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Different intra- or interspecific wheat show different interactions of Cd/Zn. Normally,

Zn has been/being widely utilized to reduce the Cd toxicity. In the present study,

the DPW seedlings exhibited strong Cd tolerance. Zn and Cd mutually inhibited

their uptake in the roots, showed antagonistic Cd/Zn interactions. However, Zn

promoted the Cd transport from the roots to shoots, showed synergistic. In order

to discover the interactive molecular responses, a transcriptome, including 123,300

unigenes, was constructed using RNA-Sequencing (RNA-Seq). Compared with CK, the

expression of 1,269, 820, and 1,254 unigenes was significantly affected by Cd, Zn, and

Cd+Zn, respectively. Only 381 unigenes were co-induced by these three treatments.

Several metal transporters, such as cadmium-transporting ATPase and plant cadmium

resistance 4, were specifically regulated by Cd+Zn. Other metal-related unigenes,

such as ABC transporters, metal chelator, nicotianamine synthase (NAS), vacuolar iron

transporters (VIT ), metal-nicotianamine transporter YSL (YSL), and nitrate transporter

(NRT ), were regulated by Cd, but were not regulated by Cd+Zn. These results indicated

that these transporters participated in the mutual inhibition of the Cd/Zn uptake in

the roots, and also participated in the Cd transport, accumulation and detoxification.

Meanwhile, some unigenes involved in other processes, such as oxidation-reduction,

auxin metabolism, glutathione (GSH) metabolism nitrate transport, played different and

important roles in the detoxification of these heavy metals.

Keywords: dwarf polish wheat, RNA-Seq, cadmium, zinc, interaction

INTRODUCTION

In plants, non-essential heavy metals cause toxicity and eventually inhibit plant growth and
development (Balen et al., 2011). Cadmium (Cd), a heavy metal widespread in the environment,
damages the photosynthetic apparatus, affects the respiratory and nitrogen metabolism, and alters
the balance of water and nutrient uptake (Herbette et al., 2006; Balen et al., 2011). Cd absorbed
by plants can be introduced into the food chain (McLaughlin et al., 1999). Consumption, either
directly or indirectly, of these parts could be a human health concern (Grant et al., 2008). Therefore,
the Cd concentrations in several safe cereal grains were limited below 0.2 mg/Kg. In contrast, zinc
(Zn) is an essential metal for plant growth. It has been/being widely utilized to reduce the Cd
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toxicity, although the effect varies with genotypes, the dose and
duration of the Zn and Cd exposure (Rizwan et al., 2016). Excess
Zn also limits the plant growth and causes a strong toxicity
(Zhao et al., 2005; Wang et al., 2009). Plants therefore need to
prevent damage from non-essential metals and ensure the proper
homeostasis of essential metals (Lin and Aarts, 2012).

Cd and Zn, co-existed in the soil, cause various synergistic
and antagonistic interactions according to the species, external
metal concentrations, tissues, and developmental stages (Cataldo
et al., 1983; Nan et al., 2002; Hassan et al., 2005; Sun et al.,
2005; Balen et al., 2011; Cherif et al., 2011; Tkalec et al., 2014).
In soybean, the uptake of Cd/Zn exhibits competitive inhibition
(Cataldo et al., 1983). In durum and bread wheat, Cd and Zn
mutually inhibit their uptake in the roots, stems and leaves
(Hart et al., 2002, 2005). In tomato (Cherif et al., 2011) and
Lemna minor (Balen et al., 2011), Zn inhibits the Cd uptake.
However, the Cd/Zn interactions are not always antagonistic.
Synergistic interactions were observed in both wheat and corn
under field conditions (Nan et al., 2002). In tobacco, Zn promotes
the Cd uptake, while Cd inhibits the Zn uptake in the roots
and leaves (Tkalec et al., 2014). In rice, Zn increases the Cd
concentration in the shoots, but inhibits the Cd uptake in the
roots (Hassan et al., 2005). However, all these studies focused
on the transport and biochemical responses by measuring plant
growth, metal concentration, pigment content, and antioxidant
content (Cataldo et al., 1983; Nan et al., 2002; Hassan et al., 2005;
Sun et al., 2005; Cherif et al., 2011; Balen et al., 2011; Tkalec et al.,
2014). Meanwhile, studies revealed the changes of transcriptomic
profiles were focused on Cd or Zn alone (Herbette et al., 2006; Di
Baccio et al., 2011; Lin et al., 2013). The changes of transcriptomic
profiles for Cd/Zn interactions were not revealed.

