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ABSTRACT Consumption of poultry products is
increasing worldwide, leading to an increased demand
for safe, fresh, high-quality products. To ensure con-
sumer safety and meet quality standards, poultry
products must be routinely checked for fecal matter,
food fraud, microbiological contamination, physical
defects, and product quality. However, traditional
screening methods are insufficient in providing real-
time, nondestructive, chemical and spatial informa-
tion about poultry products. Novel techniques, such as
hyperspectral imaging (HSI), are being developed to
acquire real-time chemical and spatial information
about products without destruction of samples to
ensure safety of products and prevent economic losses.
This literature review provides a comprehensive over-
view of HSI applications to poultry products. The
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3709
studies used for this review were found using the
Google Scholar database by searching the following
terms and their synonyms: “poultry” and “hyper-
spectral imaging”. A total of 67 studies were found to
meet the criteria. After all relevant literature was
compiled, studies were grouped into categories based
on the specific material or characteristic of interest to
be detected, identified, predicted, or quantified by HSI.
Studies were found for each of the following categories:
food fraud, fecal matter detection, microbiological
contamination, physical defects, and product quality.
Key findings and technological advancements were
briefly summarized and presented for each category.
Since the first application to poultry products 20 yr
ago, HSI has been shown to be a successful alternative
to traditional screening methods.
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INTRODUCTION

Many people rely on poultry products as a source of
proteins, essential amino acids, mineral salts, and vita-
mins (Rouger et al., 2017). As demand for poultry prod-
ucts increases worldwide, producers need to ensure
consumer safety and meet quality standards. Poultry
products must be routinely checked for food fraud, fecal
matter, microbiological contamination, physical defects,
and product quality. Traditional screening methods
(e.g., high-performance liquid chromatography, mass
spectroscopy) are time-consuming and expensive and
require sample destruction, and currently, most nonde-
structive spectroscopic methods are not totally represen-
tative of samples and unable to show spatial information
(Gowen et al., 2007). Furthermore, conventional imag-
ing techniques are not capable of providing information
about the chemical composition of products. Novel im-
aging techniques, such as hyperspectral imaging (HSI),
are being developed and used to acquire real-time infor-
mation about products without destruction of sample to
ensure safety of products and prevent economic losses.
What is HSI?

HSI is a nondestructive imaging technique that com-
bines conventional imaging and spectroscopy to obtain
both spatial and spectral information about an object
(Gowen et al., 2007). Conventional imaging provides
spatial information about an object but cannot provide
any information about components that absorb or scat-
ter light in wavebands other than RGB. On the other
hand, spectroscopy can provide information about the
chemical composition of an object at chosen wavebands
but cannot provide spatial information about the object.
By combining the 2 techniques, it is possible to give spec-
tral information a spatial dimension. Assigning spatial
dimensions to spectral data makes it possible to map
chemical components of a sample, which is useful for
nonhomogenous samples. This is done by creating a 3D
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block of data (i.e., a spectral image cube), with each slice
representing the image at a certain waveband (Figure 1).

Resulting images are very data rich, with each pixel
represented by a spectral image containing spectral
information for the chosen range of wavelengths. The
goal of HSI data processing is to reduce the dimension
of data and retain enough to classify and quantify impor-
tant regions of a sample (Gowen et al., 2007). Commonly
used methods for classification of pixels can be grouped
into either unsupervised or supervised. In both unsuper-
vised and supervised methods, acquired images are
divided into a training set and test set of images. The
success of the method is determined by the accuracy
with which the model created from the training set can
predict characteristics in the independent test set. Unsu-
pervised methods (i.e., principal component analysis
[PCA]) do not rely on prior knowledge of pixel classes.
Instead, unsupervised methods rely on software to clas-
sify pixels based on similarities in spectral characteristics
determined by algorithms. In contrast, supervised
methods (i.e., partial least squares discriminant anal-
ysis) do require intervention to select pixels representa-
tive of each class by hand from a training set.

The basic hardware required for HSI acquisition con-
sists of a light source, lens, camera, spectrograph, and
computer (Figure 1). Systems collect spectral informa-
tion within defined wavelength ranges in the electromag-
netic spectrum. Commonly used ranges include
ultraviolet 100–400 nm, visible (Vis) 400–700 nm,
near-infrared (NIR) 700–1,400, and short-wave infrared
1,400–3,000 nm. Spectral resolution of the system is the
ability of the sensor to define between intervals in the
chosen wavelength range. Spatial resolution is the phys-
ical area a pixel represents. A method for significantly
increasing spatial resolution is by using hyperspectral
microscope imaging (HMI). This is done by combining
HSI with a microscope to increase resolution (Park
et al., 2017). As a result, HSI has the potential for appli-
cation at both the macroscopic and microscopic levels.
METHODS

The studies used for this review were found using the
Google Scholar database by searching the following
Figure 1. Schematic of typical HSI system hardw
terms in combination: “poultry” and “hyperspectral im-
aging”. Commonly used abbreviations can be found in
Table 1.
After all relevant literature was compiled, studies were

categorized into the following groupings based on their
subject matter: fecal matter, food fraud, physical
defects, microbiological contamination, and product
quality.
RESULTS AND DISCUSSION

Over the past 20 yr, a total of 67 studies have been
published on applications of HSI to poultry products.
Overall, the highest number of studies has been pub-
lished in application to fecal matter (n 5 20) and micro-
biological contamination (n 5 20), followed by product
quality (n 5 13), physical defects (n 5 10), and food
fraud (n 5 4) (Table 2). A summary of methods used
by each study can be found in Table 2.
Fecal Matter

Minimizing fecal contamination of poultry products
minimizes the spread of bacterial pathogens. As a result,
it is vital for processors to detect and remove any fecal
contamination on poultry products to comply with reg-
ulations and prevent the spread of bacteria such as Sal-
monella, Campylobacter, and Escherichia coli. In
addition, any poultry-processing surfaces must be kept
contaminant free to prevent spread of bacterial patho-
gens. Traditional detection methods rely on the use of
human inspectors to detect visible fecal contamination
in-line, which is tedious and prone to human error
(Park et al., 2002). Because of the high speed of modern
production lines, human inspectors are unable to check
each bird. HSI has been shown to be an efficient alterna-
tive for in-line inspection of poultry products, capable of
high-throughput detection at high speeds.
A total of 20 studies have been published on applying

HSI to detection of fecal matter. This is the first applica-
tion of HSI to poultry products. All 20 studies used line-
scanning acquisition mode. A common challenge for
applying HSI to detection of fecal matter is that fecal
material can vary in color, consistency, and composition
are and workflow adapted from Boziaris (2014).



Table 1. Common abbreviations of data analysis methods terms
used in this literature review.

