparently, both γ and Δ can affect ΔTm(p). Note that there is a
special case: When Tm(p) is linear, i.e., Tm(p)= Cp with C being

the system-dependent coefficient,

ΔTmðpÞ ¼ Cðγ2 � 1Þp; ð7Þ
so the melting temperature gap is no longer a function of Δ. We
will see later that such a linear behavior is crucial to the
understanding of the pressure and interaction dependence of
the GFA.

Given Tm(p), Eq. (4) indicates that Tm,A(p) can be obtained by
multiplying the pressure and temperature of Tm(p) curve by γ−2

(1+ Δ) and 1+ Δ, respectively. Correspondingly, Eq. (5) shows
that Tm,B(p) can be obtained by multiplying the pressure
and temperature of Tm(p) curve by 1− Δ and 1− Δ, respectively.
For the cases shown in Fig. 1 with γ= 1.4 and Δ= 0, we have
Tm,A(p)= Tm(γ2p) and Tm,B(p)= Tm(p). Fig. 2 shows the melting
temperatures against pressure for both harmonic and RLJ systems
with γ= 1.4 and Δ= 0. In the log–log scale, Tm,A(p) is obtained
by just shifting the Tm(p) curve horizontally by an amount
of log10(γ−2)=−2log101.4, while Tm,B(p) is the same as Tm(p). If
Tm monotonically increases with p, Tm,A(p) is always larger than
Tm,B(p), as shown in Fig. 2b for RLJ systems. If Tm(p) is non-
monotonic, Tm,A(p) and Tm,B(p) may intersect. As shown
in Fig. 2a, Tm(p) of harmonic systems is non-monotonic in p,
so Tm,A(p)= Tm,B(p) at p ≈ 0.14. In Fig. 1a, we display this
pressure as the vertical dot-dashed line. Interestingly, it roughly
agrees with pn at which χA= χB.

This agreement indicates that our hypothesis that the
difference between χA and χB, as shown in Fig. 1, is related to
the difference between melting temperatures felt by A and B
particles is valid. This is further supported by RLJ systems. For
RLJ systems, Tm,A(p) is always larger than Tm,B(p) because Tm(p)
monotonically increases, consistent with the fact that χA(p) is
always larger than χB(p), as shown in Fig. 1b.

Although Tm,A(p) and Tm,B(p) are not the actual equilibrium
melting temperatures, the concurrence of Tm,A= Tm,B and χA=
χB at p= pn for harmonic systems suggests that ΔTm(p) defined
here at least qualitatively reflects the correct pressure evolution of
the gap between equilibrium melting temperatures. This can also
be seen from the resultant solid-like states visualized in Fig. 1c.
For harmonic systems at p > pn, Tm,A < Tm,B and strong phase
separation occurs. From the crystallization mechanism, the
liquidus line is in coexistence with the B-solid. When Tm,A <
T < Tm,B, B particles crystallize, while A particles can crystallize
until T < Tm,A. For phase-separated states obtained from finite
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Fig. 2 Pressure dependence of the melting temperatures. a, b are for
harmonic and RLJ systems, respectively. Squares and circles are for Tm,A(p)
and Tm,B(p), respectively, with γ= 1.4 and Δ= 0. The dashed lines show
the linear behavior. The vertical dot-dashed line in a shows the crossover
pressure at which Tm,A(p) and Tm,B(p) intersect. By comparing with Fig. 1a,
it is roughly pn at which χA= χB. The inset of a shows how the equilibrium
melting temperature Tm(p) is determined from simulation, which is also
Tm,B(p) with Δ= 0 by definition. At a fixed pressure p, the melting
temperature Tm (marked as the vertical dashed line) is the temperature at
which the density ρ undergoes an abrupt change with the decrease of
temperature.
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quench rates, this sequence of the two-step crystallization would
result in purer B-solids than A-solids, i.e., isolated A (B) particles
are poor (rich) in B-solids (A-solids), as shown by the snapshots
at p= 0.2 in Fig. 1c. The snapshots at other pressures show the
opposite behavior when p < pn and Tm,A > Tm,B.