Transcriptomes of Triticum turgidum (2n = 4x = 28, AABB)
and common wheat (2n = 6x = 42, AABBDD) using RNA-
sequencing (RNA-Seq) have been reported (Duan et al., 2012;
Schreiber et al., 2012; Krasileva et al., 2013). Recently, the
transcriptomic profiles of the developing starchy endosperm and
the grain filling of bread wheat, and the dwarfism of dwarf
Polish wheat were revealed using RNA-Seq (Pont et al., 2011;
Pellny et al., 2012; Wang et al., 2016a). Although the molecular
responses to Cd or Zn in plants have been widely investigated
(Herbette et al., 2006; Di Baccio et al., 2011; Lin et al., 2013), the
similar study in wheat using RNA-Seq is not processed. Based on
genetic analysis and taxonomical classification, Polish wheat (2n
= 4x= 28, AABB, Triticum polonicum L.) presents a low level of
genetic similarity with T. durum, T. turgidum, and T. aestivum
(Wang et al., 2013; Michalcová et al., 2014). Due to the high
thousand kernel weights and high Zn, Fe, and Cu concentrations
in the seeds (Wiwart et al., 2013), and the dwarfing gene (Kang
et al., 2012), Polish wheat has attracted the interest of producers
and breeders (Wiwart et al., 2013). Dwarf polish wheat (DPW,
Triticum polonicum L.) which collected from Tulufan, Xingjiang,
China, shows high tolerance to Cd and Zn. Therefore, it is a
desirable material for studying Cd/Zn interactions. Previously
proteomic study revealed that many proteins mainly participated
in sucrose, glutathione (GSH), S-adenosyl-l-methionine (SAM),
organic acids metabolisms and oxidation-reduction process were
response to the Cd/Zn interactions on two days after treatments

(Wang et al., 2016b). However, results of transtriptomic and
proteomic analysis are very low overlay. It is interesting to
investigate that what kinds of genes response to the Cd/Zn
interactions when prolonged the treated time. In the present
study, our aims are therefore to investigate the transcriptome
responses under Cd, Zn and Cd+Zn stresses, finally reveal the
molecular mechanisms of Cd/Zn interactions in the DPW roots
on 5 days after treatments.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Seeds of DPW were sterilized with 1% NaOCl. After germination
at room temperature for 5 days, the seedlings with plastic foam
support grown on distilled water for 3 days and then were
cultured in nutrient solution (Hoagland’s Modified Basal Salt
Mixture, MP Biomedicals, USA) in a growth chamber at 25◦C
with a relative humidity 70% under a 16-h-light/8-h-dark cycle.
Per 50 plants were cultured in a container which contained
8 l nutrient solution with pH 6.0. The nutrient solution was
refreshed every 5 days. Two-leaf seedlings were stressed with
control (CK, null), 40 µM CdSO4 (Cd), 800 µM ZnCl2 (Zn, the
Zn concentration of arable soil varies from 25 to 150mg/Kg),
and 40 µM CdSO4+ 800 µM ZnCl2 (Cd+Zn). On 5 days after
treatments, the roots collected from 15 plants (15 plants per
biological replicate, three biological replicates) were snap frozen
in liquid nitrogen and stored at−80◦C for RNA-Seq.

Phenotype Characterization
On 5 days after treatments, the leaves and roots were collected
from 20 plants (20 plants per biological replicate, three biological
replicates). The roots were successively washed with 0.1 µM
EDTA and ddH2O. The length of the longest root and leaf
per plant were measured. Their fresh and dry weights were
also determined. The percentage of leaf or root dry weight was
calculated as (leaf or root dry weight of 20 plants)/(total dry
weight of 20 plants) × 100%; the percentage of leaf or root
fresh weight was calculated as (leaf or root fresh weight of 20
plants)/(total fresh weight of 20 plants) ×100%. After weighing,
all tissues were dried at 80◦C for 2 days to measure metal
concentration. At the same time, the percentages of water content
and dry weight were calculated. All data analysis (student’s t-
test) was performed with SPSS 20.0 and figures were drawn with
Sigmaplot 12.0.

Analysis of Cd and Zn Contents
The Cd and Zn concentrations were measured as described by
Wang et al. (2014). Reference standard solutions of Cd and Zn
were purchased from the Fisher Scientific Ltd. (Shanghai, China).
All data analysis (student’s t-test) was performed with SPSS 20.0
and figures were drawn with Sigmaplot 12.0.

RNA Isolation
Total RNA of each sample (null, Cd, Zn and Cd+Zn) was
isolated using the E.Z.N.A. R© Total RNA Kit II (Omega, USA).
The RNA was checked for quality on 1% agarose gels and the
NanoPhotometer R© spectrophotometer (Implen, Germany) and
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the RNA 6000 Nano Assay Kit of the Bioanalyzer 2100 system
(Agilent Technologies, USA). The Qubit R© RNA Assay Kit in
Qubit R© 2.0 Flurometer (Life Technologies, Shanghai, China) was
used to measure RNA concentration.

Library Construction and Sequencing
mRNA was purified from total RNA using poly-T oligo-attached
magnetic beads (Life Technologies, USA) and transcribed to
cDNA using random oligonucleotides and M-MuLV Reverse
Transcriptase (RNase H−) (TaKaRa, Dalian, China). NEBNext
adaptor oligonucleotides (Illumia, USA) were ligated to 3′ ends of
cDNA fragments. Then, 200-bp cDNA fragments were purified
using the AMPure XP beads system (Beckman Coulter, USA).
Ten cycles of PCR amplifications were performed to enrich
cDNA fragments using the NEBUniversal PCR primer and Index
primer (Illumia, USA). The PCR products were purified using
the AMPure XP beads system and quantified using the Agilent
Bioanalyzer 2100 system. Finally, the four-coded samples were
clustered by a cBot Cluster Generation System using the TruSeq
PE Cluster Kit v3-cBot-HS (Illumia, USA), and then sequenced
on an Illumina Hiseq 2000 platform.