Abbreviation Full term

ABB Adaptive branch and bound algorithm
ACO Ant colony optimization
ANN Artificial neural network
ANOVA Analysis of variance
BPANN Back propagation artificial neural network
CARS Competitive adaptive reweighed sampling
FD First derivative
FLDA Fisher linear discriminant analysis
GLCM Gray level co-occurrence matrix
GLM General Linear Model
kNN k-nearest neighbor classification
LDA Linear discriminant analysis
MC Mean centring
MLF Multiple level data fusion
MSC Multiplicative scatter correction
PCA Principal component analysis
PLS-DA Partial least square discriminant analysis
PLSR Partial least squares regression
QDA Quadratic discriminant analysis
RBF-SVM Radial basis function - support vector

machine
RC-PLSR Regression coefficients - partial least

squares regression
RMSE Root mean squared errors
RMSEP Root mean squared errors by prediction
SAM Spectral angle mapper
SD Second derivative
SIMCA Soft independent modelling of class

analogy
SNV Standard normal variate
SNVD Standard normal variate and detrending
SPA Successive projections algorithm
STLR Single-term linear regression
SVM Support vector machine
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based on source (e.g., duodenum, ceca, colon) and feed
type. In addition, fecal matter may be obscured by
shadows of the carcass.
The first study to apply HSI to fecal matter detection

was carried out by Heitschmidt et al. (1998). The study
confirmed a visual difference between the spectra of
meat and feces on whole chicken carcasses and consid-
ered several data analysis protocols for future quantita-
tive detection (e.g., PCA, Minimum Distance,
Mahalanobis Distance, and Spectral angle mapper
[SAM]). Of the proposed data analysis protocols, PCA
was cited as potentially the most powerful method; how-
ever, it was limited by processing time required to work
with spectral images. Less than a decade later, PCA was
successfully applied to compare Vis-NIR spectroscopy
and HSI for detection of fecal contamination
(Lawrence et al., 2004). For spectroscopic analysis, sam-
ples were prepared by placing either pieces of chicken
breast skin or feces into sample cells with a quartz optical
surface. For HSI, whole broiler carcasses were imaged
either uncontaminated or with feces applied. This study
showed that HSI has the capacity to create models using
less intensive sample-preparation protocols and higher
accuracy than traditional spectroscopic methods.
Many of the following applications were done by

groups from the USDA. Predominant groups include
Environmental Microbial and Food Safety Laboratory
(USDA-ARS), Instrumentation and Sensing Laboratory
(USDA-ARS), and the Richard B. Russell Research
Centre (USDA-ARS). One of the most important studies
to apply HSI to fecal matter detection identified optimal
wavelengths corresponding to fecal contamination that
could be used in a band ratio to classify pixels (Park
et al., 2002). The significance of this particular study is
that the developed band ratio was later used, validated,
and built on by 13 further studies applying HSI to fecal
detection (Lawrence et al., 2003; Windham et al., 2005b;
a; Lawrence et al., 2006, 2007; Windham et al., 2003;
Park et al., 2005, 2006, 2007b; a, 2010; Heitschmidt
et al., 2007; Yoon et al., 2011). Images were obtained
of pure fecal material from broilers fed one type of feed
(i.e., corn or soybean meal), uncontaminated broiler
carcasses, and fecal material on broiler carcasses. Using
different combinations of the optimal wavelengths
determined from PCA, the band ratio of 565/517 nm
was developed. Lawrence et al. (2003) provided further
justification for the band ratio by relating the wave-
length at 565 nm to myoglobin and hemoglobin of the
breast skin and the wavelength at 517 nm to color differ-
ences between feces or ingesta and breast skin. When
tested on fecal material from broilers fed different diets
(corn and soybean, milo and soybean, wheat and soy-
bean), the band ratio was slightly altered from 565/
517 nm to 574/588 nm (Windham et al., 2003). The
wavelength of 588 nm is better suited to detection as it
represents a color that is common between fecal material
from broilers fed different diets. Further refinement of
the band-ratio technique included addition of a third
wavelength (802 nm) to help classify problematic pixels
in images (Windham et al., 2005a), preprocessing
methods such as calibration and smoothing (Park
et al., 2006), determining ideal thresholds for image pro-
cessing (Windham et al., 2005b), dynamic thresholding
techniques (Park et al., 2007b), hardware updates
(e.g., new camera, new spectrograph, improved lighting)
(Heitschmidt et al., 2007), and testing compatibility
with LED lighting (Lawrence et al., 2007). In addition,
the band ratio method was shown to be successful in
real-time detection of fecal contaminants on whole
chicken carcasses (Park et al., 2010) and even at com-
mercial production line speeds of 140 and 180 birds per
minute (Yoon et al., 2011). In only 20 yr, HSI has gone
from visually looking at differences between spectra to
demonstrating the feasibility of using HSI systems for
high-speed in-line detection of fecal contamination on
poultry products while maintaining high detection
accuracy.

A potential problem for the band ratio technique is
that postwash stains are classified as contamination by
the algorithms. However, stains are not the same as
actual fecal contamination and are not usually consid-
ered to be contaminants (United States Department of
Agriculture, 1998). The band ratio was used to assess
fecal contamination on birds before and after washing
in a production line (Lawrence et al., 2006). A pilot scale
bird washer was created for the purpose of this experi-
ment. Fecal material was applied on to clean whole
bird carcasses, after which whole birds were imaged,



Table 2. Overall summary of all compiled studies by category.

Group Citations
Number of
studies Acquisition mode (# of studies) Spectral range (# of studies) Classification method (# of studies)

Food fraud (Garrido-Novell et al., 20181;
Kamruzzaman et al., 20142; Oh
et al., 20173; Xiong, Sun, Pu,
Zhu and Luo, 20154)

4 Reflectance (4)1,2,3,4 NIR (1)3

Vis-NIR (2)2,4

SWIR (1)1

Decision tree (1)1

PLS (1)3

PLS-DA (2)1,4

PLSR (1)2

Faecal matter (Cho et al., 20071; Cho et al.,
20052; Heitschmidt et al., 19983;
Heitschmidt et al., 20074;
Lawrence et al., 20075;
Lawrence et al., 20036;
Lawrence et al., 20047;
Lawrence et al., 20068; Liu
et al., 20039; Park et al., 2005,
200610,11; Park et al., 201012;
Park et al., 200213; Park,
Windham, Lawrence and
Smith, 200714; Park, Yoon,
Lawrence and Windham,
200715; Qin et al., 201116;
Windham, Heitschmidt, Smith
and Berrang, 200517; Windham,
Smith, Berrang, Lawrence and
Feldner, 200518; Windham
et al., 200319; Yoon et al.,
201120)

20 Fluorescence (2)2,16

Reflectance (19)1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,17,18,19,20

Vis (1)16

Vis-NIR (19)1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20
Band ratio (16)2,3,5,7,8,9,10,11,12,13,14,17,18,19,20