Seen from Fig. 2, another interesting and important feature is
that Tm(p) ~ p at low pressures for both harmonic and RLJ
systems. The melting temperature curves deviate from linear at
high pressures, where harmonic and RLJ systems exhibit
significantly different GFAs. The comparison between Figs. 1
and 2 shows that the GFAs maintain almost constant at fixed
dimensionless quench rate ~κ roughly in the pressure regime
where Tm(p) is linear. Then the question is whether this is just a
coincidence or implies some underlying correlations.

Mixing and demixing for γ= 1 and cB= 0.5. In this work, we
focus on the potential energy effects on the GFA. Therefore, before
understanding the results of systems with γ= 1.4, cB= 0.5, and
Δ= 0, we would like to discuss first a simpler case with γ= 1 and
cB= 0.5, so that A and B particles have the same size and geo-
metric frustration induced by particle size difference is absent.
Then, it would be clearer to sort out the underlying physics of the
evolution from mixing to demixing of two types of particles with
only energetic frustration being involved, which provides us with
crucial clues to understand the γ= 1.4 case. In the next subsection,
we will show that the findings for γ= 1 can be generalized to γ > 1.

With the variation of Δ, A and B particles have different
stiffness, leading to energetic frustration affecting the mixing of

particles. Because of the trivial symmetry of γ= 1, now we only
need to vary Δ from 0 to 1. When Δ= 0, A and B particles are
trivially the same and should statistically mix up well. When Δ
increases from 0, the distinction in particle stiffness leads to the
variation in particle overlap, in analogy to the evolution with the
growth of γ51. It is thus expected that phase separation will occur
when Δ is large. Fig. 3a shows examples of χB(Δ) of the resultant
solid-like states at different pressures and a fixed dimensionless
quench rate for harmonic systems. χA(Δ) behaves similarly to
χB(Δ), so we do not show it here. In this and the next subsections,
because we extend the pressure to much lower values, to use the
same dimensionless quench rates ~κ as in Fig. 1 is far beyond our
computational capacity. Therefore, we use faster ~κ. We have
verified (not shown here) that the results to be presented are
reproducible with different values of ~κ. At fixed pressure, Fig. 3a
shows that there is a crossover Δc below which χB remains small
and constant. When Δ > Δc, χB grows up, so Δ= Δc signals the
onset of phase separation. Fig. 3a also shows that Δc increases
when pressure decreases.

The appearing consistency between the constant GFA at low
pressures and the linear Tm(p) as discussed in the previous
subsection stimulates us to investigate whether the emergence of
phase separation at Δc is also correlated with the linearity of Tm(p).
Fig. 3b shows an example of the temperature-pressure phase
diagram of harmonic systems with Δ= 0.95. Here we draw Tm(p)
together with Tm,A(p) and Tm,B(p). Seen from Eqs. (4) and (5),
when γ= 1, Tm,A(p) and Tm,B(p) are simply obtained by shifting the
Tm(p) curve in both horizontal and vertical directions simulta-
neously by the same amount of log10(1+Δ) and log10(1−Δ),
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respectively, in the temperature-pressure plane with log–log scale.
In Fig. 3b, we denote pc as the crossover pressure above which
Tm(p) becomes nonlinear. Here, we set pc ≈ 0.004 at which Tm(p)
deviates from linear by 5%. Correspondingly, Eqs. (4) and (5)
indicate that Tm,A(p) and Tm,B(p) become nonlinear at pc,A=
pc(1+Δ) and pc,B= pc(1−Δ), respectively, when γ= 1. Because Δ
> 0, Tm,A(p) and Tm,B(p) collapse and are both linear when p < pc,B.
Seen from Eq. (7), the melting temperature gap ΔTm(p)= 0 when
p < pc,B, and ΔTm(p) > 0 otherwise. Therefore, in the pressure
regime where p < pc, p= pc,B= pc(1−Δ†) sets a crossover

ΔyðpÞ ¼ 1� p
pc
; ð8Þ

below (above) which ΔTm= 0 (ΔTm > 0). In the pressure regime
where p > pc, any nonzero Δ leads to ΔTm ≠ 0, so Δ†= 0. Note that
both Δ† and Δc increase when pressure decreases. It is then natural
to ask whether they are related.