Transcriptome Assembly
Adapter reads containing poly-N and low-quality reads were
removed using Novogene-written perl scripts to product clean
reads. The paired-end clear reads generated contigs using Trinity
(V2012-10-15) (Grabherr et al., 2011) with minimum K-mer
coverage was 2, and other parameters were default.

Unigenes Functional Annotation
The putative unigene function was annotated using a series of
databases, including BLASTx against the NCBI NR and NT,
Swiss-Prot databases, the Kyoto Encyclopedia of Genes and
Genomes (KEGG), Ortholog database (KO) and Clusters of
Orthologous Groups of proteins (KOG/COG) database, with an
E-value cutoff of 10-6, hidden Markov models scan (hmmscan)
against the protein family (Pfam) (Eddy, 2011), and Blast2GO
against Gene Ontology (GO) (Götz et al., 2008). Functional
categories of putative unigenes were grouped using the GO
database, KEGG database, and KOG database.

Differential Expression Analysis
Clean reads were aligned against reference transcript sequences
to produce a read count using the RSEM package (Li and Dewey,
2011). The read counts of each unigene were converted into
RPKM values to normalize the gene expression (Mortazavi et al.,
2008). Differentially expressed genes (DEGs) were calculated
using the DEseq method (Ander and Huber, 2010).

Quantitative Real-Time PCR (qPCR) for
Validation of Partial DEGs
qPCR and data analysis were performed as described by Wang
et al. (2015). Twelve differential expressed genes were validated
and their primers were listed in STable 1. Actin (Wang et al.,
2015) was used to standardize transcript levels in each sample.
The 11Ct method was used to normalize the relative expression
of each gene using the software of Bio-Rad CFX manager v.

1.6.541.1028. The student’s t-test (P < 0.05) was conducted for
the evaluation of significance of mean values.

RESULTS

Wheat Growth
Compared with control (CK), Cd did not inhibit the root and
shoot growth after 5 days of treatment (Figures 1A,B). Excess Zn
and Zn + Cd slightly reduced the root length (Figure 1A) and
significantly (P < 0.05) inhibited the shoot growth (Figure 1B).
Compared with CK, Cd significantly reduced the fresh root
weight percentage (Figure 1D), but did not affect the dry
root weight percentage (Figure 1C) and the dry and fresh leaf
weight percentage (Figures 1E,F). Zn and Cd+Zn significantly
increased the fresh root weight percentage (Figure 1D), but did
not affect the leaf weight percentage (Figures 1E,F). The results
described above indicated that metal stresses obviously affected
the plant growth.

Cd and Zn Mutually Inhibited Their Uptake
in the Roots
After 5 days of treatments, an accumulation of Cd was not
observed in all investigated samples which were unexposed to
Cd (CK and Zn, Figures 2A,B). The Cd concentration in the
roots under Cd+Zn stress was significantly lower (P < 0.01) than
that under Cd stress (Figure 2A). However, opposite result was
observed in the shoots (Figure 2B). These results indicated that
Zn inhibited the Cd uptake in the roots, but promoted the Cd
transport from the roots to shoots.

The Zn concentration was higher in the roots than that in the
leaves (Figures 2C,D). In the roots, the Zn concentration under
Cd+Zn stress was significantly lower (P < 0.01) than that under
Zn stress (Figure 2C). In the leaves, the Zn concentrations were
similar between Zn stress and Cd+Zn stress (Figure 2D). Thus,
Cd only inhibited the Zn uptake in the roots.

De novo Assembly and Functional
Annotation
RNA-Seq generated 18.35 Gb nucleotides. All raw read sequences
were deposited to the NCBI Sequence Read Archive (SRA)
database with accession numbers SRR2973581, SRR2973582,
SRR2973583, and SRR2973584. Approximately 123,300 unigenes
that varied from 201 bp to 16,390 bp (mean length was 660
bp, N50 value was 870 bp) were assembled. Amino acid (AA)
sequences of 76,395 (61.96%) unigenes were predicted.

Though Blastx against several public databases, 84,709
(68.70%) unigenes were annotated. Among these annotated
unigenes, 63,221 unigenes were functionally classified in GO;
13,637 unigenes were classified into 26 KOG categories; 10,576
unigenes were functionally classified in KEGG. All data of
sequences and functional annotation were deposited to the NCBI
Transcriptome Shotgun Assembly (TSA) database with accession
number GEDP00000000.

Cd-, Zn-, and Cd+Zn- Induced DEGs
Cd and Zn mutually inhibited their uptake in the
roots, Zn promoted the Cd transport from the roots
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FIGURE 1 | Growth of DPW exposed to Cd, Zn and Cd+Zn. (A) root length; (B) shoot length; (C) weight percentages of dry roots; (D) weight percentages of

fresh roots; (E) weight percentages of dry leaves; (F) weight percentages of fresh leaves. Values were means ± standard error (three biological replicates); asterisk

represented significant difference (P < 0.05).

to shoots (Figure 2), and these treatments also affected
growth (Figure 1). Theoretically, some unigenes
participated in the interactions should be regulated
by these treatments, which were revealed using
RNA-Seq.