Decision tree (1)4

One-way ANOVA (1)1

PCA (7)3,5,6,9,10,16,17

PLSR (2)6,17

SAM (1)15

STLR (1)4,17

Microbiological
contamination

(Chao et al., 20071; Chao et al.,
20082; Y. Z. Feng et al., 20123;
Y. Z. Feng and Sun, 2013,
20124,5; Jun et al., 20106; Jun
et al., 20097; Jun et al., 20088;
Lu and Chen, 19999; Park et al.,
201110; Xiong, Sun, Pu, Xie,
et al., 201511; C. C. Yang, Chao
and Kim, 200912; Ye et al.,
201613; Yoon et al., 201014,
200915, 201216, Eady et al.,
201917, Eady et al., 201518, Park
et al. 201519, Park et al., 201720)

23 Fluorescence (3)6,7,8

Reflectance (12)1,2,3,4,5,9,11,12,13,14,15,16

Transmittance (1)10,17,18,19,20

Vis (3)6,7,8

Vis-NIR (11)1,2,9,10,11,12,13,14,15,16,17,18,19,20

SWIR (3)3,4,5

ANOVA (2)8,18

Band ratio (3)6,11,12,14,16

Fuzzy logic (2)1,2 kNN (2)20

LDA (2)19,20

Mahalanobis distance (2)19,20

PCA (9)6,7,8,13,15,16,18,20

PLS-DA (1)20

PLSR (5)3,4,5,18

QDA (3)17,19,20

Qualitative analysis (2)9,10

SIMCA (1)18

SVM (2)17,19,20

Physical defects (Chao et al., 20021; Du et al.,
20072; Fletcher and Kong,
20033; I. Kim, Kim et al., 20044;
T. Kim et al., 2010b5; Kong,
20036; Kong et al., 20047;
Nakariyakul and Casasent,
2004, 20098,9; Yoon et al.,
200810)

10 Fluorescence (6)2,3,45,6,7

Reflectance (4)1,8,9,10

Transmittance (1)10

Vis (7)2,3,4,5,6,7,8

Vis-NIR (3)1,9,10
ABB algorithm (1)9

Fuzzy logic (4)1,4,6,7

LDA (1)5

PCA (5)1,3,7,8,10

SVM (1)2,3
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Product quality (Elmasry et al., 20101; Iqbal
et al., 20132; Jia et al., 20173;
Jiang, Yoon, Zhuang, Wang,
Lawrence, et al., 20184; Jiang,
Yoon, Zhuang, Wang, Li, et al.,
20185; Kandpal et al., 20136;
Khulal et al., 20167; Khulal
et al., 20178; Xiong et al., 20149;
Xiong, Sun, Xie, Han and
Wang, 201510; Y. Yang, Wang
et al., 201811; Y. Yang, Wang
et al., 201812; Yoon et al.,
201613)

13 Reflectance (13)1,2,3,4,5,6,7,8,9,10,11,12,13 NIR (2)1,2

Vis-NIR (10)3,4,5,6,7,8,9,10,12,13

SWIR (1)11

ACO (2)7,8

ANN (1)9

LDA (1)13

PCA (7)1,2,3,4,5,6,13

PLS-DA (1)4

PLSR (7)3,4,5,9,10,11,12

Total 67 Fluorescence (11)
Reflectance (53)
Transmittance (5)

NIR (3)
Vis (11)
Vis-NIR (48)
SWIR (5)

ABB algorithm (1)
ACO (2)
ANN (1)
ANOVA (2)
Band ratio (19)
Decision tree (2)
Fuzzy logic (6) kNN (2)
LDA (4)
Mahalanobis distance (2)
One-way ANOVA (1)
PCA (28)
PLS (1)
PLS-DA (4)
PLSR (8)
QDA (3)
Qualitative (2)
SIMCA (1)
STLR (1)
SVM (2)

Superscripts show how particular citations are linked to entries in the the other columns of the table (i.e., acquisition mode, spectral range, and classificat n method).
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washed, and imaged again. The imaging system identi-
fied 98% of contamination before washing. After
washing, the system detected 45% of cecal and 35% of
duodenum stains. Future systems need to account for
this fact and ensure that HSI systems are detecting
true contamination and not stains.

Several alternative methods to the band ratio have
been proposed for detecting fecal contamination on
poultry products. The goal of searching for an alterna-
tive ratio was to minimize false-positive errors and
misclassification errors associated with the band ratio.
Cho et al. (2005) used different band ratios to detect
diluted fecal residue on poultry-processing equipment
using both reflectance and fluorescence modes of HSI.
Samples were obtained by diluting poultry fecal and
ingesta residue to 1:5, 1:10, 1:15, 1:50, and 1:100 by
weight and imaged on stainless steel. Fecal residue could
be best detected with 97.2% accuracy in the most diluted
samples (1:100) using fluorescence mode, using a ratio of
482/553 nm. The high classification rate for diluted sam-
ples shows potential for accurate detection at very low
concentrations of contaminants. However, future work
is needed to determine the actual limit of detection of
fecal contaminants by HSI.

Another alternative to the band ratio was using SAM
algorithm to classify type and source of fecal contami-
nants (Park et al., 2007a). Whole broilers were imaged
before and after ingesta and fecal contaminants were
applied to the carcasses. Although using the SAM algo-
rithm resulted in high accuracy, it was not as good as the
band ratio. The most recent study to apply HSI to fecal
detection aimed to detect and classify any organic resi-
dues (e.g., fat, blood, feces, and ingesta) on poultry-
processing equipment (e.g., stainless steel) using fluores-
cence HSI (Qin et al., 2011). A 4-class (“stainless steel”,
“fat”, “blood”, and “feces”) SIMCA model to distinguish
between different types of organic matter could do so
with 97.5% accuracy. The high accuracy of classification
is promising for future application of HSI to detecting
and discriminating between different classes of contami-
nants on poultry-processing equipment.
Food Fraud

Food fraud is the intentional deception of consumers
through adulteration of products in pursuit of financial
gain (EU Regulation No. 1169/2011 of 25 October
2011 on the provision of food information to consumers).
In the case of meat products, food fraud can occur by
either mislabelling what animal the meat came from,
addition of various “filler” substances, mislabelling of
any process the meat underwent, or mislabelling the
quality of the animal’s welfare. Producers may be moti-
vated by financial gain to label cheaper alternatives as
high-quality products, violating the right of consumers
to information about their food. A variety of traditional
methods have been developed to detect food fraud:
molecular techniques, chromatography, isotopic tech-
niques, spectroscopy, sensory analysis, and immunolog-
ical assays (Danezis et al., 2016). Traditional methods
used in food fraud detection are time-consuming,
labor-intensive, tedious, and require sample destruction
(Kamruzzaman et al., 2014). Because the definition of
food fraud is so wide-ranging, it is difficult to develop a
single technique robust enough to detect all types of
food fraud. As a result, no standardized method exists
to ensure the EU Regulation is being met. HSI could
be used as an alternative to traditional methods for stan-
dardized mass scale detection of food fraud.
To date, only 4 studies have focused on detecting food