Figure 3c shows Δ†(p) together with the iso-χB contours for
harmonic systems at fixed ~κ. With the decrease of χB, the contours
approach Δ†(p). The contours may shift upward gradually with
the decrease of ~κ. With current computational capacity, we expect
from Fig. 3c that Δ† agrees with Δc. Next, we will show that this
expectation is valid.

At fixed pressure, the melting temperature gap ΔTm is the
function of Δ, as shown by Eq. (6). Therefore, χB(Δ) shown in
Fig. 3a can be converted to χB(ΔTm). This functional relation
establishes the connection between the GFA characterized by χB
and the melting temperature gap ΔTm for γ= 1. Fig. 3d shows
χB(ΔTm) curves at different pressures for both harmonic and RLJ
systems. At all pressures, χB has a minimum when ΔTm= 0. With
the increase of ΔTm, χB increases and phase separation emerges.
Interestingly, in the pressure regime where p < pc and Tm(p) is
linear, all χB(ΔTm) curves can collapse nicely onto the same
master curve, when χB is plotted against ΔTm/pν with ν ≈ 1.02 for
both harmonic and RLJ repulsions. Figure 3d also shows that the
scaling collapse stops working when p > pc, highlighting the
important role of the linear Tm(p).

The scaling collapse indicates that at different pressures lower
than pc, in order to reach the same degree of particle mixing or
demixing, the variation of particle stiffness (Δ) needs to cause a
melting temperature gap ΔTm proportional to pressure. In this
pressure regime, Tm,A(p) is always linear, i.e., Tm,A(p)= Cp. From
Eq. (6), we have

ΔTmðpÞ
p

¼ C � Tm
p

1� Δ

� � 1� Δ

p
; ð9Þ

when Δ > Δ† and ΔTm > 0. The right hand side of Eq. (9) is
constant in pressure for a given χB. Because Tm,B(p) is nonlinear
when ΔTm > 0 (so is Tmð p

1�ΔÞ on the right hand side of Eq. (9)),
p

1�Δ must be a constant. This leads to

ΔðχBÞ ¼ 1� aðχBÞp; ð10Þ
where a is a χB-dependent prefactor. Eq. (10) sets the pressure-
dependent values of Δ to reach the same χB at p < pc. Note that
Δ†(p) in Eq. (8) shows exactly the same form of pressure
dependence. Therefore, Eq. (8) is actually a direct consequence of
the scaling collapse in the ΔTm → 0 limit. On the other hand, Δc

defined above follows Eq. (10) as well, corresponding to the
minimum χB where ΔTm= 0. Therefore, the scaling collapse
naturally suggests that Δ†= Δc. Consequently, for γ= 1, phase
separation can occur at a given pressure p only when Δ > Δ† and
ΔTm > 0.

Equation (8) also indicates that Δ† → 1 when p → 0, so
ϵBB → 0 and B particles cannot feel the existence of each other. In
the p → 0 limit, as long as Δ < 1 and there are still repulsions

among B particles, A and B particles become identical hard
particles when γ= 1 and there will be no phase separation. This is
consistent with our ΔTm argument, because it is impossible to
cause ΔTm > 0 in the p → 0 limit.

Glass-forming ability for γ > 1 and cB= 0.5. Inspired by the
results of γ= 1, in this subsection, we will generalize the con-
nection between χA (χB) and ΔTm to γ > 1. The results of γ= 1 are
thus naturally incorporated into the generalized picture. Our
arguments will be examined by simulation results of γ= 1.4 and
cB= 0.5 without loss of generality. The observations of systems
with γ= 1.4, cB= 0.5, and Δ= 0 presented above will then be
explained. Here we also vary Δ as done for γ= 1. Because γ > 1
and A and B particles have different sizes, Δ and −Δ apparently
correspond to two different systems. We thus need to restore the
range of Δ to [ −1, 1].

