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Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder which is characterized by an increasing impairment in normal
memory and cognitive processes that significantly diminishes a person’s daily functioning. Despite decades of research and advances
in our understanding of disease aetiology and pathogenesis, there are still no effective disease-modifying drugs available for the treat-
ment of AD. However, numerous compounds are currently undergoing pre-clinical and clinical evaluations. These candidate pharma-
cotherapeutics are aimed at various aspects of the disease, such as the microtubule-associated t-protein, the amyloid-g (AB) peptide
and metal ion dyshomeostasis — all of which are involved in the development and progression of AD. We will review the way these phar-
macological strategies target the biochemical and clinical features of the disease and the investigational drugs for each category.
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Current pharmacotherapies for the
treatment of AD

Alzheimer’s disease (AD) is the most prevalent cause of dementia
in the elderly population, affecting approximately 35-40 million
patients worldwide [1], and is the third leading cause of death in
developed countries [2]. As such, AD represents a major socio-
economic problem, which requires better diagnostic tools, man-
agement and effective therapies in order to ease the burden of this
disease. While there are advances being made in all these areas,
particularly with the identification of new biomarkers and the
development of novel brain imaging compounds for the early
detection of disease, it is clear that an effective treatment for AD is
as elusive as ever. To date, the only Food and Drugs
Administration (FDA)-approved drugs for the treatment of AD
patients are the acetylcholinesterase inhibitors (AChEIs) tacrine,
donepezil, galantamine and rivastigmine, and the non-competitive
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N-methyl-D-aspartate (NMDA)-receptor antagonist memantine.
The AChEls exert their affect by preventing the enzymatic degrada-
tion of the neurotransmitter acetylcholine (AChE), resulting in
increased AChE concentrations in the synaptic cleft and enhanced
cholinergic transmission [3]. Memantine, however, protects neu-
rons against NMDA receptor activation-mediated glutamate exci-
totoxicity [4-6] and also inhibits T-hyperphosphorylation and
aggregation [7]. A new approach, using combination therapy of
donepezil and memantine, has been reported to have significant
beneficial effects on cognitive function, activities of daily living and
behaviour [8]. Meanwhile, potent and more selective AChEls
(Huperzine A, Neuro-Hitech Inc., New York, NY, USA) and NMDA-
receptor antagonists (Dimebon, Medivation Inc., San Francisco,
CA, USA) are being assessed.
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However, irrespective of the form of therapy utilized, the cur-
rent approaches for the treatment of AD provide only temporary
symptomatic relief and do not inhibit and/or reverse the under-
lying disease mechanisms. This stresses the urgent need for
disease-modifying drugs for AD — small, easily administrated,
well-tolerated, bioavailable compounds that cross the blood-
brain barrier (BBB) and have little or no adverse effects and/or
contraindications. There are currently more than 50 compounds
in various stages of clinical investigation for the treatment of AD
(www.alzforum.org) including: statins [9-12], peroxisome pro-
liferator-activated receptor-y agonists [13—-16], non-steroidal
anti-inflammatory drugs [17-19], neurotrophic molecules and
even metabolic or nutritional drinks (Ketasyn™, Accera,
Broomfield, CO, USA; Souvenaid™, Danone Research-Centre for
Specialized Nutrition, respectively, Palaiseau, France). In addi-
tion, there are many more candidate molecules that are at the
pre-clinical stage of development and are likely to proceed into
clinical trials. Most of these pharmacological agents have been
designed and/or developed based upon a notion that has been
dominating the AD field for the past two decades — the ‘amyloid
cascade hypothesis’. This theory claims that the metabolism of
the amyloid-g (AB) peptide (both generation and clearance) is
the main initiator of AD, which together with the downstream
formation of the 7-protein aggregates, leads to neuronal and
synaptic dysfunction and loss, microglial activation and neuronal
death [20, 21]. Thus, most of the pharma-cological agents being
developed target one or both of the principal cerebral proteins
implicated in the pathogenesis of AD: = and AB. In this review,
we will provide a broad overview of the therapeutic approaches
currently being developed for the treatment of AD.

