
Review Article
PrognosticModels for PredictingOverall Survival in Patients with
Primary Gastric Cancer: A Systematic Review

Qi Feng ,1 Margaret T. May,2 Suzanne Ingle,2 Ming Lu ,3 Zuyao Yang ,1,4

and Jinling Tang 1,4,5

1Division of Epidemiology, JC School of Public Health and Primary Care, !e Chinese University of Hong Kong,
Hong Kong, China
2Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
3Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of GI Medical Oncology,
Peking University Cancer Hospital & Institute, Beijing, China
4Cochrane Hong Kong, JC School of Public Health and Primary Care, !e Chinese University of Hong Kong, Hong Kong, China
5Shenzhen Municipal Key Laboratory for Health Risk Analysis,
Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China

Correspondence should be addressed to Zuyao Yang; zyang@cuhk.edu.hk and Jinling Tang; jltang@cuhk.edu.hk

Received 15 July 2019; Revised 23 August 2019; Accepted 5 September 2019; Published 18 September 2019

Academic Editor: Tsutomu Nishida

Copyright © 2019 Qi Feng et al. .is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. .is study was designed to review the methodology and reporting of gastric cancer prognostic models and identify
potential problems in model development. Methods. .is systematic review was conducted following the CHARMS checklist.
MEDLINE and EMBASE were searched. Information on patient characteristics, methodological details, and models’ performance was
extracted. Descriptive statistics was used to summarize the methodological and reporting quality. Results. In total, 101 model de-
velopments and 32 external validations were included..emedian (range) of training sample size, number of death, and number of final
predictors were 360 (29 to 15320), 193 (14 to 9560), and 5 (2 to 53), respectively. Ninety-onemodels were developed from routine clinical
data. Statistical assumptions were reported to be checked in only nine models. Most model developments (94/101) used complete-case
analysis. Discrimination and calibrationwere not reported in 33 and 55models, respectively..emajority ofmodels (81/101) have never
been externally validated. None of themodels have been evaluated regarding clinical impact.Conclusions. Many prognostic models have
been developed, but their usefulness in clinical practice remains uncertain due to methodological shortcomings, insufficient reporting,
and lack of external validation and impact studies. Impact. Future research should improve methodological and reporting quality and
emphasize more on external validation and impact assessment.

1. Introduction

Although gastric cancer has been decreasing in terms of
both incidence and mortality in most developed coun-
tries in recent decades, it still causes substantial disease
burden [1]. Over 90% of people with early stage gastric
cancer survive for five years or longer after surgical
treatment [2, 3], whereas the prognosis of those with
advanced gastric cancer is poor, with a 5-year survival
rate of about 20% in stage III and 7% in stage IV patients,
respectively [4].

Risk stratification is important in informing treatment
decision, resource allocation, and patient recruitment in
clinical trials [5]. .e tumor-node-metastasis (TNM)
staging system is widely used for risk stratification [4].
Nevertheless, even patients with the same TNM stage may
have significantly different responses to treatment and
clinical outcomes [6], suggesting that more accurate
stratification could be beneficial [7]. Previous studies have
identified numerous other prognostic factors for gastric
cancer, which can be broadly divided into four categories:
patient-, tumor status-, biomarker-, and treatment-related
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factors [8–10]. As no single prognostic factor suffices for
satisfactory risk stratification, much interest has been
raised in developing multivariable prognostic models,
which quantitatively combine two or more prognostic
factors [11, 12].

.e American Joint Committee on Cancer has in-
creasingly recognized the importance of incorporating
prognostic models into practice to achieve personalized
cancer management [13]. However, despite plenty of
prognostic models published in the literature, very few have
been adopted in clinical use. We carried out this systematic
review to summarize the characteristics of existing models
for predicting overall survival of patients with primary
gastric cancer, with an emphasis on identifying potential
problems in model development and validation and
informing future research.

2. Methods

.is systematic review was conducted following the
CHARMS checklist [14], which was developed to guide data
extraction and critical appraisal in systematic reviews of
prediction model studies.