According to Eq. (6), at fixed pressure p, the melting
temperature gap ΔTm varies with Δ, so we are able to establish
the functional relation between the GFA and ΔTm. Figure 4a, b
show χA(ΔTm) and χB(ΔTm) for harmonic systems with γ= 1.4
and cB= 0.5 at different pressures and a given dimensionless
quench rate ~κ. All curves reach the minimum at ΔTm ¼ ΔT�

m. In
contrast to γ= 1 for which ΔT�

m ¼ 0, ΔT�
m is nonzero and varies

with pressure for γ= 1.4.
Analogous to γ= 1, Fig. 4c, d show that for both harmonic and

RLJ systems χA(ΔTm) and χB(ΔTm) curves at different pressures
lower than pc can also collapse onto the same master curves,
when χA and χB are plotted against ðΔTm � ΔT�

mÞ=pν with
ν ≈ 1.02. Therefore, the scaling collapse shown in Fig. 3d for γ= 1
is just a special case with ΔT�

m ¼ 0. When p > pc, the scaling
collapse breaks down.

For γ= 1, we have also shown that there is a range of Δ where
ΔTm ¼ ΔT�

m ¼ 0, i.e., −Δ† < Δ < Δ†. Then it is natural to ask
whether there also exists a range of Δ within which ΔTm ¼ ΔT�

m
for γ > 1. Another interesting question is what determines ΔT�

m.
Because Tm(p) is linear when p < pc, according to Eqs. (6) and

(7), at a given p < pc, there indeed exist a range of Δ within which
ΔTm is constant, as long as both Tm,A(p) and Tm,B(p) are still
linear. As shown in Fig. 2, γ= 1.4 leads to the separation of Tm,

A(p) and Tm,B(p) when Δ= 0. When Δ varies from 0, Tm,A(p) and
Tm,B(p) curves in Fig. 2 will shift in both horizontal and vertical
directions simultaneously by the same amount of log10(1+ Δ)
and log10(1− Δ), respectively, in the log–log scale. According to
Eqs. (4) and (5), at a given p < pc, Tm,A(p) or Tm,B(p) become
nonlinear when Δ is below

Δy
1 ¼ γ2

p
pc

� 1; ð11Þ

or above

Δy
2 ¼ 1� p

pc
: ð12Þ

In the p → 0 limit, Δy
1 and Δy

2 approach −1 and 1, respectively,
consistent with our previous discussions for γ= 1. At low
pressures, Δy

2 is apparently larger than Δy
1. When Δy

1 ≤Δ≤Δy
2 at a

given p, ΔTm remains constant. If such a constant ΔTm is ΔT�
m,

the scaling collapse shown in Fig. 4c, d also validates that Δy
1 and

Δy
2 are the onsets of the growth of χA and χB and the weakening of

the GFA, as observed for γ= 1.
With the increase of pressure, Δy

1 and Δy
2 approach each other,

until arriving at a critical pressure

pe ¼
2

γ2 þ 1
pc; ð13Þ
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where

Δy
1 ¼ Δy

2 ¼ Δ� ¼ γ2 � 1
γ2 þ 1

: ð14Þ

When p > pe, any variation of Δ normally causes the change of
ΔTm, so there is no interval of Δ within which ΔTm remains
constant. Therefore, the condition p < pc used above should be
generally modified to p < pe. When γ= 1, Eqs. (11)–(14) lead to
exactly the same results as shown in the previous subsection, with
Δy
2 ¼ �Δy

1 ¼ Δy, pe= pc, and Δ*= 0. For γ= 1, Δ*= 0 corre-
sponds to the best mixing of particles with ΔT�

m ¼ 0 at all
pressures. Is it possible that Δ* defined in Eq. (14) sets ΔT�

m for γ
> 1 as well?

When plugging in Δ= Δ*, Eqs. (4) and (5) turn to

Tm;AðpÞ ¼ Tm p
γ2 þ 1

2

� �
2γ2

γ2 þ 1
; ð15Þ

Tm;BðpÞ ¼ Tm p
γ2 þ 1

2

� �
2

γ2 þ 1
: ð16Þ

Interestingly, Tm,A(p)= γ2Tm,B(p), so in the log–log scale Tm,A(p)
is obtained by simply shifting Tm,B(p) upward by an amount of
log10(γ2). Then both Tm,A(p) and Tm,B(p) become nonlinear when
p > pe.