AD pharmacotherapies targeting

Neurofibrillary tangles (NFTs), which are found in AD and other
forms of dementia, consist of insoluble, intra-neuronal inclusions
[22, 23] comprised paired helical filaments that are formed from
hyperphosphorylated = [24, 25]. Hyperphosphorylation of the
microtubule-associated t-protein is likely to result from an imbal-
ance in kinase and phosphatases activities, and leads to destabilization
of microtubules [26], loss of neuronal cytoskeletal architecture
and/or plasticity [27], impaired neuronal transport, dystrophy and
ultimately neuronal cell death [28, 29]. Based on these findings,
small molecules that interfere with the formation of T-aggregates,
selectively inhibit T-kinases and/or activate T-phosphatases are
being pursued as therapeutic targets (see Fig. 1).

Modulators of T kinases or phosphatases

The biological function of the microtubule-associated T-protein
[30] is regulated by several kinases and phosphatases [31-33].
An imbalance in activity between kinases and phosphatases
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results in the abnormal phosphorylation of 38 or more serine
and/or threonine amino acids on 7 in the AD brain [34-37].
Phosphorylation of a tyrosine residue at position 18 (Tyr18) onT
by the tyrosine kinase fyn has also been reported [38]. Decreased
mRNA levels [39] and activity of the main T-protein phosphatases
(PP)1 and PP2A, as well as other T-phosphatases such as PP2B
and PP5, have been observed in AD [40-42]. This can lead to
a direct reduction in T-dephosphorylation or indirect hyperphos-
phorylation by the inability of these phosphatases to inhibit
T-hyperphosphorylation by different kinases [43], therefore
T-phosphatases have been proposed as therapeutic targets [44].
Major kinases, whose protein levels and activities are reported to
be up-regulated in AD and other tauopathies [45-48], involved in
the phosphorylation of 7 include glycogen synthase kinase (GSK)-3,
cyclin-dependent protein kinase-5, casein kinase-1, protein kinase
A (cyclic adenosine monophosphate (cAMP)-dependent protein
kinase), protein kinase G, calcium and calmodulin-dependent pro-
tein kinase-II, microtubule-affinity regulation kinase and mitogen-
activated protein kinase family members [49-53]. These proteins
have also been suggested as therapeutic targets for AD. Recent
reports have highlighted the importance of GSK-3p in the devel-
opments of both  and AR pathologies in AD and concluded that this
kinase is a vital drug target for the treatment of AD and other neu-
rodegenerative diseases [54-57]. Several animal studies, for
example, have demonstrated that the inhibition of GSK-3 activity
by lithium [58] results in decreased levels of both Ag (in PDAPP
mice) and T-phospho-rylation, T-aggregation and NFT formation (in
JNPL3 mutant t-mice) [59-61]. Other GSK-3 inhibitors are being
developed, such as AR-A014418 [61], as well as other kinase
inhibitors [62—67]; however, this approach is hindered due to the
ubiquitous expression of these kinases, their pleiotropic activities in
countless cellular functions and the low selectivity of inhibitors for
specific kinases, isoforms of a particular kinase, cellular compart-
ment and/or pathological, rather than physiological, activity of the
kinase [68-70].

7 aggregation inhibitors (TAls)