2.1. Eligibility Criteria. We included primary studies that
reported the development and/or validation of prognostic
models predicting overall survival of patients with primary
gastric cancer. A prognostic model was defined as a com-
bination of at least two prognostic factors, based on mul-
tivariable analysis, to estimate individual risk of a specific
outcome, presented as regression formula, nomogram, or in
a simplified form, such as risk score [15–17]. We only in-
cluded prognostic models for predicting overall survival or
all-cause death, excluding other outcomes, such as pro-
gression-free survival after treatment or disease-specific
survival.

We excluded studies if (1) they enrolled patients with
other types of cancer and the information on gastric cancer
model could not be separately extracted; (2) they used short-
term mortality (for example, death within 30 days after
surgery) as the outcome; or (3) they validated prognostic
models that were not initially developed for gastric cancer
patients.

2.2. Literature Search. We searched MEDLINE and
EMBASE to identify all relevant studies from their in-
ceptions through 30 May 2018, using the following three
groups of terms: (1) gastric tumor∗ OR gastric tumour∗ OR
gastric cancer∗ OR gastric neoplasm∗ OR gastric carcinoma∗

OR stomach tumor∗ OR stomach tumour∗ OR stomach
cancer∗ OR stomach neoplasm∗ OR stomach carcinoma∗ OR
Siewert OR esophagogastric OR EGJ, and (2) prognos∗ OR
survival OR death OR mortality, and (3) scor∗ OR model∗
OR index∗ OR nomogram∗ OR rule∗ OR predict∗ OR indices
OR formula∗ OR equation∗ OR algorithm∗ [18, 19]. .e
search terms were limited to title and abstract. We also
manually checked the reference lists of eligible studies to
identify extra relevant studies.

2.3. Study Selection. After excluding duplicates, we screened
all titles and abstracts to identify potentially eligible studies
and then retrieved their full texts for further examination.
Final eligibility was confirmed by two authors (QF and
ZYY). Discrepancy was resolved by discussion with a third
author (JLT).

2.4. Data Extraction and Quality Assessment. .e data ex-
traction form was designed according to the CHARMS
checklist [14], supplemented with other items obtained
from methodological guidance studies and previous
systematic reviews [15, 16]. Briefly, the following in-
formation was extracted for each model development and
external validation: publication year, country, data source,
patient characteristics, length of follow-up, outcome,
candidate predictors, training sample size, number of
deaths, missing data, model development/validation
methods, final predictors, predictive performance, and
presentation formats.

In this study, candidate predictor refers to the potential
predictors (and their functional forms, if any) that are
selected to be examined in multivariable analysis but might
or might not be included in final model. Final predictor
refers to the predictors that are included in final models.
Event per variable (EPV) is the ratio between the number
of events and the number of candidate predictors, which is
a rule of thumb to empirically evaluate the power of re-
gression analysis, with a value of 10 or higher recom-
mended to avoid potential overfitting [20, 21]. If one study
included multiple model developments and validations, we
extracted relevant information for each model develop-
ment and validation separately. Data extraction was un-
dertaken by two authors (QF and ZYY), and any
uncertainty in data extraction was resolved by discussion
with a third author (JLT).

We used a preliminary version of the Prediction Model
Study Risk Of Bias Assessment Tool (PROBAST) to evaluate
the methodological quality of each model development and
validation [22]..is tool evaluated the levels of risk of bias in
five domains: participant selection, definition and mea-
surement of predictors, definition and measurement of
outcome, sample size and participant flow, and statistical
analysis. Each domain was rated as high, low, or unclear risk
of bias. Overall judgment of risk of bias was derived from the
judgments on all domains: low risk if all domains had low
risk of bias, high risk if any domain had high risk of bias,
otherwise unclear risk.

2.5. Statistical Analysis. We mainly used descriptive statis-
tics to summarize the characteristics of model developments
and validations. All final predictors were assigned into one of
the four categories: patient, tumor status, biomarker, and
treatment. We counted the frequency of each final predictor
being included in models. We compared models that have
been externally validated with those that have not, regarding
their characteristics (training sample size, number of events,
number of final predictors, EPV, c statistic, etc.).
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3. Results

In total, 16334 citations were identified and 99 eligible
publications (Supplementary file 1) were included in this
review (Figure 1). Of the 99 publications, 75 performed
model development only, 9 performed external validation
only, and 15 performed both model development and ex-
ternal validation. One-hundred and one distinct models
were extracted from 90 studies. .irty-two external vali-
dations for 20 models were extracted from 24 studies.