Compared with CK, the expression of 1,269, 1,254, and 820
unigenes was changed by Cd, Cd+Zn, and Zn, respectively
(Figure 3). Among these DEGs, the expression of 381 unigenes
mainly participated in several basic processes were co-changed
by Cd, Zn, and Cd+Zn (STable 2), suggesting that there
were differential molecular responses to Cd, Zn, and Cd+Zn
stresses.

The remaining DEGs were arranged into 6 subgroups
(Figure 3).

(1) The expression of 763 DEGs, which consisted of 96 down-
and 667 up-regulated unigenes, was changed by Cd, but
was not affected by Zn and Cd+Zn (log2fold-changes of
CK/Cd were >1 or <−1 with P values below 1.00E-
05, log2fold-changes of CK/Zn and CK/Cd+Zn varied
from 1 to −1, Figure 3, STable 3). These DEGs mainly
participated in glutathione (GSH) metabolism (4 down-
and 7 up-), oxidation-reduction process (1 down- and 12
up-), carbohydrate metabolism (3 down- and 19 up-), metal
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FIGURE 2 | Metal concentrations in the roots and leaves. (A,B) Cd concentrations; (C,D) Zn concentrations. Values were means ± standard error (three

biological replicates); asterisk represented significant difference (P < 0.05).

transport (9 up-), nitrate metabolism (3 up- and 1 down-),
and metal chelation (2 up-) (Table 1).

(2) 172 Zn-induced DEGs, which consisted of 36 down-
and 136 up-regulated unigenes, were not affected by Cd
and Cd+Zn (log2fold_changes of CK/Zn were >1 or
<−1 with P-values below 1.00E-05, log2fold-changes of
CK/Cd, and CK/Cd+Zn varied from 1 to −1, Figure 3,
STable 4). Among them, several noteworthy DEGs were
correspondingly grouped into carbohydrate metabolism
(3 down- and 8 up-), GSH metabolism (4 up-), and
oxidation-reduction process (3 up-) (Table 1).

(3) The expression of 42 DEGs was changed by Cd and Zn,
but was not changed by Cd+Zn (log2-fold changes of
CK/Cd and CK/Zn were >1 or <−1 with P-values below
1.00E-05, log2fold-changes of CK/Cd+Zn varied from 1 to
−1, Figure 3, STable 5), which suggested that the expression
of these DEGs was mutually suppressed by Cd and Zn under
Cd+Zn stress. Among these unigenes, several noteworthy
DEGs participated in GSH and carbohydrate metabolism,
respectively (Table 1).

(4) The expression of 83 DEGs which included 51 down- and
32 up-regulated unigenes was changed by Cd and Cd+Zn,
but was not changed by Zn (log2−fold changes of CK/Cd and
CK/Cd+Zn were >1 or <−1 with P-values below 1.00E-05,
log2fold-changes of CK/Zn varied from 1 to −1, Figure 3,
STable 6), suggesting that these DEGs were specifically Cd-
induced. Among these unigenes, some noteworthy unigenes
participated in carbohydrate metabolism (2 up-), oxidation-
reduction process (peroxidase 15 and catalase isozyme 2),
and nitrate transport (nitrate transporter 1.5) (Table 1).

(5) The expression of 225 DEGs, consisting of 174 down- and
51 up-regulated unigenes, was affected by Zn and Cd+Zn,
but was not affected by Cd alone (log2-fold changes of
CK/Zn and CK/Cd+Zn were >1 or <−1 with P-values
below 1.00E-05, log2fold-changes of CK/Cd varied from 1
to −1, Figure 3, STable 7), suggesting that these DEGs were
specifically Zn-induced. Among them, noteworthy DEGs
mainly participated in oxidation-reduction process (3 up-),
carbohydrate metabolism (2 down-), GSH metabolism (1
up-) and nitrate metabolism (1 up-) (Table 1).
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FIGURE 3 | Numbers of DEGs were classfied into differential

interactions of Cd/Zn.

(6) Additionally, the expression of 565 DEGs which consisted
of 95 down- and 470 up-regulated unigenes was affected
by Cd+Zn, but was not affected by Cd and Zn (log2-fold
changes of CK/Cd+Zn were >1 or <−1 with P-values
below 1.00E-05, log2fold-changes of CK/Zn and CK/Cd
varied from 1 to −1, Figure 3, STable 8), suggesting that
these DEGs specifically responded to Cd+Zn. Among these
DEGs, some noteworthy DEGs participated in carbohydrate
metabolism (2 down- and 9 up-), metal transport (2 up-)
and nitrate transport (2 down-) (Table 1).

Validation of the Expression of 12 Selected
DEGs
To validate different expression levels that resulted from RNA-
Seq, the expression of 12 DEGs were normalized (STable 1).
As shown in Figure 4, compared with CK, two DEGs were
significantly (P < 0.01) regulated by Cd and Cd+Zn, but were
not regulated by Zn (Figure 4A). Two DEGs were significantly
(P < 0.01) regulated by Zn and Cd+Zn, but were not regulated
by Cd (Figure 4A). Two DEGs were significantly (P < 0.01)
regulated by Cd+Zn, but were not regulated by Cd and Zn
(Figure 4A). Two DEGs were significantly (P < 0.01) regulated
by Cd, but were not regulated by Zn and Cd+Zn (Figure 4B).
Two DEGs were significantly (P < 0.01) regulated by Zn, but
were not regulated by Cd and Cd+Zn (Figure 4B). Two DEGs
were significantly (P < 0.01) regulated by Cd and Zn, but
were not regulated by Cd+Zn (Figure 4B). These results were
similar with the differential expression resulted from RNA-Seq,
suggesting that DEGs resulted from RNA-Seq were credibly used
to analyze the molecular responses to Cd, Zn, and Cd+Zn.