Screening for TAls started in the early 1990s with reports on the
ability of phenothiazines [71], anthraquinones [72] and low
molecular weight N-phenylamine derivatives [73] to prevent
T-aggregation and associated toxicity in cell lines [74]. The most
clinically advanced TAl is AL-108 or NAP (Allon Therapeutics Inc.,
Vancouver, BC, Canada), which is an intra-nasal formulation of an
8 amino-acid peptide (NAPVSIPQ) derived from the biological
activity-dependent neuroprotective protein secreted by the brain in
response to various insults [75]. Studies in transgenic mice sug-
gest that AL-108 interacts with microtubules, reduces t-hyper-
phosphorylation and increases soluble 7 levels leading to an
improvement in cognition [76, 77]. Data from a recently com-
pleted phase lla trial evaluating AL-108 in 144 patients with
amnestic mild cognitive impairment demonstrated that it is safe
and well tolerated, and the high dose (15 mg twice a day) resulted
in a significant and lasting improvement in short term and working
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Fig. 1 Pharmacotherapeutic strategies for the
treatment of Alzheimer’s disease targeting .
Schematic representation of the anti-t targets
for potential pharmacotherapies: (/) Modulators
of 7-kinases or phosphatases, (i) T-aggregation
inhibitors (TAIs). Abbreviations: MT (micro-
tubule); NFTs (neurofibrillary tangles); PHFs
(paired helical filaments).
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memory (but not in tests that involved executive functions). AL-
108 is now being tested as a treatment for other neurodegenera-
tive diseases, mental disorders and ocular disease. An intravenous
(IV) formulation of NAP, known as AL-208, is also under clinical
investigation for mild cognitive impairment associated with coro-
nary artery bypass graft surgery as well as other indications [78].
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A recently announced TAI is Rember™ (TauRx Therapeutics
Ltd., Singapore), which has methylthioninium chloride (MTC; also
known as the histochemical dye methylene blue) as its active con-
stituent. It is proposed that this compound is not only able to prevent
the oligomerization and self-aggregation of =, but also dissolve
pre-formed T-oligomers and paired helical filaments into truncated
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7-fragments, which can then be naturally degraded and eliminated
(http://www.taurx.com/). At the 11th International Conference on
Alzheimer’'s Disease (ICAD, Chicago, 2008), pre-clinical data
(01-06-04, P2-383, P2—-428) and results of a recently completed
24-week, multi-centred, randomized, double-blind, dose-ranging
(30, 60 or 100 mg, three times per day), placebo-controlled phase
[Ib trial followed by a 60-week, blinded, active treatment extension
study were presented (03-04-07, P4—-347, P4—-384). Patients with
moderate AD who received MTC at 60 mg three times/day showed
a significant improvement in the Alzheimer’s Disease Assessment
Scale-Cognitive Subscale (ADAS-Cog) scores, compared to
placebo control, at the end of the 24-week-long trial. This result
was further verified after 50 weeks of treatment and again at the
conclusion of the trial (84 weeks in total). Another measure of the
drug’s efficacy that was utilized was single photon emission com-
puted tomography (SPECT) analysis at week 24 compared to
baseline, which revealed that the regional cerebral blood flow
decline seen in the hippocampus and entorhinal cortex of individ-
uals treated with placebo, was not observed in individuals treated
with MTC (60 mg three times/day). Despite these seemingly
encouraging results, great reservations have been expressed,
mainly due to unusual trial design and an unconventional method
of analysis. However, TauRx Therapeutics Ltd. has announced that
it intends to take Rember™ into a phase Ill clinical trial, and that it
is already testing a second generation TAl molecule, LMT-X, in
T-transgenic animal models.

AD pharmacotherapies targeting A

Although the exact mechanism is still unclear, it is widely believed
that dysfunctional A metabolism is the underlying cause for the
neurodegeneration and dementia observed in AD. Therefore, a
leading strategy for the development of AD pharmacotherapies is
modulation of AR production, aggregation and/or clearance. It is
assumed that altering these processes will stop and/or reverse the
pathological neuronal loss and the clinical cognitive decline. We
will briefly summarize key findings of the major AD pharmacolog-
ical strategies being development to target various aspects of A
metabolism (see Fig. 2).

Inhibitors and/or modulators of the secretases

The amyloid precursor protein (APP) is an evolutionary conserved
type | transmembrane glycoprotein [79] that belongs to a family
of proteins, including amyloid protein precursor-like proteini
(APLP1) and APLP2 [80, 81]. Both the amino and carboxyl termi-
nals of APP can be divided into several regions, each with its own
characteristics and functions [82]. The overall function of APP is
unclear; however, it is believed to be important during the devel-
opment of the CNS and in response to stress or injury [83]. APP
has been suggested to act as a cell-surface receptor and may also
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be involved in cell adhesion and/or neurite outgrowth [84, 85].
APP is synthesized in the endoplasmic reticulum, undergoes N-
and O-glycosylation in the Golgi, and is translocated from the
trans-Golgi network to the cell surface via the secretory pathway
[86]. During and/or after trafficking, APP undergoes degradation
via the ubiquitin—proteasome system [87] and/or various forms of
autophagy [88, 89]. Neuronal macroautophagy induction and
impaired clearance of several autophagy intermediates is evident
in the AD brain, leading to an overproduction and accumulation of
intracellular Ag in autophagic vacuoles [90, 91].

