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ABSTRACT
Background. High-throughput sequencing of phylogenetically informative marker
genes is a widely used method to assess the diversity and composition of microbial
communities. Taxonomic assignment of sampled marker gene sequences (referred to
as amplicon sequence variants, or ASVs) imparts ecological significance to these genetic
data. To assign taxonomy to an ASV, a taxonomic assignment algorithm compares the
ASV to a collection of reference sequences (a reference database)with known taxonomic
affiliations. However, many taxonomic assignment algorithms and reference databases
are available, and the optimal algorithm and database for a particular scientific question
is often unclear. Here, we present the ensembleTax R package, which provides an
efficient framework for integrating taxonomic assignments predicted with any number
of taxonomic assignment algorithms and reference databases to determine ensemble
taxonomic assignments for ASVs.
Methods. The ensembleTax R package relies on two core algorithms: taxmapper
and assign.ensembleTax. The taxmapper algorithm maps taxonomic assignments
derived from one reference database onto the taxonomic nomenclature (a set of
taxonomic naming and ranking conventions) of another reference database. The
assign.ensembleTax algorithm computes ensemble taxonomic assignments for each
ASV in a data set based on any number of taxonomic assignments determined with
independent methods. Various parameters allow analysts to prioritize obtaining either
more ASVs with more predicted clade names or more robust clade name predictions
supported by multiple independent methods in ensemble taxonomic assignments.
Results. The ensembleTax R package is used to compute two sets of ensemble
taxonomic assignments for a collection of protistan ASVs sampled from the coastal
ocean. Comparisons of taxonomic assignments predicted by individual methods with
those predicted by ensemble methods show that conservative implementations of
the ensembleTax package minimize disagreements between taxonomic assignments
predicted by individual and ensemble methods, but result in ASVs with fewer ranks
assigned taxonomy. Less conservative implementations of the ensembleTax package
result in an increased fraction of ASVs classified at all taxonomic ranks, but increase
the number of ASVs for which ensemble assignments disagree with those predicted by
individual methods.
Discussion. We discuss how implementation of the ensembleTax R package may be
optimized to address specific scientific objectives based on the results of the application
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of the ensembleTax package to marine protist communities. While further work is
required to evaluate the accuracy of ensemble taxonomic assignments relative to
taxonomic assignments predicted by individual methods, we also discuss scenarios
where ensemble methods are expected to improve the accuracy of taxonomy prediction
for ASVs.

Subjects Bioinformatics, Genetics, Genomics, Microbiology, Taxonomy
Keywords Taxonomic assignment, Amplicon sequencing, Amplicon sequence variant, R package,
Meta-barcoding, Operational taxonomic unit

INTRODUCTION
High-throughput amplicon sequencing of phylogenetically informative marker genes (also
known as DNAmeta-barcoding) is a widely usedmethod for assessing the composition and
diversity of microbial communities (Sogin et al., 2006; De Vargas et al., 2015). Commonly
used phylogenetic marker genes include the 18S small subunit ribosomal RNA gene (18S
rDNA) in microbial eukaryotes, the 16S small subunit ribosomal RNA gene (16S rDNA)
in prokaryotes, and the internal transcribed spacer region (ITS) in fungi (Woese & Fox,
1977;Medlin et al., 1988; Sogin et al., 2006; De Vargas et al., 2015). Marker gene sequencing
studies typically rely on operational taxonomic units or amplicon sequence variants (ASVs)
to serve as representatives of individual microbial species within a community (Schloss et
al., 2009; Callahan et al., 2016); hereafter we use ‘‘ASV’’ to denote a marker gene sequence
sampled from any system). Because an organism’s taxonomy is often correlated with its
ecology, assigning taxonomic identities to ASV sequences imparts ecological significance
to genetic data. Taxonomic assignment thus represents a critical component of all marker
gene sequencing studies.

Taxonomic assignment of marker gene sequences requires a reference database of
marker gene sequences with known taxonomic identities, and an assignment algorithm
that determines the most likely taxonomic affiliation of each representative ASV in a data
set by comparing it to the sequences in a reference database. Reference databases are
typically tailored to a specific group of organisms and/or a single marker gene (Guillou et
al., 2013; Quast et al., 2013; Cole et al., 2014; Glöckner et al., 2017), although some include
multiple marker genes from multiple groups of organisms (e.g., the SILVA reference
database; Quast et al., 2013; Glöckner et al., 2017). However, different reference databases
frequently employ disparate taxonomic naming and ranking conventions, and certain
reference databases include subsets of reference sequences that are not found in other
databases. For example, at the time of writing both the Protistan Ribosomal Reference
database (pr2; Guillou et al., 2013) and the SILVA reference database (silva; Quast et al.,
2013; Glöckner et al., 2017) include large collections of 18S rDNA reference sequences. The
disparate naming and ranking conventions employed by silva and pr2 make it difficult for
analysts of 18S rDNA data sets to reconcile taxonomic assignments predicted using one
database with those predicted using the other.
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Analysts of marker gene sequence data sets must also choose from one of many
taxonomic assignment algorithms, each of which employs uniquemethods and is associated
with error (e.g., Wang et al., 2007; Bokulich et al., 2018; Edgar, 2018a; Murali, Bhargava &
Wright, 2018). There are some assignment algorithms that consistently outperform others
across multiple benchmark exercises, such as the RDP naïve Bayesian classifier (Wang et
al., 2007), the recently introduced idtaxa algorithm (Murali, Bhargava & Wright, 2018),
and others. However, realistic validation of taxonomic assignment algorithms is not
straightforward (see Edgar, 2018a for a summary of approaches used in benchmarking
assignment algorithms). Thus, the optimal taxonomic assignment algorithm and reference
database for a particular scientific question or data set is often uncertain.