fraud in poultry products using HSI. All studies have
used line-scanning acquisition with reflectance mode.
Types of food fraud researched include chicken food
fraud in minced beef (Kamruzzaman et al., 2014), mis-
labelling of broilers as free-range chickens (Xiong et al.,
2015b), differentiating between pork and poultry meat
and bone meal (MBM) (Oh et al., 2017), and discrimi-
nating between processed pork, poultry, and fish pro-
teins (Garrido-Novell et al., 2018).
The first study to apply HSI to detecting food fraud

related to poultry products intended to detect chicken
food fraud in minced beef (Kamruzzaman et al., 2014).
Detecting food fraud in minced meat is particularly diffi-
cult, as mincing destroys any distinguishable morpholog-
ical characteristics. As a result, it is relatively easy for
producers to use less expensive meats as a filler in their
product. Samples were created by mixing minced beef
samples with 0–50% minced chicken at 2% intervals.
The Partial least squares regression (PLSR) model built
on the absorbance spectral profile was found to be the
best model for detecting food fraud in minced beef.
The PLSR model was repeated using only 5 optimal
wavelengths, and prediction maps were created based
on the identity of each pixel. The methods presented
by this study were successful in detecting and visualizing
chicken food fraud in minced beef, showing potential for
widespread implementation.
One year later, HSI was applied to differentiate be-

tween free-range and broiler chicken meats (Xiong
et al., 2015b). Free-range chickens are defined as
slow-growing and raised with access to outdoor areas.
In blind taste tests, consumers cannot easily distin-
guish the difference between free-range and broiler
chickens based on sensory characteristics (Lawlor
et al., 2003; Castellini et al., 2008). This means
consumers are not choosing to buy free-range chickens
solely based on taste but also because of the welfare
conditions chickens are raised in. Because consumers
have a difficult time distinguishing chickens based
on sensory characteristics, producers may be moti-
vated to mislabel broiler chickens as free-range
chickens for financial gain. However, the 2 types of
chickens differ in feed type and level beause of their
difference in access to the outdoors. This fact made
it possible to detect differences between free-range
and broiler chickens (Xiong et al., 2015b). Samples
were obtained by cutting slices of breast meat from
free-range and broiler chicken carcasses and imaged
in the Vis-NIR. After fusing spectral data selected
by successive projections algorithm (SPA) and
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textural data selected by PCA followed by gray level
co-occurrence matrix, an radial basis function–
support vector machine model was found to be the
best model for classification. The model was able to
differentiate between free-range and broiler chicken
meats with high accuracy.
Verifying what animal a meat product has come

from is also important to prevent intraspecies recy-
cling. EU Regulation (EC) No. 1774/2002 of 12 May
2003 currently prohibits intraspecies recycling in
pigs (i.e., pigs cannot be fed pig by-products). Instead,
poultry by-products can be used as feed to meet the
demands of the regulation. Ensuring that this regula-
tion has been met can be difficult, particularly because
animal by-products used for feedstuffs rarely resemble
any recognizable part of the animal it originally came
from. Using MBM prevents food waste and is an
economical option for feed; however, the animal it
came from must be clearly identified to prevent intra-
species recycling. In a study by Oh et al. (2017), HSI
was used to differentiate between poultry and pork
MBM. Mixed samples of pork and poultry MBM
were imaged and modeled using PLS, successfully
showing that HSI is capable of identifying highly
rendered meat origin with high accuracy.
Renderedmeat by-products are not only for animal con-

sumption. Processed animal protein is a category of
rendered meat by-products that are considered fit for hu-
man consumption by EURegulation (EC) No. 1069/2009
of 21October 2009. Themost recent study on determining
what animal ameat product has come fromuses processed
animal protein to discriminate between pork, poultry, and
fish proteins (Garrido-Novell et al., 2018). Individual sam-
ples in this study were not mixed before imaging (i.e., a
poultry sample contained only poultry and poultry by-
products and likewise for poultry and fish). After imaging,
spectral and textural dataweremodeled using partial least
square discriminant analysis (PLS-DA) and fused for spe-
cies classification by classification trees. Compared with
spectral PLS-DA models alone, fusion of data allowed
for discrimination between processed pork, poultry, and
fish proteins.
Most existing studies have focused on determining

what animal the meat has come from, with one exception
of detecting mislabelling of animal welfare. No work has
been published on detecting filler substances or any pro-
cessing the poultry products may have undergone (e.g.,
detecting previously frozen poultry products mislabelled
as fresh). Future research and implementation of HSI in
commercial testing could provide a standardized way to
detect many different types of food fraud.
Microbiological Contamination

Poultry products contaminated by the pathogens Sal-
monella and Campylobacter were found to be the most
common causes of food-borne illness in people (EFSA
and ECDC, 2016). If contaminated poultry products
are not identified and removed from market, bacteria
on food surfaces have the potential to spoil food and
cause serious harm to consumers. A recent study found
an overall 11.5% prevalence rate of contamination by
Staphylococcus aureus in ready-to-eat and ready-to-
cook poultry across various retail sources (Wang et al.,
2018). The presence of contaminants at the retail level
and persistence of food-borne illness outbreaks indicate
that current screening methods are not adequate at
completely preventing contaminated and poor-quality
poultry products from entering the market. In addition,
spoilage of poultry products due to bacteria contamina-
tion results in economic losses for producers and retailers
(Rouger et al., 2017). HSI has been applied to detecting
microbiological contamination in poultry products in a
total of 20 studies, using line-scanning with fluorescence,
reflectance, and transmittance modes. Detection of
microbiological contaminants can be further subdivided
into the following categories: symptoms of bacterial
infection (septicaemia and toxaemia), bacteria on agar,
bacteria on processing surfaces, bacteria on poultry
products, and bacteria detection using HMI.
Symptoms of Bacterial Infection Poultry carcasses
showing symptoms of septicaemia and toxaemia must
be detected and removed from the production line to pre-
vent any food-borne illness in consumers (Fisher et al.,
1998). Septicaemia is a systemic infection caused by
the presence of pathogenic microbiological contamina-
tion in the bloodstream (Chao et al., 2007). Toxaemia is
a localized infection caused by toxins or pathogenic
microbiological contamination (Chao et al., 2007).
Traditional detection methods rely on inspectors to
visually check for infection symptoms on poultry car-
casses (e.g., lesions, degeneration of skeletal muscles), as
indicators of septicaemia or toxaemia (Fisher et al.,
1998). Inspectors typically work at a rate of 35 birds
per minute on processing lines (Yang et al., 2009).
Because traditional methods rely on inspectors, the
process is slow, tedious, and prone to human error.