APP also undergoes proteolytic processing through either the
non-amyloidogenic or the amyloidogenic pathways [92]. During
the non-amyloidogenic pathway, the membrane-bound enzyme a-
secretase cleaves APP within its A domain, resulting in the extra-
cellular secretion of soluble APP-a (SAPP-a) and the production
of a short membrane-bound COOH-terminal fragment (CTF), -
CTF or C83 [93]. Subsequent y-secretase cleavage of C83 results
in the secretion of a 3-kD peptide termed p3 out of the cell [94],
and release of the APP intracellular domain (AICD) into the cyto-
plasm [95]. Enzymes that have been suggested to have a-secre-
tase activity include members of a disintegrin and metalloprotease
family of proteins, ADAM 10 and ADAM 17 or TACE (tumour
necrosis factor-a converting enzyme) [96-98]. The amyloidogenic
pathway is initiated when B-secretase, identified as the aspartyl
protease pB-site APP cleaving enzyme (BACE1, Asp-2 or
memapsin-2) [99, 100], cleaves APP at the N-terminal part of the
AB domain. This cleavage leads to the extracellular release of
SAPPB, while the B-CTF or C99 fragment remains membrane
bound. Sequential y-secretase cleavage of G99, at the C-terminal
of AB, allows the shedding of the AICD and the secretion of A
species of variable length, into the lumen or extracellular space
[101]. y-Secretase is thought to be an intramembranous-cleaving
polytopic aspartyl protease [102], comprised a complex of prese-
nilin1 (PS1), presenilin2 (PS2), nicastrin, aph-1 and pen-2
[103-105]. The presenilins (PSs) are transmembrane homologue
proteins [106], which have been shown to be essential for the
vy-secretase cleavage of APP [107, 108] as well as other type |
proteins [109]. Mutations in PSs have been shown to alter APP
processing and AB levels in mice [110] and are associated with
the inheritance of early onset familial AD in human beings [111].

Following their discovery and characterization, the APP secre-
tases became attractive targets in the quest for an AD treatment.
The logic behind modulating the APP secretases is two fold: stim-
ulating a-secretase cleavage in order to direct APP processing
towards the non-amyloidogenic pathway or suppressing 8- and/or
y-secretase cleavage in order to reduce the amount of AR pro-
duced. It has been shown that muscarinic AChE-receptor agonists
can foster a-secretase processing of APP to subsequently result in
a reduction in AB levels [112, 113]. This has been further demon-
strated in animal models of AD, where the treatment of triple trans-
genic mice [114] with the M1 AChR agonist NGX267 (TorreyPines
Therapeutics, La Jolla, CA, USA) resulted in reduced ABi-2,
reduced amyloid load and decreased t-phosphorylation as well as
improved behaviour [115]. Numerous B- and +y-secretase
inhibitors and/or modulators have also been designed; however,
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Fig. 2 Pharmacotherapeutic strategies for the treatment of Alzheimer’s disease targeting AB. Schematic representation of the anti-amyloidogenic tar-
gets for potential pharmacotherapies: (/) a-secretase activators, (/i) B-secretase modulators/inhibitors, (/i) y-secretase modulators/inhibitors, (/v) AR
immunotherapy, (v) A aggregation inhibitors, (vi) Amyloid-plaque degredation enhancers. Abbreviations: Ag (amyloid-g), AICD (APP intracellular
domain); AP (amyloid plaque); APP (amyloid precursor protein); SAPP« (soluble APP-a); SAPPB (soluble APP-B); TM (trans-membrane).

the majority of these agents are not specific for the secretase cleav-
age of APP and thus may prevent the cleavage and processing of
additional substrates, which could result in various adverse effects
[116, 117]. At the moment, the B-secretase inhibitor TAK-070
(Takeda Pharmaceutical Co. Ltd., Osaka, Japan) is undergoing
a phase | clinical trial. A number of y-secretase-targeting com-
pounds are in early clinical development, including a selective

© 2009 The Authors

~y-secretase inhibitor (BMS-708163; Bristol-Myers Squibb, New
York, NY, USA) and a ~y-secretase modulator (E2012; Eisai Inc.,
Woodcliff Lake, NJ, USA). The most advanced compound, however,
is the y-secretase inhibitor hydroxyl-valeryl monobenzocaprolac-
tam/ LY450139 dihydrate (Eli Lilly, Indianapolis, IN, USA). A 40-week,
multi-centre, randomized, double-blinded, dose escalation, placebo-
controlled, parallel assignment phase Il study (safety, tolerability
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and biomarker assessment) with LY450139 dihydrate in individu-
als with mild-to-moderate AD showed that individuals who
received either the low (100 mg/day) or high (140 mg/day) dose of
the drug had a significant (~60%) decrease in plasma AB1-40 com-
pared to placebo; however, AB1-40 changes in cerebrospinal fluid
(CSF) were not statistically significant [118]. Recruitment of
approximately 1,500 individuals for a phase Il trial to study the
effects of LY450139 dihydrate (100 or 140 mg per day) on the rate
of cognitive and functional decline versus placebo over a 2-year
period has begun, with the clinical trial estimated to be complete in
the first quarter of 2012.