In the inset of Fig. 4e, we show Tm,A(p) and Tm,B(p) for
harmonic systems with γ= 1.4 and Δ= Δ*. In the log–log scale,
they are parallel along the vertical direction. We calculate the
melting temperature gap ΔTm;Δ� ðpÞ at Δ= Δ*. Surprisingly, it
agrees well with ΔT�

mðpÞ over the whole range of pressures
studied and for both harmonic and RLJ systems, as shown in
Fig. 4e. This agreement confirms our conjecture that there exists a
pressure-independent Δ* at which the GFA or the degree of
particle mixing is the strongest, equal to that of the hard particle
counterpart. When p > pe, any deviation of Δ from Δ* causes
ΔTm≠ΔT

�
m and the weakening of the GFA. When p < pe, Δ* lies

in the interval of Δ 2 ½Δy
1;Δ

y
2�, within which ΔTm ¼ ΔT�

m and the
GFA can maintain the best.

Now we are able to understand the results of systems with γ=
1.4, cB= 0.5, and Δ= 0 discussed earlier. From Eqs. (11) and

(12), we can see that Δ= 0 lies in ½Δy
1;Δ

y
2� when p < γ−2pc, so the

GFA can maintain the best. When p > γ−2pc, Δ= 0 lies outside of
½Δy

1;Δ
y
2� and is away from Δ* when p > pe. Therefore, ΔTm,0, the

melting temperature gap with Δ = 0, deviates from ΔT�
m and the

GFA becomes worse. How much ΔTm,0 deviates from ΔT�
m

determines how worse the GFA becomes. Fig. 4e also compares
ΔTm,0(p) with ΔT�

mðpÞ. At low pressures, they agree very well, as
expected. At high pressures, ΔTm,0 deviates from ΔT�

m. For RLJ
systems, the deviation is small, so the GFA is still close to the best.
In contrast, for harmonic systems, the deviation significantly
increases with the increase of pressure, so the GFA becomes
much worse and remarkable phase separation occurs. The more
essential reason of such a distinction between harmonic and RLJ
systems is that harmonic systems have a much more nonlinear
Tm(p).

Seen from Fig. 4a, b, the minimum values of χA and χB with
Δ= Δ* are almost constant in pressure. This explains why the
GFA remains constant at low pressures for harmonic and RLJ
systems with γ= 1.4, cB= 0.5, and Δ= 0. More interestingly, this
suggests that the GFA of hard particle systems can be maintained
to high pressures far beyond the hard particle limit, by properly
modulating the particle interactions and causing the interplay
between geometric and energetic frustrations. To apply Δ* in
Eq. (14) is one solution for binary mixtures, which should work
generally for other types of particle interactions.

Dependence on cB. In previous subsections, we have focused on
cB= 0.5. Fig. 5 verifies that our major findings of the pressure and
particle interaction effects on the GFA hold for other values of cB.
For given cB, γ, and p, we tune Δ and vary the melting tem-
perature gap ΔTm, exactly as done for cB= 0.5.

In this subsection, we take harmonic systems with γ= 1.4 as
the example. As shown in Fig. 5a, b, for cB= 0.3 and 0.7, χA and
χB reach the minimum at a pressure-dependent ΔT�

m. Curves of
χA(ΔTm) and χB(ΔTm) at different pressures lower than pe defined
in Eq. (13) can collapse well when plotted against ðΔTm �
ΔT�

mÞ=pν with ν ≈ 1.02. Therefore, as for cB= 0.5, the GFA of the
hard particle limit can be sustained with the increase of pressure,
as long as ΔTm(p) remains linear.
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Fig. 4 Role of the melting temperature gap. Here we show results for γ= 1.4 and cB= 0.5 systems with the variation of Δ at ~κ ¼ 1:22 ´ 10�6. a, b χA(ΔTm)
and χB(ΔTm) of solid-like states for harmonic systems at p= 10−5 (diamonds), 10−4 (triangles), 10−3 (circles), and 0.02 (squares). The curves in orange
are at p > pc where Tm(p) is nonlinear, while other curves are at p < pc. c, d Scaling collapse of χA(ΔTm) and χB(ΔTm) for harmonic (solid) and RLJ (empty)
systems at p= 10−5 (diamonds), 10−4 (triangles), 10−3 (circles), with ν≈ 1.02. ΔT�

m is the value of ΔTm at which χA and χB reach the minimum, as shown
in a, b. The squares with a dashed line show the violation of the scaling at p= 0.02 > pc for harmonic systems. e Comparison of melting temperature
gaps ΔT�

mðpÞ, ΔTm;Δ� ðpÞ with Δ=Δ* defined in Eq. (14), and ΔTm,0(p) with Δ= 0 for harmonic and RLJ systems. The inset shows Tm,A(p) and Tm,B(p) with
Δ=Δ*.
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Figure 5c reproduces the agreement between ΔT�
m and ΔTm;Δ�

at Δ= Δ* for cB= 0.3 and 0.7, as shown in Fig. 4e for cB= 0.5.
For all values of cB studied, Δ= 0 leads to a ΔTm equal to ΔT�

m
when p < pe, as already discussed for cB= 0.5 in the previous
subsection. Therefore, Δ= 0 can maintain the GFA of the hard
particle limit until p= pe, above which the GFA becomes weaker.
However, when Δ= Δ*, Figs. 4e and 5c show that
ΔTm;Δ� � ΔT�

m, so the GFA of the hard particle limit can be
maintained over a wide range of pressures and beyond p= pe.

Seen from Fig. 5a, b, a remarkable change with cB is the
variation of the minimum values of χA and χB, reflecting the
variation of the GFA of the hard particle limit with cB. The GFA
can be approximately quantified by χ= χA(1− cB)+ χBcB. Fig. 5a,
b suggest that the GFA of cB= 0.3 is apparently weaker than
those of cB= 0.5 and 0.7, while the GFAs of cB= 0.5 and 0.7 are
similar with that of cB= 0.5 seeming a little bit stronger. The
GFAs in the cB= 0 and 1 limits are trivially the weakest. We also
find (not shown here) that the best GFA associated with the
minimum χ occurs between cB= 0.5 and 0.7.

The evolution of the GFA with the increase of cB characterized
in our work is consistent with previous results of binary mixtures
of hard disks with γ= 1.4 from the calculations of the interface
energy23. Based on our results, we can now qualitatively extend
the cB dependence of the GFA to various pressures. In Fig. 5d, we
schematically plot the GFA against cB for different pressures and
for Δ= 0 and Δ*, respectively. For Δ= 0, it can be expected that
the GFA(cB) curve of the hard particle limit can be maintained
until p= pe. When p > pe and the GFA becomes weaker, the
whole GFA curve will shift down with the increase of pressure.
For Δ= Δ*, we would expect that the GFA(cB) curve of the hard
particle limit can be maintained beyond p= pe.

In the perspective of the empirical argument of the connection
between the GFA and eutectic point, the GFA can be evaluated

from the depression of the equilibrium melting temperature with
the variation of cB6,23. However, the argument may not be easily
applied to compare the GFAs at different pressures or densities,
purely from the comparison of melting temperatures. One may
then suggest to perform the calculations of the equilibrium phase
diagram and the energy barriers (and the rate) of the nucleation
of corresponding crystals to evaluate the GFA, as done for binary
mixtures of hard disks23,50. Because we have multiple parameters,
cB, p, and Δ at fixed γ, it would be a rather difficult task.

Here we realize the comparison of the GFAs over pressures,
interactions, and particle compositions in a much simpler way.
The key is the finding of the underlying connection between the
GFA and the cB-independent melting temperature gap between
species derived from the simple conversion of units. The melting
temperatures adopted here are not the actual ones from direct
simulations or calculations of equilibrium systems, which should
depend on not only p but also cB for given γ and Δ, but they turn
out to work well to reveal the pressure and interaction
dependence. Another important finding is Δ*, which suggests
an energy strategy to fight against the weakening of the GFA
caused by the softness of particles.

Although we do not show exact results of the equilibrium
phase diagram and melting temperatures in the complicated
parameter space, the schematic plots in Fig. 5d already to some
extend indirectly reflect the pressure and interaction evolution of
the equilibrium phase diagram in the T− cB plane. It would be
expected that when p < pe the phase diagrams at various pressures
look similar for Δ= 0 and Δ*, only that the melting temperatures
grow linearly with the pressure. When p > pe, the phase diagram
starts to deviate for Δ= 0, while the similarity may be still
maintained for Δ= Δ*.