3.1. Model Development

3.1.1. Basic Characteristics of Model Development.
Characteristics of the 101 model developments are summa-
rized in Table 1. .ree models were published before 2000,
and the number has rapidly risen by 2- and 30-fold during
2001–2010 and 2011–2018, respectively (Figure 2). Most
models (76/101) originated from East Asian populations,
which was not surprising, given the fact that this region has
the highest incidence and prevalence of gastric cancer.

Patient characteristics varied substantially across studies
in terms of age, sex, tumor status, and treatment (Table 1).
.e median proportion of male patients was 67.8% (range
30.9% to 80.3%), and the median age was 60 years (range 51
to 70)..irty-six models were developed from gastric cancer
patients at TNM stages I–III only and 17 models from TNM
stage IV only. Most models (71/101) recruited only patients
who had received surgery.

3.1.2. Summary of Model Development Methods. Most
models (91/101) were developed by retrospective cohort
studies based on routine clinical data, which were not
collected for the purpose of model development. To deal
with missing data, which is a common problem with routine
clinical data, seven models adopted the multiple imputation
approach, while the remaining 94 models conducted com-
plete-case analysis. .e medians of total sample size and
number of events included in analysis were 360 (range 29 to
15320) and 193 (range 14 to 9560), respectively. .e starting
point of follow-up for overall survival varied across models.
Seven studies did not report their candidate predictors
clearly. EPV can be estimated in 83 model developments,
with the median of 25.1 (range 0.2 to 1481.3). A favored EPV
(>10) was achieved in 64 model developments.

As for selection of candidate predictors, 63 models used
univariable analysis, 30 models prespecified candidate
predictors based on clinical knowledge, five models
employed a combination of the two, and the other three
models did not specify this issue clearly. Various statistical
models were used for prognostic model development, with
Cox proportional hazard model being the most popular one
(used in 90 models). Sixty-eight models used a stepwise
approach in multivariable analyses to select final predictors.
Statistical assumptions of the methods were examined and
reported in only nine studies.

.e median number of final predictors was 5 (range 2 to
10). In total, 180 different predictors were included, of which

21 were patient-related, 34 tumor-related, 116 biomarkers,
and 9 treatment-related (Table 2; more details in the Sup-
plementary file 2). .e most consistent predictors for overall
survival (included by more than 10 models) were age at
diagnosis, sex, lymph node involvement, metastasis, in-
vasion depth, TNM stage, tumor size, tumor site, differ-
entiation, and histologic type, all of which were patient- and
tumor-related.

.e models were mostly presented in simplified forms,
such as risk score (35/101) and nomogram (47/101). For
model performance, 33 and 55 models did not report dis-
crimination and calibration, respectively. Among the studies
reporting relevant information, the median c statistic for
discrimination was 0.748 (range 0.627 to 0.961). Forty-two
models were compared with TNM stage alone regarding c
statistic value, and all models outperformed TNM stage,
with a median increase in c statistic value of 0.050 (range
0.015 to 0.180).

3.2. External Validation. .ere were 32 external validations
for 20 distinct models, with 22 of them reporting in the same
study as the model development. .e majority (81/101) of
models developed have not been externally validated. Five
models were externally validated more than once, and two
models [23, 24] more than five times. .e characteristics of
training datasets and validation datasets were compared in
19 external validations. Five validations did not assess dis-
crimination, and 24 did not assess calibration (Table 3). .e
median (range) of c statistic for discrimination was 0.770
(0.576 to 0.868). .e difference in c statistic between de-
velopment and validation ranged from − 0.044 to 0.290 with
a median of 0.029.

3.3.QualityAssessment. .emodel developments had either
high (97/101) or unclear (4/101) risk of bias, and all model
validations had high risk of bias. Ninety-one developments
and 31 validations had high risk of bias in participant se-
lection, mainly due to retrospective data collection. Forty-six
developments and six validations had high risk of bias in
sample size and participant flow, mainly due to small sample
size and inappropriate method of dealing with missing data.
Eighty-three developments and 13 validations had high risk
of bias in analysis, mainly due to inappropriate method
dealing with continuous variable, lack of statistical as-
sumption examination, lack of overfitting detection, and
insufficient reporting of model performance (Supplemen-
tary file 3).