DISCUSSION

Cd inhibits the growth of bread wheat (Sun et al., 2005) and
durum wheat (Hart et al., 2005; Koleva-Valkova et al., 2012).

However, it also stimulates or does not inhibit the plant growth of
other types of bread wheat (Stolt et al., 2003; Zhao et al., 2005; Lin
et al., 2007). In the present study, although DPW accumulated
992.29 ± 29.83 mg/Kg (dry weight, DW) Cd in the roots and
40.82 ± 13.70 mg/Kg (DW) Cd in the shoots, the lengths of root
and shoot were not affected (Figures 1A,B), which validated that
DPW seedlings had stronger Cd tolerance than other types of
durum and bread wheat (Hart et al., 2002, 2005). Meanwhile, the
growth was inhibited by Zn and Zn+Cd stresses when the leaf
and root accumulated high Zn concentrations (Figure 1), which
indicated that excess Zn could cause the toxicity in wheat seedling
(Zhao et al., 2005).

Since Cd and Zn mutually inhibited their uptake in the
roots (Figure 2), the Cd/Zn interactions in the DPW roots
were antagonistic, which was same as the antagonists in bread
and durum wheat (Hart et al., 2002, 2005; Sun et al., 2005).
However, Zn promoted the Cd transport from the roots to shoots
(Figure 2B), Cd did not affect Zn transport (Figure 2D), which
indicated that the Cd/Zn interactions in the DPW leaves were
synergistic. This result was different from that Zn inhibited the
Cd transport from the roots to shoots on 2 days after treatments
with the same metal treated concentrations (Wang et al., 2016b).

Our previous study revealed that various proteins participated
in the Cd/Zn interactions on 2 days after treatment (Wang et al.,
2016b). In the present study, the transcriptomic changes in the
roots also indicated that some genes were involved in the Cd/Zn
interactions (Figure 3, STables 2–8). On 5 days after treatments,
the expression of 1,269, 1,254, and 820 unigenes was individually
changed by Cd, Cd+Zn, and Zn. However, only 381 unigenes
were co-regulated by these treatments (Figure 3). In addition
to the specific unigenes individually induced by Cd, Zn, and
Cd+Zn, the remaining DEGs classified into different subgroups
were considered to participate in the Cd/Zn interactions. These
results indicated that Cd, Zn, and Cd+Zn induced differential
molecular responses, which ultimately resulted in the differential
molecular responses for Zn and Cd stresses (Lin and Aarts, 2012).
In the following discussion, some DEGs involved in several
important processes were described.

Heavy metal transporters play important roles in the metal
uptake, transport and distribution. In yeast, the expression
of cadmium-transporting ATPase which is a cadmium-specific
efflux pump enhanced Cd resistance by extruding intercellular
Cd (Adle et al., 2007; Adle and Lee, 2008). In the DPW roots, the
expression of cadmium-transporting ATPase and plant cadmium
resistance 4 was specifically up-regulated by Cd+Zn (Table 1),
suggesting that Cd might be extruded from roots, finally resulted
in that the Cd concentration in the roots under Cd+Zn stress
was significantly lower than that under Cd stress (Figure 2A).
Therefore, Zn can enhance the Cd resistance by reducing the Cd
accumulation (Rizwan et al., 2016).

Except of metal efflux pumps, other heavy metal transporters
also play important roles in heavy metal detoxification. In
Arabidopsis, AtABC25 (Kim D. Y. et al., 2006) and AtABCC1-
3 (Bovet et al., 2003, 2005; Park et al., 2012; Brunetti et al.,
2015) transported Cd into the vacuoles to increase Cd tolerance.
Overexpression of a metal chelator, metallothionein (MT),
increased Cd content in the roots and enhanced Cd tolerance
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TABLE 1 | Noteworthy DEGs in different groups.