The first study to attempt detection of septicaemia in
poultry was carried out by Lu and Chen (1999),
concluding that birds affected by septicaemia had visu-
ally distinct spectra from healthy birds. The next
advancement was made by Chao et al. (2007), using
fuzzy logic on selected wavelengths to classify if birds
were affected by septicaemia and toxaemia. In the
following year, the same group successfully applied the
automation methods to freshly slaughtered whole
chicken carcasses on a high-speed production line for
high-throughput detection with 96% accuracy at a speed
of 140 birds per minute (Chao et al., 2008). The most
recent study on septicaemia and toxaemia detection
combined HSI with multispectral imaging (Yang et al.,
2009). A band ratio capable of septicaemia and toxaemia
detection was determined using HSI, after which multi-
spectral imaging was used to obtain images containing
spectral information for only the key wavelengths. The
system could easily switch between hyper and multispec-
tral modes without the need for recalibration. When
applied to a high-speed production line at a speed of
140 birds per minute, this method identified infected
birds with the same accuracy as human inspectors.
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The combined results of these 4 studies indicate that HSI
can be used to successfully detect septicaemia and toxae-
mia. Furthermore, HSI can be successfully used in high-
speed production lines for automated detection of infec-
tion and reduction of human error.
Bacteria on Poultry Products Traditional methods of
measuring bacterial contamination on poultry products
rely on collecting bacteria from a point sample of prod-
uct. This is problematic, as it does not give an accurate
representation of what is happening on the whole prod-
uct. To date, 4 studies have attempted to use HSI to
detect bacteria directly on poultry products. All studies
have been laboratory based, with no attempts at high-
throughput processing line application.

The first study to apply HSI to detect bacteria on
poultry products aimed to predict natural Enterobac-
teriaceae loads on chicken fillets (Feng et al., 2012).
Chicken fillet samples were acquired at a grocery store
and refrigerated at 4�C. For a total of 9 D, one package
was taken to be imaged each day. Samples slices were
flattened in a petri dish and imaged in the NIR spectral
range. After imaging, referenceEnterobacteriaceae loads
were determined by homogenizing and plating the sam-
ples on agar for colony counting after incubation. Using
PLSR, the model was capable of successfully predicting
natural Enterobacteriaceae loads on chicken fillets.
The same group predicted natural Pseudomonas loads
on chicken fillets (Feng and Sun, 2013). Similar experi-
mental methods were used as for the previous study;
however, samples were imaged every 12 h for the last
3 D of the 9-D experiment. A PLSR model created to
predict Pseudomonas loads using 14 selected optimal
wavelengths resulted in the best prediction model.

Another application of HSI is to predict total viable
count (TVC) of bacteria naturally occurring on chicken
breast fillets (Feng and Sun, 2012). TVC is a measure of
the approximate bacteria concentration and can be used
as an indicator of bacterial spoilage. Samples were ac-
quired from a local store and refrigerated at 4�C until
obvious signs of spoilage were observed (e.g., slime and
smell). Samples were cut and imaged over 9 D using
the procedure as in the study by Feng and Sun (2013).
A PLSR model built on the absorbance spectral profile
was found to be better at predicting TVC than models
built using reflectance or Kubelka-Minck spectral pro-
files. A more recent study also used HSI to predict natu-
ral TVC counts on chicken breast fillets (Ye et al., 2016).
Samples were acquired from one batch at local super-
market, stored at 4�C, and imaged every 24 h for 11 D.
This study proposed a “two-band freshness index” to pre-
dict TVC loads using just 2 wavelengths, determined by
correlation coefficients. Two-band freshness index is pro-
posed as a more efficient method than PLSR models, as
less spectral data are required to build the model. How-
ever, the R2 of 0.68 was much lower than that given by
PLSR models developed by Feng and Sun (2012).

Most studies attempting to detect bacteria directly on
poultry products have used chicken breast fillets as sam-
ples. However, it should be noted that bacteria are most
commonly found on poultry skin rather than on meat
(Rouger et al., 2017). Future work is needed to success-
fully detect bacteria on poultry skin. This could be chal-
lenging, as bacteria can be harbored by feather follicles
and pass undetected.
Hyperspectral Microscope Imaging The following 4
studies used HMI to image samples with staring-face
mode and transmittance illumination in the Vis-NIR
range. All 4 studies were carried out by the same group
at the USDA Richard B. Russell Research Centre using
the same equipment. These studies are unique from
previous applications because they include the use of a
microscope to allow for bacterial cell-level imaging. In
addition, the instrumentation includes acousto-optic
tunable filters for staring-face imaging, which allows
for image acquisition without movement of the sample or
apparatus.
The first study to apply HMI to microbiological

contamination in poultry was conducted by Park et al.
(2011) to determine feasibility and optimal parameters
(integration time and gain) for detection of Shiga
Toxin–producing E. coli and Staphylococcus enteritidis
biofilms. A Center for Disease Control biofilm reactor
was inoculated with 10 mL of 108 CFU/mL S. enteritidis
at 36�C in a Trichoderma-selective agar medium for 24,
48, and 72 h. Stainless steel coupons were suspended in
the reactor and taken out for imaging every 24 h. Initial
concentration, incubation time, and inoculation proced-
ures were not made explicit for E. coli biofilms. After im-
aging, spectra were examined visually for differences
between the 2 types of bacteria. This preliminary study
concluded that E. coli and S. enteritidis had distinct
spectral profiles that could be used to create spectral fin-
gerprints for rapid bacterial identification in the future.
Spectral profiles from E. coli could be characterized by
increased intensity at 546 nm. In addition, biofilms
formed by S. enteritidis could be characterized by
increased intensity at 498, 522, 550, and 594 nm. Park
et al. (2011) note that future work needs to develop stan-
dard calibration protocols and could use multiple acqui-
sitions to reduce noise. However, limitations do exist
when applying HMI to imaging live cells. Because live
cells are motile, blurring can occur in images because
of cell movement. To apply HSI to detection of bacteria
on a mass scale, future work needs to develop techniques
of coping with cell movement in images.
The next study to apply HMI to microbiological

contamination focused on discriminating between
gram-positive (i.e., Salmonella) and gram-negative
(i.e., Staphylococcus) bacteria on Brilliant Green Sulfa
(BGS) agar plates (Park et al., 2015). Gram-negative
bacteria structurally differ from gram-positive bacteria
because they have an additional outer membrane. Five
serotypes of Salmonella and 5 species of Staphylococcus
were grown in Tryptic Soy Broth for 18–24 h, diluted
in a serial dilution to 1026, plated on BGS agar, and
incubated for 24 h at 35�C. Then, 3 mL of bacterial solu-
tion was resuspended in deionized water and placed on a
glass microscope slide. Before image acquisition, cells
were immobilized using a modified drying method to pre-
vent image blurring. Staphylococcus had higher
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variability in peak intensity than Salmonella, possibly
because of the outer membrane present in gram-
negative Staphylococcus scattering more light than the
inner membrane. Five different classification methods
(Mahalanobis distance, k-nearest neighbour classifica-
tion, linear discriminant analysis [LDA], quadratic
discriminant analysis [QDA], and SVM) were compared
for their ability to discriminate between bacteria types,
determining that SVM is the best method for discrimi-
nating between gram-positive and gram-negative bacte-
ria because it has the highest accuracy rate of 99.99%.
This study is an important milestone because it success-
fully determines the spectral profiles of bacteria based on
spatially distinct components within one cell (inner and
outer membrane).
The next study applied HMI to detection of Salmo-