Ensemble approaches that integrate results from multiple independent bioinformatic
methods have been shown to improve the accuracy of assigning taxonomy tometa-genomic
fragments, and of assigning meta-genomic fragments to genomes (McIntyre et al., 2017;
Sieber et al., 2018). Similarly, ensemble approaches that incorporate taxonomic assignments
from multiple taxonomic assignment algorithms and/or reference databases may be
expected to improve taxonomic assignments of ASV sequences. To our knowledge, only
one ensemble (or ‘‘consensus’’) approach has been proposed for taxonomic assignment
of fungal ITS sequences (Gdanetz et al., 2017), but this method is not generalizable to
prokaryotic 16S rDNA or eukaryotic 18S rDNA sequences and does not enable the use of
multiple reference databases with disparate naming and ranking conventions.

Here we introduce the ensembleTax R package, which enables analysts of marker
gene sequence data to efficiently and flexibly compute ensemble (or ‘‘consensus’’)
taxonomic assignments for each representative ASV sequence in a marker gene data set.
Two core algorithms, taxmapper and assign.ensembleTax, allow users to map taxonomic
assignments from one reference database onto another reference database’s taxonomic
nomenclature (see Table 1 for a glossary of terms used here), and to compute ensemble
taxonomic assignments, respectively. The ensembleTax R package includes taxmapper,
assign.ensembleTax, and additional pre-processing functions that enable streamlined
ensemble taxonomic assignment determinations immediately following determination
and initial taxonomic assignment of ASVs with the dada2 and DECIPHER R packages
(Callahan et al., 2016; Wright, 2016; Murali, Bhargava & Wright, 2018). We demonstrate
the utility and flexibility of the ensembleTax R package using a collection of protistan
ASVs derived from the V9 hypervariable region of the 18S rDNA sampled from the
coastal ocean. In particular, we demonstrate how the ensembleTax R package allows
investigators to prioritize obtaining either more predicted clade names for more ASVs
or more robust taxonomic assignment predictions supported by multiple independent
methods in ensemble taxonomic assignments. The ensembleTax R package is freely
available on GitHub (https://github.com/dcat4/ensembleTax/blob/master/README.md),
and CRAN (https://cran.rstudio.com/web/packages/ensembleTax/index.html), and will
continue to be developed as taxonomic assignment methods and reference databases
continue to evolve.
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Table 1 Definitions of terms used in the present manuscript and the ensembleTax package.

Term Definition

Taxonomic nomenclature A specific framework of naming and ranking conventions
employed by a reference database.

Taxonomy table A collection of ASV sequences (or ASV identifiers) sampled
from the environment with corresponding taxonomic
assignments.

Taxonomy An organism’s taxonomic identity.
Taxonomic assignment The predicted taxonomy for an ASV.
Ensemble taxonomic assignment A taxonomic assignment for an ASV determined from

several independent taxonomic assignment methods.
Synonymous with ‘‘consensus taxonomic assignment’’.

Taxonomic synonyms Taxonomic names with equivalent meaning.
Lower/higher taxonomic ranks ‘‘Lower’’ taxonomic ranks would correspond to lower

branches in a phylogenetic tree (e.g., species is a lower rank
than class).

PACKAGE DESCRIPTION AND IMPLEMENTATION
ensembleTax package overview
The ensembleTax R package is implemented in the R computing language and was
developed and built with R version 3.6.2 (R Core Team, 2019). The R package devtools
(Wickham, Hester & Chang, 2020) was used extensively to build the ensembleTax package.
The ensembleTax package relies on other R packages including dplyr (Wickham et al.
2020), stringr (Wickham, 2019), DECIPHER (Wright, 2016), Biostrings (Pagès et al.,
2019), and usethis (Wickham & Bryan, 2020). Vignettes were built with the knitr (Xie,
2020) and rmarkdown (Allaire et al., 2020) packages. The ensembleTax package is freely
available for use under an MIT license, and can be installed from GitHub or CRAN
(see https://github.com/dcat4/ensembleTax/blob/master/README.md for download
instructions).

The ensembleTax R package was developed to offer an automated, efficient, and flexible
tool for microbial ecologists to synthesize taxonomic assignment predictions made with
any number of taxonomic assignment algorithms and/or reference databases. Table 1
provides a glossary of terms used here and within the documentation of the ensembleTax
package, and Fig. 1 outlines possible ensembleTax workflows for different taxonomic
assignment methods. All ensembleTax workflows consist of converting the outputs of
taxonomic assignment algorithms into dataframes that include ASV-identifying meta-data
and corresponding taxonomic assignments for an arbitrary number of ranks, mapping
of taxonomic assignments onto a common taxonomic nomenclature (if necessary), and
determination of ensemble taxonomic assignments (Fig. 1). The ensembleTax package was
developed to offer convenient analysis following ASV determination and initial taxonomic
assignment with the dada2 and DECIPHER R packages (Callahan et al., 2016;Wright, 2016;
Murali, Bhargava & Wright, 2018), but other methods for ASV determination and initial
taxonomic assignment may be used prior to the ensembleTax workflow (Fig. 1).
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Taxonomic assignment with 
alternative methods

ASVs determined with dada2 ASVs determined with alternative method

Taxonomic assignment with 
ensembleTax supported method

Data pre-processing with ensembleTax
pre-processing functions

Multiple reference databases with 
different taxonomic nomenclatures?