(1) Cd-induced DEGs were not induced by Zn and Cd+Zn

Unigene number Annotation Fold changea Metabolism type

comp229495_c0 Peroxidase 1 2.09 Oxidation-reduction process

comp186643_c0 Peroxidase 12 1.70

comp132618_c0 Peroxidase 2 4.29

comp145649_c0 Peroxidase 2 3.59

comp228081_c0 Peroxidase 2 2.35

comp258530_c0 Peroxidase 2 2.95

comp232606_c0 Peroxidase 2 1.24

comp257733_c1 Peroxidase 39 2.43

comp256271_c1 Peroxidase 4 1.76

comp263129_c1 Peroxidase 47 2.35

comp268022_c0 Peroxidase 47 3.21

comp259330_c1 Peroxidase 5 −1.39

comp265682_c0 Peroxidase N 3.43

comp267415_c0 Disulfide isomerase-like 1-4 1.67 GSH metabolism

comp167112_c0 Glutaredoxin-C2 3.42

comp270080_c0 Glutathione S-transferase 1 −1.02

comp262123_c0 Glutathione S-transferase 2 1.66

comp258739_c0 Glutathione S-transferase 3 −1.49

comp249955_c0 Glutathione S-transferase GSTF1 −1.48

comp256282_c1 Glutathione S-transferase GSTU1 −1.04

comp169916_c0 Glutathione S-transferase 1.33

comp249889_c0 Hydroxyacylglutathione hydrolase 3 1.01

comp247586_c0 Lactoylglutathione lyase 1.65

comp244017_c0 S-formylglutathione hydrolase 3.05

comp257426_c0 Callose synthase 1 1.50 Carbohydrate metabolism

comp255049_c0 Callose synthase 2 2.33

comp269308_c0 Callose synthase 3 1.17

comp268926_c1 Callose synthase 8 1.57

comp267574_c1 Cellulose synthase A catalytic subunit 1 1.27

comp258633_c0 Cellulose synthase A catalytic subunit 1 1.79

comp267508_c0 Cellulose synthase A catalytic subunit 5 1.10

comp263049_c0 Cellulose synthase-like protein E2 1.46

comp260194_c0 Soluble starch synthase 3 1.77

comp267559_c0 Fructose-bisphosphate aldolase −1.04

comp256169_c0 Alpha-galactosidase 1.33

comp262374_c0 Alpha-glucan phosphorylase, H isozyme 4.39

comp265179_c0 Alpha-glucan water dikinase, chloroplastic 1.18

comp259187_c0 Alpha-glucosidase 2 1.76

comp108053_c0 Beta-glucosidase 4.02

comp247530_c1 Glucan endo-1,3-beta-glucosidase 14 −1.16

comp253693_c0 Glucose-6-phosphate 1-epimerase 1.08

comp267337_c1 UDP-glucose:glycoprotein glucosyltransferase 1.13

comp260021_c0 UDP-glycosyltransferase 74F2 2.81

comp262276_c0 Xylulose kinase 1.80

comp267262_c0 Beta-1,3-galactosyltransferase 15 −1.18

comp176358_c0 Beta-galactosidase 15 1.39

comp246181_c0 Vacuolar iron transporter homolog 5 3.32 Metal transporters

comp260577_c0 Aluminum-activated malate transporter 10 2.53

(Continued)
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TABLE 1 | Continued

comp268168_c1 ABC transporter B family member 1 1.86

comp268748_c0 ABC transporter B family member 19 1.82

comp262651_c1 ABC transporter B family member 19 3.75

comp268004_c0 ABC transporter B family member 21 1.89

comp269016_c0 ABC transporter C family member 9 2.15

comp264448_c0 ABC transporter G family member 14 2.40

comp258751_c0 Metal-nicotianamine transporter YSL12 2.15

comp240449_c2 Nitrate transporter 1.5 2.51 Nitrate metabolism

comp228933_c0 Nitrate transporter 1.5 2.77

comp268822_c0 Glutamate synthase 1 (NADH) −1.21

comp260213_c0 Glutamate dehydrogenase 3.08

comp199170_c0 Metallothionein-like protein 1 1.51 Metal chelator

comp267212_c2 Nicotianamine synthase 1 7.27

(2) Zn-induced DEGs were not induced by Cd and Cd+Zn

Unigene number Annotation Fold changeb Metabolism type

comp232356_c0 Basic endochitinase A −1.13 Carbohydrate metabolism

comp258906_c0 Pyruvate decarboxylase isozyme 2 1.13

comp258084_c0 UDP-glycosyltransferase 73B3 1.41

comp249756_c0 UDP-glycosyltransferase 73C4 −1.71

comp242113_c0 Fructose-1,6-bisphosphatase 1.17

comp262204_c0 Galactinol-sucrose galactosyltransferase 1.20

comp262534_c1 Glucan endo-1,3-beta-glucosidase GII −1.16

comp231595_c0 Glucan endo-1,3-beta-glucosidase-like

protein 2

2.31

comp261591_c0 D-3-phosphoglycerate dehydrogenase 1.22

comp254493_c0 Beta-fructofuranosidase, insoluble isoenzyme

7

1.18

comp255444_c0 Mannose-6-phosphate isomerase 1.54

comp257867_c0 5’-adenylylsulfate reductase 1 1.97 GSH metabolism

comp93164_c0 Glutathione S-transferase BZ2 2.52

comp237801_c0 Glutathione S-transferase GSTU6 1.81

comp248505_c0 Glutathionyl-hydroquinone reductase YqjG 1.01

comp226841_c0 Ubiquinol oxidase 1a 2.38 Oxidation-reduction process

comp263260_c0 Ubiquinol oxidase 1a 1.62

comp231302_c0 NADPH:quinone oxidoreductase 1 2.10

(3) Cd and Zn- induced DEGs were not induced by Cd+Zn

Unigene number Annotation Fold change Metabolism type

comp262967_c0 Fructose 6-phosphate 1-phosphotransferase −− Carbohydrate metabolism

comp263404_c0 UDP-glycosyltransferase 85A2 −−

comp239075_c0 Glutathione S-transferase GSTU6 −− GSH metabolism

(4) Cd and Cd+Zn- induced DEGs were not induced by Zn

Unigene number Annotation Fold changec Metabolism type

comp268022_c1 Peroxidase 15 −1.56 Oxidation-reduction process

comp257839_c0 Catalase isozyme 2 1.99

comp255896_c0 Polygalacturonase 2.53 Carbohydrate metabolism

comp258197_c0 Beta-glucosidase 4 1.84

comp265016_c0 Nitrate transporter 1.5 1.17 Nitrate transporter

(Continued)
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TABLE 1 | Continued