nella serotypes at different incubation times with HMI
(Eady et al., 2015). Samples were prepared by obtaining
5 different Salmonella serotypes from chicken rinsates.
The same methods were used for inoculation as in the
study by Park et al. (2015), with altered incubation
times of 8, 10, 12, or 24 h. Before imaging, bacteria
was resuspended in sterile water, and 3 mL of this
mixture was placed on a microscope slide, air-dried,
and covered with a cover slip. By imaging bacteria at
different incubation times, cells were captured at various
life cycle stages, capturing variation in scattering pat-
terns due to incubation time. Eady et al. (2015) were
able to classify Salmonella serotypes using SIMCA
with equal accuracy at 8 and 24 h, showing the potential
of HMI for rapid and early detection of bacteria.
Subsequently, Park et al. (2017) carried out a study to

determine which classification method (PLS-DA, k-
nearest neighbor classification, LDA, QDA, and SVM)
is most suitable for distinguishing between the Salmo-
nella serotypes used by Eady et al. (2015). Samples
were prepared using the same methods as in the study
by Park et al. (2015). The study concluded that SVM
is the best method for discriminating between gram-
positive serotypes. Being able to accurately discriminate
between bacterial serotypes is important for the food in-
dustry, as not all serotypes are harmful to human health.
In addition, serotype identification is used to trace out-
breaks of Salmonella to their source (CDC, 2015).
The most recent study compared Salmonella detection

in chicken rinsate using HMI vs. real-time PCR (Eady
et al., 2019). Samples were prepared from both pure
stock cultures of Salmonella typhimurium and rinsates
of prechilled chicken carcasses. Stock cultures were inoc-
ulated into Tryptic Soy Broth overnight at 35�C, centri-
fuged, resuspended as pellets, and added to water until a
concentration of 109 CFU/mL was reached. Rinsates
from 2 chicken carcasses were additionally inoculated
to a final concentration of 100 CFU and incubated over-
night. One rinsate was preserved as natural fauna. BGS
Agar plated with 1025 dilutions was incubated overnight
at 35�C resulting in 25–250 CFU/plate. A total of 70 Sal-
monella and non-Salmonella colonies were selected and
imaged, by resuspending single colonies in sterile water,
pipetting 3 mL of that on a microscope slide, air drying,
and covering with a cover slip. Samples were then classi-
fied at the cell level using QDA and cross-validated.
Classification results were then compared with reference
results from real-time PCR, performed using same col-
onies. Salmonella could be detected with up to 98.5% ac-
curacy. Classification using HMI was faster than
traditional methods. It took 2 D to classify bacteria using
real-time PCR and only 1 D using HMI. The significance
of this study is that it directly compared HMI with the
current standard of detection (PCR), showing rapid
and accurate classification is possible using HMI. For
this to become a reality, future work needs to be done
to create an exhaustive collection of bacterial finger-
prints to create a robust classification resource that ac-
counts for more bacterial variation.

To date, all reported HMI attempts have dried sam-
ples on microscope slides before imaging, to immobilize
bacteria. Although this technique is possible using slides,
it would not be suitable for attempting to detect bacteria
directly on poultry products in a nondestructive way or
on processing equipment in a real processing setting.
Physical Defects

For the purposes of this literature review, physical
defects are defined as physical irregularities in poultry
products. While the other categories discussed herein
focus on chemical characteristics and contamination,
this category is mainly concerned with the detection of
tumors on poultry skin and bone fragments. In total,
10 studies have focused on detecting physical defects in
poultry products.
Tumors Tumors on chicken skin are visible as round
lesions surrounded by thickened skin and dermis (Chao
et al., 2002). Tumors can be hard to detect because
they are more characterized by shape distortion than
discoloration (Kim et al., 2010). Despite no scientific
evidence linking human consumption of tumors on
chicken skin with any ill effects, any carcasses with tu-
mors on the skin are condemned. HSI could be intro-
duced to detect tumors on poultry products as an
efficient alternative to human inspection.

The first attempt to detect tumors on chicken skin was
made by Chao et al. (2002). To obtain samples, whole
chickens were assessed by a veterinarian, and any
chickens with tumors were marked. Then, line-
scanning reflectance mode HSI was used to image whole
carcasses in the Vis-NIR range. Using a fuzzy logic model
to predict if pixels were tumorous, this method was able
to correctly detect 91% of normal chicken skin and 86%
of tumorous skin. The next 4 studies on tumor detection
used flouresence mode HSI to detect tumors on whole
carcasses using different data analysis methods including
SVM (Fletcher and Kong, 2003) and fuzzy logic (Kong,
2003; Kim et al., 2004; Kong et al., 2004). All three
studies using fuzzy logic suffered from high false-
positive rates and were unable to detect small tumors
in the early stage of development. The false-positive
rate was reduced by a feature selection algorithm devel-
oped by Nakariyakul and Casasent (2004), using
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reflectance mode HSI images of whole chicken carcasses.
Tumors are made up of 2 different portions—lesion and
thickened skin. The feature selection algorithm devel-
oped in this study treats the tumor portions separately
(i.e., lesions and thickened skin) and then fuses them
to detect tumors. This resulted in fewer false-positives
in detection. Other proposed feature-selection algo-
rithms include recursive divergence (Du et al., 2007)
and adaptive branch and bound algorithm algorithm
(Nakariyakul and Casasent, 2009). Using thickened
skin features along with lesion features reduced the num-
ber of false positives. The most recent application of HSI
to tumor detection on poultry skin aimed to develop an
optimal emmision filter for detection (Kim et al., 2010).
Flourescence images taken using an excitation wave-
length of 365 nm in whole chicken carcasses by Du
et al. (2007) were used to create the emmision filter. A
band-pass filter of 425–475 nm was determined to be
the most appropriate, as it resulted in the highest
contrast images. The method can be used to select signif-
icant wavelengths and provides continuous priority for
those bands. Over the past 20 yr, substantial progress
has been made in applying HSI to tumor detection in
poultry products.
Bone Fragments Purchasing deboned poultry prod-
ucts saves time and energy required to manually debone
poultry. However, during processing, bone fragments
can potentially be embedded into products. Presence of
bone fragments in poultry products can be hazardous
to human health and costly to processors and can result
in a loss of customers (Smith, 2001). To prevent health
hazards and reduce economic losses, products with
embedded bone fragments must be detected and
removed. The most common traditional method of
screening for embedded bone fragments in poultry
products is X-ray screening (Yoon et al., 2008). How-
ever, X-ray screening is ionising and prone to high false-
positive rates (Yoon et al., 2008). Although HSI is
considered a surface imaging technique, information
about a sample can be obtained up to several millimetres
deep depending on how far light can penetrate into the
sample (Wu and Sun, 2013). The light penetration depth
of poultry products has not yet been determined. In an
attempt to create a more efficient nonionising system to
detect embedded bone fragments in chicken breast fil-
lets, Yoon et al. (2008) used a combination of reflectance
and transmittance modes of HSI. Samples were then all
compressed to a thickness of 1 cm and imaged in trans-
mittance and reflectance modes. The combination of
reflectance and transmittance light sources in image
acquisition allowed for the detection of embedded bone
fragments in chicken breast meat when the bone was
embedded close to the surface. Transmittance spectra
were too similar for meat and bone to be useful on their
own. Detection accuracy was 50% for portions of bones
fully embedded inside the chicken sample and 85% for
portions of bone close to the skin using a nearest
neighbor classifier. Unfortunately, this technique is also
prone to a high false-positive rate. Because HSI is a
surface imaging technique, detection of embedded bones
in poultry products may not be a potential application.
In addition, the methods used by this study relied on
compression of meat, making this a destructive appli-
cation of HSI.
Product Quality