NOYES

Use assign.ensembleTax to compute 
ensemble taxonomic assignments

Use taxmapper to map assignments 
onto common nomenclature 

YESNO
Collect all taxonomic 

assignments from 
reference database and 
format for taxmapper

Use nomenclature of database 
supported by ensembleTax?

Custom data pre-processing 
for input to ensembleTax

Figure 1 Schematic diagram of potential ensembleTax R package workflows. The red dashed line sepa-
rates components of the amplicon sequence data analysis workflow that must be completed prior to use of
the ensembleTax package from those that can be addressed with the ensembleTax package.

Full-size DOI: 10.7717/peerj.11865/fig-1

The taxonomic assignment algorithms explicitly supported in the ensembleTax package
are the Ribosomal Database Project (RDP) naïve Bayesian classifier Wang et al., 2007
implemented in the dada2 R package (Callahan et al., 2016), and the recently developed
idtaxa algorithm (Murali, Bhargava & Wright, 2018) implemented in the DECIPHER
R package (Wright, 2016). Explicitly supported reference databases include the SILVA
SSU non-redundant reference database v138 (Quast et al., 2013; Glöckner et al., 2017;
henceforth, silva), the Protistan Ribosomal Reference database v4.12.0 (Guillou et al., 2013;
henceforth, pr2), the GreenGenes reference database v13.8 clustered at 97% similarity
(DeSantis et al., 2006; McDonald et al., 2012), and the RDP 16S rRNA training set v16
(Cole et al., 2014). Additional assignment algorithms and/or reference databases can be
incorporated so long as the data can be read into R and converted to a dataframe object.
We welcome external contributions of R implementations of other taxonomic assignment
algorithms and/or reference database data, andwill continue to accommodate newmethods
as they are developed.

Description of core algorithms and package data
As noted above, taxmapper and assign.ensembleTax are the core algorithms for computing
ensemble taxonomic assignments with the ensembleTax package. taxmapper maps, or
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‘‘translates’’, the taxonomic nomenclature used by one reference database onto the
taxonomic nomenclature used by another, while assign.ensembleTax computes ensemble
taxonomic assignments from taxonomic assignments generated by any number of unique
taxonomic assignment algorithm and reference database combinations. Here we describe
these algorithms and parameters that may be altered to tailor their performance for
particular scientific objectives.

taxmapper maps the taxonomic nomenclature of one reference database onto the
taxonomic nomenclature of another via rank-agnostic exact name matching. Figure 2
provides an example to demonstrate the mapping procedure used by taxmapper for several
different variations in user-specified parameters. For each ASV in a data set, the taxonomic
name at the lowest annotated rank (e.g., species if annotated, otherwise genus, etc.) is
compared to all taxonomic names at the lowest annotated rank of the target taxonomic
nomenclature. If an exact match is found in the reference taxonomic nomenclature
onto which assignments are being mapped, the ASV is assigned the matched taxonomic
name along with all higher taxonomic names according to the reference nomenclature,
is not assigned (assigned NA) at all lower ranks, and mapping is complete for the ASV
(Fig. 2). If an exact match is not found, the name is searched at higher ranks within
the target taxonomic nomenclature. If an exact match is still not found, depending
on user-controlled inputs (see below and Fig. 2) taxmapper either: collects taxonomic
synonyms for the name being mapped, reformats the name and its taxonomic synonyms,
and searches for each possible alternative name until a match is found; or, repeats the
search for the taxonomic name assigned to the ASV at the next lowest annotated rank
(e.g., genus if the species assignment was not successfully mapped). taxmapper returns
the input ASV-identifying data with taxonomic assignments mapped onto the specified
reference database’s taxonomic nomenclature (Fig. 2). If specified by the user, taxmapper
also returns the taxonomic names for which no exact match was found in the reference
taxonomic nomenclature, as well as the ‘‘mapping rubric’’ containing all unique ASV
taxonomic assignments supplied by the user and their corresponding mapped taxonomic
assignments using the reference nomenclature.

The approach taken by taxmapper for mapping taxonomic assignments implicitly
assumes that a taxonomic name has equivalent meaning regardless of the reference
database in which the taxonomic name is found. This assumption is violated in reference
nomenclatures that employ ambiguous terms as standalone taxonomic names such
as ‘‘incertae sedis’’, ‘‘Clade_X’’, ‘‘Group_2’’, etc. (a complete list is provided in the
package documentation). In the event such taxonomic names are assigned to an ASV and
encountered by taxmapper, the taxonomic name at the lowest unambiguously annotated
rank is appended to the ambiguous name. Exact namematching then proceeds as described
above for the newly created, unambiguous taxonomic name (Fig. 2).