A focal point at ICAD 2008 was the announcement by Myriad
Genetics (Salt Lake City, UT, USA) that the most extensive (1,649
patients treated over 18 months in a phase IIl) AD clinical trial
ever to be completed (tarenflurbil/Flurizan™ 800 mg/twice daily
or placebo) had failed to demonstrate significant differences in
any of its outcome measures, including ADAS-Cog and
Alzheimer’s Disease Cooperative Study Activities of Daily Living
(ADCS-ADL) scores. Thus, the y-secretase modulator Flurizan™
was ineffective in slowing disease progression. The failure of this
trial has raised many issues within the AD research community
with the main question being whether or not B- and/or y-secre-
tase modulators should still be considered as a therapeutic tar-
get. Many scientists believe that a wiser strategy to targeting A
production is to target Ag after it has been synthesized.

ApB aggregation inhibitors

As described above, A is constitutively synthesized at the mem-
brane surface by proteolytic cleavage and is then secreted [119].
AR typically ranges between 38 and 43 amino acid residues in
length with AB1-40 and AB1-42 being the most prominent types in
AD [120]. Following its secretion, extracellular A can later be
internalized back into the cell by poorly understood molecular
mechanisms. Recently, it was reported that in the absence of
apolipoprotein E (ApoE), AB1-42 is internalized in axons of primary
neurons via a clathrin-independent endocytic pathway involving
lipid rafts [121]. The rapid turnover of AB in the brain [122, 123]
suggests efficient clearance and/or degradation mechanism(s) of
the peptide are in place. Detection of Ag in plasma and CSF [124],
implies that A can be transported from the CNS across the BBB
into the periphery. In this regard, a few receptors (involved in cho-
lesterol and/or lipid metabolism) have been suggested to mediate
Ap efflux from the brain, including MDR1-P-glycoprotein (P-
gp/ABCB1) [125], receptor for advanced glycation end products
(RAGE) [126] and the extensively studied low-density lipoprotein
receptor-related protein (LRP). AB has been shown to bind
directly to LRP-1 and LRP-2/megalin or indirectly, by binding to
their ligands: apolipoprotein J and E (ApoJ and ApoE, respec-
tively) and «2-macroglobulin (a2 M) [127-129]. AB-LRP1/2
complexes can be internalized and delivered to the endoso-
mal/lysosomal compartments, where they either undergo
autophagy in a similar manner to APP, or they may undergo tran-
scytosis into the CSF or plasma [130, 131]. A is finally eliminated
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through the kidney and liver via LRP [132, 133] or by liver X
receptor [134-136]. Alternatively, AR can be catabolized via enzy-
matic degradation [137]. To this end, several classes of enzymes
have been identified, including the serine proteases plasmin and
tissue plasminogen activator [138-140], and the metalloproteases
neprilysin [141-144], insulin degrading enzyme [145-148], as
well as the zinc-dependent endothelin-converting enzyme 1 [149,
150] and matrix metalloproteinases 2 and 9 (MMP2 and MMP9,
respectively) [151-153].