(5) Zn and Cd+Zn- induced DEGs were not induced by Cd

Unigene number Annotation Fold changed Metabolism type

comp216883_c1 NADH-ubiquinone oxidoreductase chain 2 2.38 Oxidation-reduction process

comp254393_c0 NADH-ubiquinone oxidoreductase chain 5 2.09

comp258918_c0 NADH-ubiquinone oxidoreductase chain 5 2.23

comp230435_c0 Mannose/glucose-specific lectin −4.78 Carbohydrate metabolism

comp267969_c0 1-deoxy-D-xylulose-5-phosphate synthase 2 −2.50

comp89835_c0 Glutathione S-transferase GSTF2 4.53 GSH metabolism

comp244563_c0 nitric oxide reductase 4.69 Nitrate metabolism

(6) Cd+Zn-induced DEGs were not induced by Cd and Zn

Unigene number Annotation Fold changee Metabolism type

comp259199_c0 Alpha-mannosidase 2 4.34 Carbohydrate metabolism

comp198796_c0 Beta-galactosidase 6 8.11

comp257689_c0 Chitin elicitor receptor kinase 1 5.59

comp250384_c0 Endochitinase A 3.12

comp258505_c0 Beta-glucosidase 42 4.92

comp125554_c0 Glucan endo-1,3-beta-glucosidase GV −1.30

comp263512_c0 Neutral alpha-glucosidase AB −5.15

comp245857_c0 Beta-amylase 4.16

comp246661_c2 Callose synthase 12 5.01

comp253875_c0 Callose synthase 3 5.52

comp254996_c0 Callose synthase 9 5.55

comp266662_c0 High affinity nitrate transporter 2.4 −1.15 Nitrate transporter

comp266662_c1 High affinity nitrate transporter 2.6 −1.20

comp251323_c0 Cadmium-transporting ATPase 7.10 Metal transporter

comp254589_c0 Multidrug and toxin extrusion protein 1 6.26

comp248484_c0 Plant cadmium resistance 4 6.86

comp248297_c0 Nicotianamine synthase 9 −3.30 Metal chelator

a log2 Cd/CK; b log2 Zn/CK; c log2 Cd/CK; d log2 Zn/CK; e log2 Cd+Zn/CK.

(Sekhar et al., 2011). In this study, 6 ABC transporters (B, C,
and D family members, Table 1) and a MT were up-induced by
Cd, suggesting that most of Cd accumulated by root might be
sequestrated into the vacuoles so that DPW seedling exhibited
strong Cd tolerance under Cd stress (Figure 1). When these
regulations were not observed under Cd+Zn stress (Table 1),
the Cd accumulations in the roots should be reduced (Bovet
et al., 2003, 2005; Sekhar et al., 2011; Park et al., 2012; Brunetti
et al., 2015), finally resulted in that the Cd concentration in the
roots under Cd stress was higher than that under Cd+Zn stress
(Figure 2A). Meanwhile, most of Cd accumulated by the roots
was not sequestrated into the vacuoles, but was uploaded into
the xylems and then transported into the shoots (Figure 2B, Kim
et al., 2007). Thus, theseABC transporters andMT participated in
the Cd/Zn interactions for the Cd transport and accumulation.

In planta, the high accumulation of Fe in the shoots
under Cd stress could alleviate Cd toxicity (Wu et al., 2012).
Overexpression of nicotianamine synthase (NAS), vacuolar iron
transporters (VIT), and metal-nicotianamine transporter YSL

(YSL) increased the Fe content in the roots and shoots (Kim
S. A. et al., 2006; Ishimaru et al., 2010; Wu et al., 2012). In
the present study, Cd stress through up regulating NAS1, VIT,
and YSL12 (Table 1) to increase the Fe content in the DPW
roots and shoots (data not shown), which could alleviate Cd
toxicity (Wu et al., 2012), and then enhanced the Cd tolerance in
DPW seedlings (Figure 1). However, these regulations were not
observed under Zn and Cd+Zn stresses (Table 1), suggesting that
these up regulations were activated when the roots accumulating
a certain amount of Cd.