Several optional arguments may be supplied to taxmapper to increase the number of
taxonomic names mapped (Fig. 2). Users may relax the exact name-matching employed
by taxmapper with the ignore.format argument. This relaxation attempts to account for
common formatting differences between reference databases (such as the interchangeable
use of underscores, hyphens, or spaces, as in Pseudonitzchia vs. Pseudo-nitzchia in Fig. 2;
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ASV Rank1 Rank2 Rank3 Rank4
ASV1 Eukaryota Clade_X Diatomea Pseudo-nitzschia

Input taxonomy table:

RankA RankB RankC RankD RankE
Eukaryota Stramenopila Bacillariophyta Pseudonitzschia Pseudonitzschia_australis

Reference database taxonomic nomenclature:

Attempt to map Pseudo-nitzschia
ignore.format = FALSE

No exact match. Search Diatomea

ignore.format = TRUE

No exact match. Search Pseudonitzschia, 
pseudonitzschia, Pseudo nitzschia, etc.

Exact match found. Mapping 
complete. See mapped output (C)

synonym.file = 
“default”

synonym.file = 
NULL

No exact match. 
Search Clade_X

No exact match. Search synonyms: 
Diatomea = Bacillariophyta

Clade_X recognized as ambiguous. 
Search Eukaryota-Clade_X

Exact match found. Mapping complete. 
See mapped output (B)

No exact match. Search Eukaryota

Exact match found. Mapping complete. See mapped output (A)

ASV RankA RankB RankC RankD RankE
(A) ASV1 Eukaryota NA NA NA NA

(B) ASV1 Eukaryota Stramenopila Bacillariophyta NA NA

(C) ASV1 Eukaryota Stramenopila Bacillariophyta Pseudonitzschia NA

Mapped output taxonomy tables for different parameter spaces:

taxmapper operations:

Figure 2 Schematic diagram illustrating the approach employed by the taxmapper algorithm tomap
taxonomic assignments onto different taxonomic nomenclatures. An example input taxonomic assign-
ment and synonymous (through rankD and rank4) entry in a different taxonomic nomenclature are pro-
vided as inputs to the taxmapper algorithm. Three examples of mapped taxonomic assignments (A, B, C)
are shown based on adjustments to taxmapper parameters indicated by arrows in the flow chart.

Full-size DOI: 10.7717/peerj.11865/fig-2

a complete list of formatting variants for which exact matches are searched is available in
the package documentation).

Users may also consider taxonomic synonyms supplied with the ensembleTax package,
or provide taxmapper with a custom synonym file that includes a collection of taxonomic
names and known synonyms. Synonyms are searched in the event that an exact match
for a particular taxonomic name is not found in the taxonomic nomenclature onto which
the name is being mapped (Fig. 2). The ensembleTax package includes a compilation
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of eukaryotic taxonomic synonyms that were compiled manually based on the NCBI
Taxonomy Browser (Benson et al., 2012), the World Register of Marine Species (WoRMS
Editorial Board, 2020), Wikispecies (https://species.wikimedia.org/wiki/Main_Page), the
Integrated Taxonomic Information System (http://www.itis.gov), the Tree of Life Web
Project (Maddison & Schulz, 2007), and various other literature sources (Silén, 1972;
Cavalier-Smith, 1993; Adl et al., 2005; Casu & Curini-Galletti, 2006; Gómez, Moreira &
López-García, 2010; Ratnasingham & Hebert, 2007; Adl et al., 2012; Braun, 2018; Hibbett et
al., 2018; Varol et al., 2018; Adl et al., 2019). AlgaeBase (Guiry & Guiry, 2020) was used to
identify some sources of primary literature containing taxonomic synonyms cited above.
Users may also supply custom collections of taxonomic synonyms for use with taxmapper.

If taxonomic names at the basal rank should be retained in the mapped taxonomy
table regardless of whether they are found in the taxonomic nomenclature onto which
they are being mapped, these may be supplied to taxmapper as exceptions. These names
will be assigned to the basal rank of the mapped taxonomy table (kingdom or domain in
most reference database taxonomic nomenclatures), with all other ranks unassigned. This
option is intended for cases where assignments of non-target organisms are important. For
example, if a universal primer set is used to amplify amarker gene from both eukaryotes and
prokaryotes (e.g., the 16S and 18S rDNA as in Parada, Needham & Fuhrman, 2016), it may
be necessary to retain prokaryote assignments when mapping onto a eukaryote-specific
taxonomic nomenclature, or vice-versa.

The assign.ensembleTax algorithm computes ensemble taxonomic assignments based
on any number of input taxonomy tables that share a common taxonomic nomenclature.
Figure 3 illustrates several example ensemble determinations based on two different
examples of input taxonomic assignments and considering adjustments to several
assign.ensembleTax parameters. Ensemble assignments are computed independently
for each ASV and each taxonomic rank by finding the highest-frequency taxonomic
assignment across all input taxonomy tables. If particular taxonomy tables are likely to
include more robust taxonomic assignments, the user may weight taxonomic assignments
in these tables more highly than others using the weights argument. In the event that two or
more taxonomic assignments are found at equal weighted (based on the weights argument)
maximum frequencies, the ensemble taxonomic assignment is unassigned (assigned NA;
Fig. 3). This behavior can be modified by specifying the names of taxonomy tables whose
assignments should be prioritized in the event that two or more taxonomic assignments
are found at equal weighted maximum frequencies (the tiebreakz argument; Fig. 3A).
By default, non-assignments (represented by NA) are considered when determining
ensemble taxonomic assignments, and the ensemble is assignedNAwhen this is the highest-
frequency assignment (Fig. 3). Non-assignments can be excluded from ensemble taxonomic
assignment calculations using the count.na argument (Fig. 3B). Finally, users may specify
the minimum proportion of input taxonomy tables that a taxonomic assignment must
be found in in order to be assigned as the ensemble taxonomic assignment using the
assign.threshold argument (Fig. 3B).
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Input taxonomic assignments: assign.ensembleTax parameters: Ensemble taxonomic assignments:

Method RankA RankB RankC
m1 Eukaryota Alveolata NA
m2 Eukaryota Stramenopila NA
m3 Eukaryota Stramenopila Bacillariophyta

Method RankA RankB RankC
m1 Eukaryota Alveolata NA
m2 Eukaryota Stramenopila NA

Method RankA RankB RankC
ensemble Eukaryota NA NA

Method RankA RankB RankC
ensemble Eukaryota Alveolata NA

Method RankA RankB RankC
ensemble Eukaryota Stramenopila NA

Method RankA RankB RankC
ensemble Eukaryota Stramenopila NA

Method RankA RankB RankC
ensemble Eukaryota Stramenopila Bacillariophyta

Method RankA RankB RankC
ensemble Eukaryota Stramenopila NA

default

tiebreakz = m1

weights: 
m1 = 1, m2 = 2

default

count.na = FALSE

assign.threshold
= 0.5

(A) Ensemble determinations for two methods with 
conflicting taxonomy predictions

(B) Ensemble determinations for three methods with 
conflicting taxonomy predictions and numbers of 
assigned taxonomic ranks

Figure 3 Schematic diagram demonstrating ensemble taxonomic assignment determinations by the
assign.ensembleTax algorithm for different combinations of input taxonomic assignments and ar-
guments. (A) Example ensemble taxonomic assignment determinations for a single ASV based on two
conflicting methods, illustrating the potential for ensemble methods to remove annotation errors intro-
duced by individual taxonomic assignment methods and/or for users to select which taxonomic assign-
ment methods are prioritized in the event of disagreements between individual methods. (B) Example en-
semble taxonomic assignment determinations for a single ASV based on three individual methods that
vary in both the number of ranks with assigned names and the identity of names where they are assigned.

Full-size DOI: 10.7717/peerj.11865/fig-3

APPLICATION OF ENSEMBLETAX TO NATURAL MARINE
PROTIST COMMUNITIES
Data set overview and application of the ensembleTax package
To demonstrate that the ensembleTax package can be used to compute ensemble taxonomic
assignments optimized for a variety of scientific objectives, we used the ensembleTax R
package to determine ensemble taxonomic assignments for 15447 protistan ASVs inferred
from 358 samples of marine plankton communities from the Santa Barbara Channel, CA.
The ASVs are derived from the V9 hypervariable region of the 18S rDNA. Wet lab methods
are described in Catlett et al. (2020). ASVs were determined using dada2 (Callahan et al.,
2016) following Catlett et al. (2020), and four independent taxonomic assignments were
determined for each ASV by implementing the RDP naïve Bayesian classifier (Wang et al.,
2007) with a bootstrap confidence threshold of 60% and the idtaxa algorithm (Murali,
Bhargava & Wright, 2018) with a bootstrap confidence threshold of 50% against both the
pr2 and silva reference databases. These four sets of taxonomic assignments are referred
to as bayes-pr2, bayes-silva, idtax-pr2, and idtax-silva. Assignments generated using the
silva database were mapped onto the pr2 taxonomic nomenclature, and assignments
generated with the pr2 database were mapped onto the silva taxonomic nomenclature
using taxmapper and considering the taxonomic synonyms included with the ensembleTax
package, as well as formatting variants of these names (ignore.format =TRUE, synonym.file
= ‘‘default’’).Bacteria andArchaea assignments weremaintainedwhenmapping bayes-silva
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and idtax-silva onto pr2 since pr2 does not include these domains/kingdoms (exceptions
=c(‘‘Archaea’’, ’’Bacteria’’)).

In order to illustrate that assign.ensembleTax parameters can be adjusted to balance
trade-offs between obtaining more ASVs with assigned taxonomy or more robust
taxonomic assignments supported by multiple methods, two different collections of
ensemble taxonomic assignments were computed from the four independent taxonomy
tables generated with each reference databases’ taxonomic nomenclature. The first favored
ensemble taxonomic assignments supported by multiple individual methods (ensemble1-
pr2 and ensemble1-silva), and the second favored obtaining more predicted clade names
for a larger proportion of ASVs (ensemble2-pr2 and ensemble2-silva). Annotations
supported by multiple independent methods were prioritized in ensemble1-pr2 and
ensemble1-silva by including non-assignments in ensemble determinations (count.na
=TRUE), and by specifying that no single taxonomy table should be favored in the event
that different taxonomic assignments were found at equivalent maximum frequencies
across the input taxonomy tables (tiebreakz = NULL). An increased proportion of ASVs
with more predicted clade names was prioritized in ensemble2-pr2 and ensemble2-silva
by ignoring non-assignments (count.na =FALSE), and by prioritizing assignments from
specific taxonomy tables when multiple taxonomic assignments were found at equivalent
maximum frequencies across the input taxonomy tables. In such events, assignments found
in idtax-pr2, idtax-silva, and bayes-pr2, respectively, were prioritized in ensemble2-pr2
(tiebreakz =c(‘‘idtax-pr2’’, ‘‘idtax-silva’’, ‘‘bayes-pr2’’)), while idtax-silva, idtax-pr2, and
bayes-silva, respectively, were prioritized in ensemble2-silva (tiebreakz = c(‘‘idtax-silva’’,
‘‘idtax-pr2’’, ‘‘bayes-silva’’)). In order to focus our analysis on protists, ASVs assigned to
Archaea, Bacteria, Metazoa, Fungi, or Streptophyta according to ensemble2-pr2, as well as
ASVs that were <90 or >180 nt (target amplicon is 120–130 nt) in length, were discarded
prior to further analysis.