Discussion
By investigating the pressure and interaction dependence of the
GFA, we find similarities and distinctions between two types of
widely studied model glass-formers, binary mixtures of harmonic
and RLJ particles with γ= 1.4, cB= 0.5, and Δ= 0. We focus on
the energetic frustration, taking the hard particle limit as the
reference. For a given γ, the GFA is the best in the hard particle
limit, purely determined by geometric frustration. The involve-
ment of the potential energy normally weakens the GFA of hard
particles. We find that the GFAs of both harmonic and RLJ
systems remain constant and identical at low pressures, but
bifurcate at high pressures. In contrast to RLJ systems which still
maintain an almost constant GFA at high pressures, significant
phase separation occurs in harmonic systems.

With the variation of both γ and Δ, we come up with a gen-
eralized picture, which explains the pressure and interaction
dependence of the GFA. Our major findings include (i) the non-
equilibrium GFA of binary mixtures of soft particles is connected
to the equilibrium melting temperature, (ii) the GFA of the hard
particles can be maintained to high pressures with a proper
modulation of the particle interaction such as using Δ* in Eq.
(14), and (iii) melting temperatures more linear in pressure are
better to suppress phase separation and maintain a good GFA.
We find that these results are valid for different values of cB. In
combination of the cB dependence studied as well in previous
approaches and the pressure and interaction dependence studied
in this work, we are able to have a much more comprehensive
picture of the GFA of binary mixtures of soft particles. Harmonic
and RLJ potentials studied here are rather different, but their
behaviors can both be understood by the same picture. Moreover,
the derivations in this work do not aim at any specific interaction.
Therefore, we expect that our findings are valid to other types of
interaction.
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Fig. 5 Particle composition dependence. Here we show results of
harmonic systems with γ= 1.4. a, b Scaling collapse of χA(ΔTm) and
χB(ΔTm) of solid-like states at p= 10−5 (diamonds), 10−4 (triangles), and
10−3 (circles) quenched via the rate ~κ ¼ 1:22 ´ 10�6. ΔT�

m is the value of
ΔTm at which χA and χB reach the minimum, and ν≈ 1.02. Three values of cB
are presented: 0.3 (blue), 0.5 (red), and 0.7 (green). c Comparison of
melting temperature gaps ΔT�

mðpÞ for cB= 0.3 and 0.7 and ΔTm;Δ� ðpÞ with
Δ=Δ* defined in Eq. (14). They agree well, as shown in Fig. 4e for cB= 0.5.
d Schematic plot of the GFA against cB on both sides of pe defined in
Eq. (13) and at Δ= 0 and Δ*.
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Note that in this work ϵAA, ϵBB, and ϵAB are connected by the
variable Δ and are thus not independent. Therefore, the major
conclusions made here may not be directly generalized to other
conditions, for example, when all three ϵ’s are independence of
each other. However, the robust and consistent evidence shown
in this work suggests that the underlying connections between the
GFA and the melting temperature should not be a coincidence.
Follow-up studies are required to find out whether a more general
picture can be established.

Since the melting temperature affects the GFA, it is then
straightforward to expect that it also plays some role in dynamics
of supercooled liquids. It is interesting to know whether A and B
particles exhibit different dynamics related to their melting
temperature difference. We are also curious about how the
dynamics change when Δ varies from 0 to Δ* with the best GFA,
from which we may reveal some underlying connections between
the GFA and dynamical properties of glass-formers, such as
kinetic fragility and dynamic heterogeneity.