3.4. Comparison of Externally Validated Models with Not-
Validated Models. When comparing development charac-
teristics of externally validated models with not-validated
models, we found that the validated models tended to have
larger training sample size, bigger number of events, higher
EPV, older age, and higher c statistic value, while the dif-
ferences in number of final predictors seemed to be in-
significant (Table 4). Multivariable logistic regression
showed that models were more likely to be externally
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validated if they were developed with bigger training sample
and higher c statistic.

4. Discussion

.is systematic review identified 101 models predicting
overall survival of gastric cancer patients, with 20 of them
externally validated.

van den Boorn et al. published a systematic review [25]
summarizing prediction models for esophageal and/or gastric
cancer patients, but the present study substantially differed
from it and has its own value. Firstly, this study focused on
prognostic models designed for primary gastric cancer pa-
tients only, whereas van den Boorn et al. included models for
both gastric and esophageal cancers. Secondly, we identified
40 more newly published models and provided a more
comprehensive picture of their characteristics. .irdly, van
den Boorn et al. focused on models’ performance and clinical
application, but our study emphasized more on the meth-
odology of model development and validation.

We observed substantial heterogeneity regarding patient
types in model development. Many studies developed
prognostic models for specific subgroups of gastric cancer
patients (e.g., those with a certain tumor stage and those
receiving certain treatment) to make their models unique
from those developed by others. .is strategy of patient
restriction may limit the model’s generalizability, increasing
uncertainty when applying it to other types of patients. In

addition, an underlying assumption of restricting a model
development to specific patient subgroups is that there exists
effect modification or interaction between the restriction
variable(s) and the main prognostic factors of interest.
However, most studies did not check this assumption.

We also identified common statistical shortcomings that
may cause bias in model development. Firstly, most models
were developed from routinely collected clinical data, in which
missing data was common. Most models simply performed
complete-case analysis by excluding the patients with missing
data. However, complete-case analysis works well only when
missing data occurs completely at random, which is rare in
reality [26]. To address this issue,multiple imputation has been
recommended [27, 28]. .is method has been employed in
prediction model studies of other diseases [29, 30] but has not
been applied in gastric cancer until 2017 [31–33].

Secondly, univariable analysis was commonly used to
select candidate predictors. However, this data-driven
method has high risk of wrongly excluding a potentially
significant variable or including a potentially insignificant
variable when its association with the outcome is confounded
by others [34, 35]..e bootstrap resampling method could be
used to increase the stability of variable selection, by selecting
variables with high inclusion frequency across multiple
bootstrapping samples [36]. Moreover, variable selection
should take into account clinical or biological knowledge and
combine results of multivariable analysis with sensitivity
analysis for cautious conclusion [34, 35].

Electronic search (n = 16334):
EMBASE via Ovid (n = 8698),
MEDLINE via Ovid (n = 7636)

Screened by titles and abstracts
(n = 10295)

Screened by full texts
(n = 317)

Duplicates excluded via EndNote (n = 6039)

Not written in English (n = 832),
No model was developed (n = 7567),
Review articles (n = 296),
Wrong patient type (n = 1201),
No full text (n = 82)

Records excluded (n = 9978):

Methodology studies (n = 5),
Did not use multivariable analysis (n = 43),
Wrong patient type (n = 11),
Did not use overall survival or all-cause death as the
outcome (n = 80),
Only identified prognostic factors (n = 74),
Used models for only risk prediction in cross-sectional
design (not follow-up outcome) (n = 5)

Full-text articles excluded (n = 218):

Model development only (n = 75),
Model development with validation (n = 15),
Model validation only (n = 9)

Eligible studies (n = 99):

Figure 1: .e flowchart of study selection.
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Table 1: Characteristics of 101 model developments.