Results
We compared the taxonomic assignments obtained with each of the four individual
methods (bayes-pr2, bayes-silva, idtax-pr2, idtax-silva) to the two collections of ensemble
taxonomic assignments (ensemble1 and ensemble2) using both the pr2 (Figs. 2A, 2C,
2E) and silva (Figs. 2B, 2D, 2F) taxonomic nomenclatures. To investigate differences in
the number of predicted clade names between the ensemble and individual taxonomic
assignmentmethods at different levels of the taxonomic hierarchy, we performed rank-wise
comparisons of the proportion of ASVs that remained unassigned in each taxonomy table
(Figs. 2A–2B).We also calculated the proportion of ASVs for which taxonomic assignments
predicted with one individual or ensemble method were assigned to more or less ranks,
perfectly agreed, or disagreed (at any rank) with each of the two collections of ensemble
taxonomic assignments (Figs. 2C–2F). The latter comparisons were performed to assess
the rates of agreement and disagreement between individual and ensemble methods using
different assign.ensembleTax parameters.

Comparisons of the proportion of unassigned ASVs at each taxonomic rank across
the six taxonomy tables demonstrate that substantially more taxonomic names can be
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assigned to ASVs at all taxonomic ranks with certain implementations of the ensembleTax
package (Figs. 2A and 2B). The ensemble2 taxonomy table had the lowest proportion
of ASVs unassigned at all ranks across both the silva and pr2 taxonomic nomenclatures,
with the largest increase in the number of taxonomic names assigned at higher ranks
(kingdom/domain to class). Notably, >13% more ASVs were assigned to a class in the
ensemble2 taxonomy table relative to any other taxonomy table using both taxonomic
nomenclatures. With the silva taxonomic nomenclature, nearly 20% more ASVs were
assigned to a class in the ensemble2 taxonomy table thanwith any othermethod.Conversely,
in the ensemble1 taxonomy table the proportion of ASVs that remained unassigned was
typically higher than all but one or two of the other taxonomy tables. However, where
taxonomic names are assigned in the ensemble1 taxonomy table, they are expected to be
robust as they were predicted by two or more of the independent taxonomic assignment
methods.

Comparisons of the taxonomic assignments predicted for each ASV by each independent
taxonomic assignmentmethodwith the two collections of ensemble taxonomic assignments
demonstrate that the parameter space of the assign.ensembleTax algorithm can be optimized
to address different scientific objectives (Figs. 2C–2F). In comparisons with the ensemble1
taxonomy table, a higher proportion of ASVs were assigned taxonomy at more ranks
with individual taxonomic assignment methods (9.3–49.1% with the pr2 nomenclature;
22.2–32.8% with the silva nomenclature) than were assigned at less ranks with individual
methods (6.3–27.4% with the pr2 nomenclature; 3.1–19.5% with the silva nomenclature).
This result reflects the conservative approach used to compute ensemble assignments in
the ensemble1 taxonomy table. Conversely, relative to the ensemble2 taxonomy table, 30%
or more of the ASVs were assigned taxonomy at less ranks by all independent taxonomic
assignment methods, again demonstrating the substantial increase in the number of ASVs
that can be assigned taxonomy at lower ranks with less conservative implementations of
the ensembleTax package.

Generally, where taxonomic names were assigned, rates of disagreement were low
(<10%) for all independent taxonomic assignment methods when compared with
either set of ensemble assignments. Rates of disagreement were lower in comparisons
with the ensemble1 taxonomy table (0.7−2.2% with the pr2 nomenclature; <2% with
the silva nomenclature except for 6.6% for idtax-silva) than in comparisons with the
ensemble2 taxonomy table (2.2−5.8% with the pr2 nomenclature; 3.9−8.4% with the
silva nomenclature). This result suggests that predicting more clade names for more ASVs
with less conservative assign.ensembleTax implementations comes at the cost of greater
uncertainty in taxonomy predictions and a likely increase in false positive assignments.
Interestingly, no conflicting taxonomic assignments were found when comparing the two
ensemble taxonomy tables with one another for either taxonomic nomenclature, meaning
the two assign.ensembleTax parameter spaces resulted in identical taxonomic assignments
where ASVs were assigned. Differences in the number of ASVs with taxonomy assigned at
lower ranks were large however, with 67 and 70% of ASVs classified to a lower rank in the
ensemble2 taxonomy table for the silva and pr2 taxonomic nomenclatures, respectively.
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DISCUSSION
Optimizing ensemble assignments for different scientific objectives
The ensembleTax R package allows analysts of phylogenetically-informative marker gene
sequence data to compute ensemble taxonomic assignments by integrating taxonomic
assignments predicted with any number of independent methods (Figs. 1–3). The use of
multiple reference databases employing disparate taxonomic nomenclatures is enabled
by the taxmapper algorithm, which maps one taxonomic nomenclature onto another by
rank-agnostic exact name matching (Fig. 2). The assign.ensembleTax algorithm computes
ensemble taxonomic assignments and includes a suite of parameters that can bemodified to
optimize trade-offs between predicting more clade names for more ASVs or only assigning
taxonomic names that are supported by multiple independent methods (Fig. 3).