Consumers expect quality when purchasing poultry
products. Inspectors rely on pHmeters, conventional im-
aging, and destructive laboratory techniques to test
product quality. However, quality is difficult to quantify,
as it is subject to the judgement of inspectors. HSI could
potentially be used to quantify desirable attributes and
classify the quality of poultry products in a standardized
way.
In total, 13 studies have attempted to apply HSI to

determining the quality of poultry products. These
studies can be subcategorized based on what metric
they use to define quality: water content, pH, and color;
chemical measures (e.g., total volatile basic nitrogen
[TVB-N], 2-thiobarbituric acid reactive substances
[TBARS]); and other sensory attributes (e.g., springi-
ness, tenderness).
Water Content, pH, and Color The first attempts to
apply HSI to assessing quality in poultry products aimed
to classify the quality of cooked sliced turkey hams
(Elmasry et al., 2010; Iqbal et al., 2013). High-quality
ham is injected with the lowest proportion of brine,
whereas low-quality ham is injected with a high pro-
portion of brine. In both studies, samples were prepared
by injecting 4 different levels of brine (10, 20, 30, 40%)
into 4 ham blocks, creating 4 quality levels of ham
(premium, medium-high, medium-low, and low). In the
first attempt, LDA was successfully used to classify the
samples with an 100% classification rate and create
classification maps (Elmasry et al., 2010). The later
study expanded on these results by successfully pre-
dicting moisture, color, and pH of the turkey ham slices
using PLSR models (Iqbal et al., 2013). The classifica-
tions made by the models matched those determined by
traditional techniques, showing the ability of HSI to
distinguish moisture, color, and pH of poultry products.
To study what quality factors are affected by post-

mortem deboning time, the following study predicted
pH and color of deboned chicken breast fillets using
Vis-NIR HSI (Jiang et al., 2018b). Samples were pre-
pared by deboning chicken breast fillets at 2, 4, and
24 h postmortem. For comparison with traditional
methods, color of the chicken breasts was measured us-
ing a spectrophotometer and pH using a pH probe. All
reference and HSI measurements were acquired 24 h
postmortem. Using an LDA model, differences between
deboning times were only found for color and not pH.
PLSR models were successful in accurately predicting
both pH and color values. Further advancements were
made by Yang et al. (2018a) by comparing Vis-NIR
and NIR HSI for determining chicken breast fillet color,
pH, moisture, drip loss, and salt-induced water gain.
Whole chicken breast fillets were obtained directly after
chilling and transported to the laboratory within 15 min.
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The exact time of imaging postmortem was not made
explicit. By comparing PLSR models, Vis-NIR per-
formed better for color and pH determination, whereas
NIR performed better in drip loss, expressible fluid,
and salt-induced water gain determination. Moisture
determination was not successful by either system. Over-
all, these studies showed that HSI is capable of predict-
ing pH and color of poultry products with reasonable
accuracy. Although color can be predicted using less so-
phisticated methods, HSI allows for the simultaneous
prediction of several attributes using one instrument.
Chemical Measures Certain chemical measures can be
used as predictors of quality and markers of spoilage.
Chemical measures of importance in poultry product
quality assessment include TBARS, hydroxyproline,
and TVB-N.
The first study to attempt this predicted TBARS con-

tent in chicken meat, as an indicator of freshness (Xiong
et al., 2015a). TBARS is a biproduct of fat degradation,
indicating the age of a meat product. In this study,
chicken breast samples were sliced into 1-cm-thick sam-
ples and stored for either 0, 3, 6, or 9 D at 4�C. Samples
were imaged using a Vis-NIR HSI system (328–
1,115 nm). Immediately after imaging, reference TBARS
values were calculated using a traditional destructive
extraction protocol and spectrophotometer to measure
absorbance of the resulting filtrate at 532 nm. Using
the hyperspectral images, a PLSRmodel was able to suc-
cessfully predict TBARS values. Then, SPA was used in
combination with PLSR to build a model based only on
optimal wavelengths resulting in slightly worse
prediction.
Another study to use a chemical measure used hy-

droxyproline as an indicator for meat tenderness of
chicken breast fillets (Xiong et al., 2015c). Free-range
and broiler chicken carcasses were acquired from a local
market, from which strips of breast meat were cut. Hy-
droxyproline is a component of collagen, and meat
high in hydroxyproline is correlated with low tenderness.
After imaging using Vis-NIR HSI, hydroxyproline con-
tent was determined using traditional methods as refer-
ence values. Using regression coefficients to select
optimal wavelengths and build a RC-PLSR model, hy-
droxyproline content could be successfully predicted.
However, poultry is most commonly slaughtered at an
age before collagen greatly affects meat tenderness
(,8 wk), limiting the ability to predict tenderness using
hydroxyproline (Cor�o et al., 2002). Because the age of
the birds used in this study was not made explicit, it is
not clear if using HSI to predict poultry tenderness in in-
dustry would be feasible.
The next 2 studies attempted to quantify TVB-N us-

ing Vis-NIR HSI as an indicator of spoilage (Khulal
et al., 2016, 2017). High TVB-N in meat products is
correlated with high levels of microbial spoilage, making
it usable as a quantitative spoilage index. In both
studies, randomly selected samples were removed from
refrigeration to determine reference TVB-N content
and imaged every other day over the course of 9 D.
Values of TVB-N over 15 mg/100 g were considered to
be stale. By the final day, the range of TVB-N values
was 25–43 mg/100 g. The main goal of this study was
to determine if PCA or an ant colony optimization
(ACO) was the best method for selecting optimal wave-
lengths to be used with back propagation artificial neu-
ral network for modeling TVB-N content. The study
concludes that ACO has been underutilized in compari-
son to PCA, even though ACO is a superior method to
PCA. In the following year, the same group repeated
the study with the addition of fusing data from colori-
metric sensors with HSI to predict TVB-N content.
Fusing the data resulted in the PCA-back propagation
artificial neural network model to have better prediction
results than those determined by the previous study.
Sensory Attributes Sensory attributes (e.g., springi-
ness, tenderness, juiciness) of poultry products can be
hard to quantify, as they frequently depend on the indi-
vidual judgement of testers. However, HSI can be used to
quantify the spectra of desirable sensory attributes to
test if products meet standards demanded by consumers.