Cd inhibits the nitrate assimilation and transport in planta
(Sanita di Toppi and Gabbrielli, 1999; Li et al., 2010). Cd regulates
several nitrate-related genes, such as glutamate dehydrogenase
and nitrate transporter (NRT) (Chaffei et al., 2004; Li et al., 2010),
and also affects leaf nitrogen remobilization and root nitrogen
storage (Chaffei et al., 2004). Down-regulation of AtNRT2.8
reduced the Cd accumulation in the roots and increased it in the
shoots. Thus, AtNRT2.8-regulated nitrate distribution controls
the Cd uptake and transport (Li et al., 2010). In the present
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FIGURE 4 | qRT-PCR validation of the expression of randomly selected

12 DEGs that resulted from RNA-Seq. (A) compared with CK,

comp258135_c1 was down induced by Cd and Cd+Zn; comp258197_c0

was up induced by Cd and Cd+Zn; comp253080_c0 was down induced by

Zn and Cd+Zn; comp216883_c1 was up induced by Zn and Cd+Zn;

comp26662_c0 was specifically down induced by Cd+Zn; comp252726_c0

was specifically up induced by Cd+Zn. (B) comp265027_c0 was down

induced by Cd; comp264448_c0 was up induced by Cd; comp247340_c0

was down induced by Zn; comp247836_c0 was up induced by Zn;

comp239075_c0 and comp197833_c0 were down induced by Cd, but was

up induced by Zn. Bars represented standard errors of three biological

replicates. Asterisks represented significant differences between treatments

and CK.

study, Cd alone up regulated glutamate dehydrogenase and two
NRTs (Table 1), suggesting that Cd might regulate the nitrate
assimilation and transport in the DPW roots (Chaffei et al.,
2004). Meanwhile, two high affinity nitrate transporters (HANTs)
were specifically down-regulated by Cd+Zn (Table 1). HANTs
participate in the nitrate uptake (Cerezo et al., 2001; Li et al.,
2007). The inhibition of nitrate uptake reduces the Cd uptake and
other essential metals (Mao et al., 2014). Thus, down regulation
of HANTs might mutually inhibit the Cd/Zn uptake under
Cd+Zn stress (Table 1). Due to different nitrate-related genes
were induced, Cd and Cd+Zn might regulate different nitrate
metabolism.

Although these heavy metal and nitrate transporters were
not observed at proteomic level on two days after treatments
(Wang et al., 2016b), unigenes participated in glutathione (GSH)
metabolism, antioxidant enzymes and cell wall composition were
induced at both transcriptomic (Table 1) and proteomic level
(Wang et al., 2016b). GSH is a substrate for phytochelatin
synthesis and crucial for detoxification of heavy meals (Freeman
et al., 2004; Yadav, 2009). Formation of GSH-Cd or Zn complexes
and then sequestration into the vacuoles is another mechanism
of detoxification (Seth et al., 2012; Jozefczak et al., 2015).
Genes involved in GSH metabolism, such as glutathione S-
transferase (GST), hydroxyacylglutathione hydrolase (HGH), and
glutaredoxin (Grx), were differentially regulated by heavy metals
(Di Baccio et al., 2011; Lin et al., 2013; Jozefczak et al.,
2015). As detoxifying enzymes present in all aerobic organisms,
GSTs catalyze the nucleophilic attack of the sulfur atom of
the tripeptide GSH on the electrophilic group of the substrate
(Adamis et al., 2004), and also transport compound of GSH-
cytotoxic substrates into the vacuoles for detoxification (Kumar
et al., 2013). In this study, several unigenes of GSH metabolism,
such as Grx, HGH, lactoyglutathione lyase, S-formylglutathione
hydrolase, disulfide isomerase-like 1-4, and 5 GSTs, were induced
and grouped into different interactions of Cd/Zn (Table 1),
suggesting that GSH metabolism played different roles in the
Cd/Zn interactions (Wang et al., 2016b).

Plants have established effective antioxidative systems to
protect cells against damage from metal-induced oxidative
threats (Di Baccio et al., 2011). Previous studies revealed that
many Cd or Zn- induced genes participated in the defense against
oxidative stress (Di Baccio et al., 2011; Lin et al., 2013). In
this study, 13 peroxidases (POD) and 3 aldehyde dehydrogenases
that removed the toxic aldehydes from lipid peroxidation were
regulated by Cd, but were not regulated by Zn and Cd+Zn
stresses (Table 1). Three genes (two ubiquinol oxidase 1as and
NADPH: quinone oxidoreductase 1) were up-regulated by Zn but
were not induced by Cd and Cd+Zn stresses (Table 1). Catalase
(CAT) isozyme 2 was specifically up-regulated by Cd (Table 1).
These results confirmed that antioxidant enzymes play different
and important roles in adaptive response to Cd, Zn, or Cd+Zn
stresses (Qiu et al., 2008; Zeng et al., 2011).

The plant cell wall is mainly composed of cellulose and
polysaccharides (Cosgrove, 2005). It can be modified by Cd (Li
et al., 2015; Shi et al., 2015). Therefore, modification of cell wall
composition is associated with the Cd exclusion in the roots
(Zhu et al., 2012). Additionally, exogenous glucose also alleviates
the Cd toxicity by fixing Cd in the cell wall and sequestering
it into the vacuoles (Shi et al., 2015). In this study, many
carbohydrate (including glucose, cellulose, callose and mannose)
metabolism-related genes were differentially regulated by Cd, Zn,
or Cd+Zn (Table 1), which suggested that cellulose, glucose and
polysaccharides play different roles in the Cd and Zn fixation,
exclusion and sequestration in the roots (Li et al., 2015).
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