Application of the ensembleTax package to determine ensemble taxonomic assignments
for a large collection of protistan ASVs sampled from the coastal ocean confirmed
that different parameter spaces can be implemented in the ensembleTax package to
optimize ensemble assignments for different scientific objectives (Fig. 4). Conservative
implementations of assign.ensembleTax can be achieved by counting non-assignments
(count.na=TRUE), by leaving an ASV unassigned when conflicting assignments are found
at equal maximum frequencies across the independent assignment methods considered
(tiebreakz = NULL), and/or by increasing the proportion of independent methods that
must predict a taxonomic assignment for it to be assigned to the ensemble (assign.threshold
= 0.5 or assign.threshold =1). Conservative ensemble determinations result in minimal
disagreements in taxonomy predictions between the ensemble and independent methods
indicating strong support for taxonomy predictions across methods (Figs. 4C–4D), but
also result in fewer ASVs with predicted taxonomic names in the ensemble (Fig. 4).
These methods are thus well-suited to scientific applications that require more robust,
well-supported taxonomy predictions and where obtaining taxonomy predictions for
fewer ASVs can be tolerated, such as studies that rely heavily on taxonomic assignments at
lower ranks and/or that focus on the diversity or ecology of a particular taxonomic group.

Conversely, less conservative ensemble assignments can be determined by removing
non-assignments from consideration (count.na =FALSE), by prioritizing certain methods
in the event that conflicting assignments are found at the highest frequency (tiebreakz,
weights), and/or by reducing the proportion of taxonomy tables that must corroborate a
taxonomic assignment for it to be prescribed to the ensemble (assign.threshold =0). Such
implementations increase the number of ASVs with assigned taxonomic names at all ranks,
but also increase the number of ASVs with conflicting taxonomic assignments between
individual methods and the ensemble (Fig. 4). Thus, less conservative implementations
of the ensembleTax package are better suited for scientific applications where assigning
taxonomy to a higher proportion of ASVs is needed and where false positive annotations
can be tolerated, such as studies focused on very broad taxonomic groupings (supergroups,
divisions, etc.). However, it should be noted that the increase in ASVs with predicted
taxonomy comes at the likely expense of an increase in incorrect taxonomic assignments.
Therefore, while taxonomic assignments of ASVs at lower ranks (e.g., family, genus) should
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Figure 4 Comparisons of taxonomic assignments predicted by individual methods with ensemble tax-
onomic assignments for a large data set of protistan ASVs sampled from the coastal ocean. (A, B) Rank-
wise comparisons of the proportion of ASVs that remained unassigned (continued on next page. . . )

Full-size DOI: 10.7717/peerj.11865/fig-4
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Figure 4 (. . .continued)
(bootstrap values < 60% in bayes-pr2 and bayes-silva, <50% in idtax-pr2 and idtax-silva) in each taxon-
omy table using (A) the Prostistan Ribosomal Reference Database v4. 12.0 (pr2) and (B) the SILVA SSU
nr reference database v138 (silva) taxonomic nomenclatures. (C, D, E, F) Compare the taxonomic assign-
ments predicted by individual (bayes-pr2, bayes-silva, idtax-pr2, idtax-silva) and ensemble (ensemble1,
ensemble2) methods with taxonomic assignments predicted by ensemble methods favoring (C, D) more
robust taxonomic assignments supported by multiple methods or (E, F) assigning taxonomy to more
ranks for a higher proportion of ASVs using the (C, E) pr2 or (D, F) silva taxonomic nomenclatures. In
(C, D, E, F), ‘‘Agree’’ indicates that the two taxonomic assignment methods agree in both the number of
ranks assigned and the identity of assigned taxonomic names. ‘‘More/less ranks assigned’’ indicates that
where taxonomic names are assigned they agree across the two methods, but more or fewer clade names
were predicted by one method than the other.

generally be interpreted with caution (Murali, Bhargava & Wright, 2018; Edgar, 2018a),
this is especially true for less conservative implementations of the ensembleTax package.
Overall, the ensembleTax package enables computation of optimized ensemble taxonomic
assignments for a wide variety of scientific questions.