Methods
System information. Our systems contain N/2 A and N/2 B particles with the
same mass m and a size ratio γ defined earlier. Periodic boundary conditions are
applied in all directions. We consider two types of particle interactions, harmonic:

UðrijÞ ¼
ϵij
2

1� rij
σ ij

 !2

Θ 1� rij
σ ij

 !
; ð17Þ

and repulsive Lennard-Jones (RLJ):

UðrijÞ ¼
ϵij
72

σ ij
rij

 !12

� 2
σ ij
rij

 !6

þ 1

" #
Θ 1� rij

σ ij

 !
; ð18Þ

where rij and σij are the separation between particles i and j and sum of their radii,
ϵij is the characteristic energy scale, and Θ(x) is the Heaviside step function. We set
the units of mass, energy, and length to be m, ϵAB, and σB, so the units of time and
temperature are σBm

0:5ϵ�0:5
AB and ϵABk

�1
B with kB being the Boltzmann constant.

Dimensionless quench rate. In this work, we compare the GFA over a wide range
of pressures from 10−5 to above 0.1 and thus have to confront the challenge to
choose a reasonable quench rate. To our knowledge, this issue has not been ser-
iously considered, because people rarely compare the GFAs at different pressures.

It has been shown that, when glass-forming liquids are quickly quenched to
T= 0, the properties of the resultant inherent structures, e.g., potential energy and
stability, depend on the parent temperature Tp prior to the quench52–55. For glass-
forming liquids, there are two characteristic temperatures, the onset temperature
Tonset and the glass transition temperature Tg

40,55. When Tp > Tonset and the liquids
still exhibit the Arrhenius relaxation behavior, the potential energy of the inherent
structures does not vary much with Tp. When Tg < Tp < Tonset and the liquids are
supercooled and exhibit super-Arrhenius behavior, the potential energy of the
inherent structures decreases with the decrease of Tp. Previous results have
suggested that Tonset is around 2Tg

40.
In our study, we start with an equilibrium liquid above Tonset and apply a

quench rate κ= δT/Δt. Apparently, how long the system stays in the temperature
window, (Tg, Tonset), is crucial to the structures and properties of the final solid-like
states. In contrast, above Tonset or below Tg, the system is either an equilibrium
liquid or a glass with extremely slow structural relaxation, so how long the system
stays at T > Tonset and T < Tg in the accessible time scales should not significantly
affect the final solid-like state.

Previous studies have shown that Tg ~ p at low pressures for systems studied in
this work with γ= 1.4 and Δ= 030. If we use the same quench rate κ for all
pressures, the time for the system to stay in the supercooled regime, (Tg, Tonset), is
(Tonset− Tg)/κ ~ p/κ. Compared with high-pressure systems, the low-pressure
systems almost undergo no time in the supercooled regime, which is unfair for
them to explore lower-energy inherent structures. Therefore, to compensate this
loss at low pressures and give systems at quite different pressures comparable
chances to explore lower-energy inherent structures, we need to let κ ~ p. This leads
to an updated quench rate κ� ¼ κ=ðpσdB=kBÞ, where d is the dimension of space.
This is actually to nondimensionlize the temperature step δT in the expression of κ
by pσdB=kB.

Moreover, it has also been shown that the structural relaxation time τ of the
supercooled liquids studied in this work satisfies the scaling at low pressures30:

τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pσd�2

B =m
q

¼ FðkBT=pσdBÞ, where F(x) is the scaling function. Therefore, in order

for systems at different pressures to undergo comparable structural relaxations in
the supercooled liquid regime, the quench rate is required to be further divided by

p1/2. This is actually to nondimensionlize the time duration Δt in the expression of

κ by ðpσd�2
B =mÞ�1=2

.
Then we finally obtain a dimensionless quench rate

~κ ¼ κ�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pσd�2

B =m
q

¼ kBm
1=2

σ3d=2�1
B

κ
p3=2

. For two-dimensional systems mainly studied in

this work, ~κ ¼ kBm
1=2

σ2B

κ
p3=2. By using the same ~κ at different pressures, we are able to

compare the GFAs of systems with the pressure varying over several orders of
magnitude. This is particularly crucial to compare the low-pressure regimes
where both the glass transition and melting temperatures are linear in pressure.
The robust scaling collapse of χ(ΔTm) curves strongly validates the use of ~κ.
When ~κ is fixed, κ ~ p−3/2, so the computational cost dramatically increases with
the decrease of pressure. As a compromise, we use larger values of ~κ when
focusing on the low-pressure systems in Figs. 3–5 than those for higher pressures
in Fig. 1.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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