Model developments (n� 101)
Study characteristics
Publication year
Before 2000 3
2001–2010 7
2011–2018 91

Study location
East Asia (China/Japan/Korea) 76
Non-Asian 25

Data source
Clinical data/retrospective cohort 91
Prospective cohort 7
Randomized controlled trial 3

Patient characteristics
Male% (4/101 missing) 67.6 (30.9, 80.3)a

Age (5/101 missing)
Median (min, max) of mean 60.0 (51.0, 70.0)a

Tumor TNM stage
All 46
I–III 36
IV 17
No information 2

Gastrectomy
No restriction 28
Only patients with gastrectomy 71
Only patients without gastrectomy 2

Model development
Sample size (training set) (14/101 missing) 360 (29, 15320)a

Number of events 193 (14, 9560)a

Event per variable (18/101 missing) 25.1 (0.2, 1481.3)a

Length of follow-up (month) (53/101 missing) 44.0 (6.7, 111.6)a

Start of outcome follow-up
From diagnosis 3
From surgery 49
From other time pointsb 15
Unclear 34

Candidate selection methods
Prespecification 30
Univariable analysis 63
Prespecification + univariable analysis 5
Unclear 3

Statistical model
Cox proportional hazard regression 90
Othersc 11

Final predictor selection
Full model 10
Stepwise (including forward and backward) 68
Unclear 23

Statistical assumptions ever checked 9
Number of final predictors 5 (2, 53)a

Formats of presentations
Score 35
Nomogram 47
Equation 9
Others (decision tree and neural network) 4
No 6

Predictive performance
Discrimination
AUC/c statistic 67
Others 1
No 33
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.irdly, the majority of studies did not examine the
assumptions of the statistical models, such as hazard-pro-
portionality for Cox regression and linearity assumption for

continuous variables. .e results of examination are im-
portant in selecting appropriate statistical models and de-
termining predictors’ functional forms [37, 38]. Cox
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Figure 2: Number of published prognostic models by publication year. .e estimated number of prognostic model in 2018 was calculated
based on the assumption that the model number was proportionate to the number of months. We found 16 models through 30th May in
2018, and the estimated model number in 2018 would be 16∗(12/5) � 38.4.

Table 2: Final predictors included in the models.

Category Number of predictors Number of predictors selected multiple times Predictors selected multiple timesa

Patient 21 9
Age, sex, ethnicity, performance score, year of

diagnosis, family history, smoking, residency, and
addiction to opium

Disease
status 34 21

T stage, N stage, TNM stage, tumor site, tumor size,
differentiation, metastasis, histologic type, Lauren
type, LN ratio, lymphovascular invasion, bone

metastasis, Borrmann type, liver metastasis, number
of metastasis sites, lung metastasis, number of

examined LN, metastasis LN, perineural invasion,
LODDS, and TTP after chemotherapy

Biomarker 116 19

CEA, NLR, ALP, albumin, bilirubin, CA199, Hb,
CES1, IS, LDH, LNR:ART, lymphocyte count,
MGAT5, mGPS, NPTM, platelet, sodium,

TNFRSF11A, and WBC

Treatment 9 6
Chemotherapy, gastrectomy, lymphedenectomy,

resection margin, extent of resection, and
radiotherapy

a.e table lists only the predictors that have been included more than once. LN: lymph node. LODDS: log odds of positive LN. CEA: carcinoembryonic
antigen. NLR: neutrophil/lymphocyte ratio. ALP: alkaline phosphatase. Hb: hemoglobin. MGAT5: β1, 6-N-acetylglucosaminyltransferase-5. mGPS: modified
Glasgow Prognostic Score. CA199: cancer antigen 199. NPTM: number of positive tumor markers (cancer antigen 125, CA199, CEA). WBC: white blood cell.
TTP: time to progression.

Table 1: Continued.

Model developments (n� 101)
Calibration
Calibration plot 45
Hosmer–Lemeshow test 3
No 55

Model validation
Internal 30
External 21
No 54

aMedian (min, max). bInitiation of chemotherapy (n� 10), metastasis (n� 3), and randomization (n� 2). cCART, Cox Lasso, discrimination analysis, Weibull
model, neural network, and logistic model. AUC: area under curve.
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regression is the most commonly used model for survival
data, but the underlying proportional-hazard assumption
was often violated, in which case parametric survival models
could be considered [39, 40]. In addition, algorithms from
machine learning (e.g., neural network) are less strict with
assumptions and have been used more and more in prog-
nostic model development.

Fourthly, detection of model overfitting was neglected in
most studies. Overfitting is more likely to occur in studies
with small sample size and many predictors, resulting in
overestimation of risk in high-risk patients and un-
derestimation low-risk ones [41]. .is issue can be detected
by internal validation with cross-validation or bootstrap
resampling and handled with statistical methods, such as
shrinkage and penalized regression [42, 43].