Potential for ensemble methods to increase the accuracy of taxonomy
predictions
Recent studies have highlighted errors and conflicts in taxonomic annotations of reference
sequences included in widely used reference databases, as well as numerous difficulties
associated with realistic validation of taxonomic assignment algorithms (Edgar, 2018a;
Edgar, 2018b; Murali, Bhargava & Wright, 2018). While the comparisons of taxonomic
assignments of protistan ASVs predicted by individual and ensemble methods above
demonstrate the versatility of ensemble methods (Fig. 4), we do not demonstrate nor imply
that any individual or ensemblemethod providesmore accurate taxonomy predictions than
any other method. Future work should thus be devoted to robust validations of ensemble
methods applied to particular marker genes. Nonetheless, in some cases ensemble methods
may be expected to reduce the impacts of taxonomic assignment errors introduced by
individual methods on downstream analyses of amplicon sequencing data. Here we
discuss some example scenarios where ensemble methods may be expected to reduce the
propagation of taxonomic assignment errors to downstream analyses.

Ensemble taxonomic assignments may be expected to reduce the impacts of errors
in reference database annotations on downstream analyses of amplicon data. Sequence
annotation errors are known to exist in large reference databases, and conflicts in the
taxonomic annotation of a single reference sequence found in multiple databases have
been documented (Edgar, 2018b). Erroneous and/or conflicting annotations of a reference
sequence should result in incorrect taxonomy predictions for any sampled ASV that is
derived fromor closely related to the incorrect reference sequence (Edgar, 2018b). Figure 3A
shows that ensemble methods may mitigate the impacts of such errors on downstream
analyses. To illustrate this point, assume the two conflicting taxonomic assignments shown
in Fig. 3A arise due to conflicting annotations of the same reference sequence found in
different reference databases (e.g., assignments by methods 1 and 2 were generated by
implementing the same assignment algorithm with two different reference databases). A
conservative (including the default) implementation of the assign.ensembleTax algorithm
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will not assign taxonomy where the individual methods disagree (Fig. 3A). Since at least
one of these assignments must be incorrect, ensemble methods effectively remove the
erroneous assignment from downstream analyses. If reference sequence annotation errors
are less likely in one reference database than another, the assign.ensembleTax parameter
space can be modified to favor taxonomic assignments using the reference database
that is less error-prone (Fig. 3A). If a reference database is more error-prone for some
taxonomic groups and less error-prone for others, this strategy can be extended by
computing ensemble assignments separately for different subsets of ASVs. ASVs and their
corresponding ensemble taxonomic assignments can then be merged back into a single
taxonomy table with a common nomenclature with the use of taxmapper. Altogether,
this example suggests the ensembleTax package may improve taxonomic assignments by
enabling streamlined integration of taxonomy predictions based on multiple reference
databases.

Ensemble methods may also be expected to reduce the impacts of taxonomic assignment
errors introduced by different assignment algorithms. Taxonomic assignment algorithms
are known to introduce various types of error in taxonomic assignments of ASVs
(Bokulich et al., 2018; Edgar, 2018a; Murali, Bhargava & Wright, 2018). Most widely used
taxonomic assignment algorithms differ in the analytical approaches used to predict
taxonomy, resulting in differences in observed error rates across a variety of validation
exercises (Bokulich et al., 2018; Edgar, 2018a; Murali, Bhargava & Wright, 2018). Ignoring
annotation errors in reference databases (see above), it is thus reasonable to assume that
error profiles associated with different sequence classification approaches are independent
from one another. Independent error profiles across different taxonomic assignment
algorithms should lead to situations where a single assignment algorithm predicts an
incorrect taxonomic assignment for an ASV that is not corroborated by other assignment
algorithms (e.g., the assignment by method ‘‘m1’’ in Fig. 3B may be erroneous). In these
situations, conservative implementations of the assign.ensembleTax algorithm can again
reduce the impacts of taxonomic assignment errors on downstream analyses (Fig. 3B).
Overall, the above conceptual examples demonstrate the potential for ensemble methods
to improve accuracy in taxonomic assignments of marker gene sequence data, though
further research is required to evaluate the accuracy of ensemble methods relative to
individual methods and to optimize ensemble methods for specific marker genes and
scientific questions.

CONCLUSIONS
We present the ensembleTax R package, including algorithms for flexible computations
of ensemble taxonomic assignments of phylogenetic marker gene sequence data. The
two core algorithms, taxmapper and assign.ensembleTax, compute ensemble taxonomic
assignments from any combination of taxonomic assignment algorithms and reference
databases (Figs. 1–3). The package data includes pre-compiled taxonomic nomenclatures
from several widely used reference databases, as well as a collection of eukaryotic taxonomic
synonyms that can improve the performance of taxmapper when used with eukaryotic
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ASVs. Use of the ensembleTax package to compute ensemble taxonomic assignments on
a eukaryotic 18S-V9 rDNA data set from the coastal ocean showed that parameters can
be tuned to optimize ensemble taxonomic assignments for specific scientific questions
and objectives (Fig. 4). Further development of the ensembleTax package will continue to
expand the breadth of taxonomic assignment algorithms and reference databases explicitly
supported, and to ensure the most up-to-date versions of reference databases remain
easily accessible. Contributions from the community are welcome in these areas. Given
the potential of ensemble methods to improve taxonomic assignments of marker gene
sequences, future work should be devoted to robust evaluations of the performance of
ensemble taxonomic assignment methods relative to that of individual methods, and to
determining optimal ensemble inputs and parameters for particular groups of organisms,
phylogenetic marker genes, and scientific questions.
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