Springiness is the ability of meat to “bounce-back”
when an external force is applied to it. A high level of
springiness is desirable by consumers and is often a sen-
sory indicator of fresh meat. In production lines, inspec-
tors are trained to use the “finger method” to apply
pressure to a poultry product and judge springiness.
This is largely subjective, and not every sample can be
tested. Xiong et al. (2014) attempted to quantify spring-
iness of chicken breast fillet slices purchased at a local
store using Vis-NIRHSI (Xiong et al., 2014). No informa-
tion was provided on what time postmortem quality
measurements were taken. After imaging, reference
springiness values were calculated by twice-compression
methodusing an Instronuniversal testingmachine.Using
a PLSRmodel based on selected optimal wavelengths by
SPA, it was possible to accurately predict springiness.

The next attempt at quantifying sensory attributes
was to detect “wooden breast condition” in chicken fillets
(Yoon et al., 2016). Wooden breast condition is used to
describe poultry meat with an uncharacteristically
hard feel with no known cause. This study combined
HSI data with data from optical coherence tomography
(OCT). Chicken breast fillets of 8-week-old broilers were
collected from a processing plant approximately 3 h
postmortem. The exact time of imaging postmortem is
not made explicit. OCT is only able to scan 1 cm2 at a
time and is able to detect the texture associated with
wooden breast condition. On the other hand, HSI can
scan at a much quicker rate, but spectra from normal
and wooden breast condition samples do not differ. How-
ever, HSI can be used to distinguish between fat, muscle
tissue, and connective tissue. Because wooden breast
condition is associated with fibrous connective tissue sur-
rounding muscles (epimysium), HSI could be used to
select regions of interest (i.e., epimysium) to be scanned
by OCT. This study suggests that fusing the 2 technolo-
gies could potentially be done to increase the throughput
time of OCT in future work.

The next study on sensory attributes proposes fusion
of Vis-NIR HSI data and image textural features to
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classify tenderness by predicting shear force values of
whole chicken breast fillets (Jiang et al., 2018a). Samples
were prepared by deboning chicken breast fillets at 2, 4,
or 24 h postmortem to obtain samples at a variety of
tenderness levels. Traditional methods were used to
measure Warner-Bratzler shear force reference values
of samples. Combining textural and spectral data to
build either PLS-DA or Radial basis function–support
vector machine models resulted in high correct classifica-
tion rates of tenderness compared to reference values.

The final study to quantify sensory attributes of
poultry products also fused textural and spectral data,
but this time to predict water-holding capacity of whole
chicken breast fillets using NIR HSI (Yang et al., 2018b).
Water-holding capacity is directly related to sensory at-
tributes such as tenderness and juiciness. Quantification
of water-holding capacity can be performed by
measuring drip loss, expressible fluid, and salt-induced
water gain. Samples were imaged approximately 2 h
postmortem using HSI. This study used gray level co-
occurrence matrix to obtain textural data of images.
The PLSR model based on fusion of textural and spec-
tral data performed the best for predicting drip loss
and expressible fluid. However, spectral data alone per-
formed better for salt-induced water gain predication.
CONCLUSIONS

Since the first application to poultry products 20 yr
ago, HSI has been shown to be a successful alternative
to traditional screening methods. HSI can be applied
to detect fecal contamination, food fraud, physical de-
fects, microbiological contamination, and product
quality. Traditional methods of detection are often
tedious, destructive, not representative of the whole
sample, or subject to the judgement of an inspector.
In contrast, HSI has been shown to be capable of
high-throughput online monitoring of poultry prod-
ucts. The following is a list of limitations that exist
with applying HSI to poultry products and sugges-
tions for future research:

� As with other applications, use of HSI is limited by the
length of time needed to acquire, process, and classify
images (Gowen et al., 2007). To date, only pushbroom
and staredown modes of image acquisition have been
used in imaging poultry products. Because snapshot
imaging acquires images with one exposure and relies
on less processing methods, it could increase the speed
at which HSI could be applied (Hagan and Kudenov,
2013). The recent commercial availability of snapshot
mode HSI systems could make snapshot imaging a re-
ality for poultry products in future work. However,
there are currently some limitations to snapshot sys-
tems. The main limitation of snapshot systems comes
from the amount of data that must be collected and
analyzed. Because of how large the data set behind
each snapshot image is, it is only recently that technol-
ogy capable of handling snapshot data fast enough has
been developed (Hagan and Kudenov, 2013). Another
limitation of snapshot systems is that they are typically
more complex than scanning systems, requiring more
advanced and expensive manufacturing methods
(Hagan and Kudenov, 2013).

� Further limitations arise when HSI is applied to micro-
biology. For example, signal interference can occur
from the high absorbance of water, cell motility can
blur images, autoflorescence of biological samples can
interact with illumination source, and heat from illumi-
nation can heat and alter or burn the sample (Gowen
et al., 2015).

� Often samples are pretreated in unrealistic ways to pre-
pare them for imaging (e.g., flattened, moisture is
removed, using only one slice). However, these compro-
mises are not unique to HSI. In addition to requiring
sample pretreatment, traditional techniques are slow
and often require sample destruction. In comparison
with traditional techniques, the high speed and nonde-
structive feature of HSI makes it a worthwhile
alternative.

� To date, HSI has been tested in-line with no physical
barriers between the sample and the imaging system
(Park et al., 2010; Yoon et al., 2011). This may be a
limitation to accurately identifying the safety of
products for consumers, as the classification is made
before the final steps of production. Currently, after
the product is imaged, it will likely go on to further
packaging steps before it reaches the consumer. As
the product encounters more surfaces after imaging,
further opportunities arise for pathogens and spoilage
bacteria to colonize (Rouger et al., 2017). Conse-
quently, HSI should be implemented further down
the production line in future work, once the products
are completely processed and packaged, to ensure
safe products for consumers. Although not the same
as imaging through packaging, real-time HSI has
been successfully applied to imaging meat through
sausage casing (Feng et al., 2018). Future work is
required to assess HSI utility for successfully imaging
poultry products through packaging.
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