Underreporting is another common problem. Outcome
definitions, variable selection method, assessment of dis-
crimination, and calibration measures were not reported in
34%, 23%, 33%, and 55% of model developments, re-
spectively. Because there is no standard method for model
development and multiple feasible options exist at each step
in model development, underreporting of methodological

details may cause difficulty in assessing a model’s internal
and external validity. Future studies are suggested to follow
relevant reporting guidelines such as the TRIPOD [44, 45].

In this study, we found 55 predictors that were included
more than twice in models, 10 of which (age at diagnosis,
sex, lymph node involvement, metastasis, invasion depth,
TNM stage, tumor size, tumor site, differentiation, and
histologic type) were included more than 10 times. .is can
be regarded as indirect evidence for their predictive power in
gastric cancer prognosis. Direct evidence, i.e., magnitude of
their association with the outcome, such as hazard ratio, can
be found in previous systematic reviews and meta-analyses
[46, 47]. .erefore, we suggest that future model develop-
ment, if necessary, to build upon these existing evidence.
.ough a large number of biomarkers were studied, their
frequency of being included in final models was very low
(mostly once or twice).

Prognostic models can be used to inform patients of
their prognosis and assist clinical decision-making.
However, despite the much effort devoted into model
development so far, very few prediction models other than
the TNM stage system have been adopted in clinical

Table 4: Characteristics of models with external validation and those without.

Externally validated models (n� 20) mean
(SD)

Not externally validated models (n� 81) mean
(SD)

P

value
Training sample size 3902.55 (5777.62) 634.17 (926.30) 0.021
Number of events 2825.12 (4069.04) 344.75 (613.35) 0.028
Number of candidate
predictors 75.80 (204.53) 12.83 (28.26) 0.185

EPV 364.21 (542.04) 44.70 (82.97) 0.033
Number of final predictors 6.65 (3.44) 5.94 (6.08) 0.490
Length of follow-up (month) 64.24 (29.65) 43.76 (19.15) 0.122
Age 63.00 (4.99) 59.87 (3.39) 0.034
Male% 64.92 (4.10) 67.29 (6.54) 0.053
c statistic 0.80 (0.06) 0.75 (0.07) 0.042
EPV: event per variable.

Table 3: Characteristics of model external validations.

External validations (n� 32)
Data source
Clinical 27
Prospective cohort 3
Randomized controlled trial 2

Validated in
.e original development study 22
Independent study 10

Sample size for validation 610 (71, 26019)a

Discrimination
AUC/c statistic 25
Others 2
No 5

Calibration
Calibration plot 6
Hosmer–Lemeshow test 2
Calibration in large 1
No 24

Compared validation set with development set 19
aMedian (min, max). AUC: area under curve.
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practice. Apart from the problems discussed above, other
reasons may include the complexity of those models as
compared with TNM system and lack of external validation
and clinical impact studies [48]. External validation eval-
uates a model’s predictive performance in local setting and
updates model if necessary. An impact study evaluates the
effects of a prognostic model on clinical decision-making,
behavioral change, subsequent health outcomes of in-
dividuals, and the cost-effectiveness of applying the model,
with the optimal design being a clustered randomized
controlled trial [49, 50]. .e gap between prognostic model
and clinical decision rule is another big concern. Prog-
nostic models compute the probability of an event on a
continuous scale or risk scores on an ordinal scale, whereas
clinical decision is a binary choice regarding whether to use
an intervention or not. Unfortunately, the translation of
risk estimates derived from existing prognostic models to
clinical decisions is much less investigated [50].

.erefore, future research should try to avoid repeatedly
developing new models for similar predictive purposes with
small sample size and high risk of bias. Instead, more
emphasis should be put on improving methodological
quality of model development, validating and updating
models for use within their own setting [51], translating
model prediction into clinical decision rules [50], and
assessing the models’ clinical impact [52, 53].

5. Conclusion

.is systematic review identified 101 prognostic models for
predicting overall survival of patients with gastric cancer,
which were limited by high risk of bias, methodological
shortcomings, insufficient reporting, and lack of external
validation and clinical impact assessment. Future prognostic
model research should pay more attention to their meth-
odological and reporting quality, and more importantly,
emphasized more on external validation and impact studies
to assess the models’ effectiveness in improving clinical
outcomes.
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