The fact that AR is normally produced in the body throughout
life, is present in various organs and bodily fluids, and that the
body has evolved sophisticated mechanisms for its metabolism
(as detailed above) suggest that A has a physiological role [154].
Although the function of AR is yet to be elucidated, A has been
proposed as an acute-phase apolipoprotein with metal-binding
and antioxidant activities [155-160]. The idea that AR has a func-
tional role leads us to the conclusion that with old age, and more
specifically with the late onset of AD, Ap either losses its physio-
logical function or gains a pathological function [155, 156]. There
are several theories as to factor(s) that may turn Ag from being a
physiological to a pathological agent; however, none of these
hypotheses are definite and all of them still have many caveats.
However, it has been consistently demonstrated that AR exerts
neurotoxic and synaptotoxic affects both in vitro [161] and in vivo
[162]. Researchers have turned to the study of A structure in
search of clues as to its toxic effects. It was found that soluble A
monomers assume a random coil or a-helix conformation; how-
ever, in AD they undergo a structural change into a pleated B-sheet
[163]. This induces the peptide to form low molecular weight
oligomers, higher molecular weight complexes (protofibrils and
amyloid-g derived diffusible ligands or ADDLS), mature fibrils and
amyloid plaques (APs) in the neuropil and the vasculature
[164-166]. In vitro studies have shown that amyloidogenesis and
fibrillogenesis can be affected not only by the type of AR produced
and its conformation, but also by factors such as time, concentra-
tion, temperature, pH and metal ion concentration [167]. For many
years it was believed that the toxic effects of AR were a result of
the mature A fibrils; however, recent studies suggest that low
molecular weight, soluble, oligomeric forms of AB1-42 rather than
AB1-40 [168] are more neurotoxic than the mature AB fibrils
[169-173]. Indeed, the severity of AD correlates more closely with
cerebral concentrations of soluble Ap rather than insoluble AB
load (reviewed by Lesne and Kotilinek [174]). As our understand-
ing of AR structure improves and with the advent of more
advanced techniques, the development of inhibitors of AR
oligomers will improve [175]. Candidate drugs in this category are
synthetic peptides based on the AB17-21 sequence, with the five-
amino-acid B-sheet breaker peptide Ac-LPFFD-NH2 (iAg5p) as its
lead compound [176, 177], the discontinued tramiprosate/
Alzhemed™ (Neurochem Inc.) and ELND-005/AZD-103 (devel-
oped as a joint venture by Elan Pharma International Ltd., Dublin,
Ireland and Transition Therapeutics, Toronto, ON, Canada).
Tramiprosate/Alzhemed™ is in fact a variant of the amino acid
taurine (3-amino-1-propanylsulfonic acid [3-APS]) [178], which
prevents sulphated glycosaminoglycans from promoting the
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oligomerization of soluble AB [179], but at the same time also
enhances non-toxic t-aggregation in vitro [180, 181].
Unfortunately, pre-clinical studies of tramiprosate/ Alzhemed™ in
TgCRND8 mice did not include an investigation of T-pathology or
any behavioural testing. Phase Il trial results showed the only sig-
nificant effect of tramiprosate/Alzhemed™ treatment was a dose-
dependent reduction in CSF AB1-42, but had no significant impact
on CSF ABi-40 and T, or on psychometric scores [182, 183].
Despite these disappointing results, the investigational drug pro-
gressed into a phase Il trial in Northern America, which was
recently declared by the FDA to have failed. As a result, the
European Phase Il study of tramiprosate/Alzhemed™ has been
abandoned and the compound is being marketed as a nutraceuti-
cal, although a phase Il trial for its use as a preventative of hem-
orrhagic stroke in patients with cerebral amyloid angiopathy (CAA)
is ongoing. Another investigational drug, ELND-005/AZD-103
(Transition Therapeutics, Toronto, ON, Canada and Elan, Dublin,
Ireland), is an orally administrated compound that crosses the
BBB and is believed to break-down AB aggregates and prevent fur-
ther AB oligomerization from taking place. In transgenic mouse
models of AD, ELND-005/AZD-103 treatment improved their spa-
tial memory performance in the Morris Water Maze. In several
phase | studies, single and multiple ascending doses of ELND-
005/AZD-103 were shown to have good safety, tolerability and
pharmacokinetic profiles. At present, ELND-005/AZD-103 is
undergoing an 18-month phase Il trial in 340 patients with mild-
to-moderate AD in order to confirm its safety and to evaluate its
efficacy on cognition and functionality.

Another approach has been to try and characterize the mecha-
nism(s) involved in the neurotoxicity of AR as a basis for develop-
ing pharmacotherapeutics that modulate these processes. AB-
associated neurotoxicity may be attributed to various factors
[184], including: AB interactions with intracellular target(s) and/or
extracellular A interaction with membrane surface receptor(s),
cholesterol, lipids and lipoproteins [185, 186]. Activation of
microglia and inflammatory factors [187] and induction of apop-
tosis by Ap-mediated activation of cysteine aspartyl proteases
termed caspases [114, 188, 189] have also been proposed to have
neurotoxic effects. Berman and colleagues recently demonstrated
that A oligomer-induced neurotoxicity is due to the destabiliza-
tion of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2)
metabolism [190]. Another proposed mechanism of AR toxicitg is
the promotion of ion-channel formation and calcium ion (Ca“")
influx [191]. This theory gained support from pre-clinical and early
clinical trials with different neuronal L-type calcium channel block-
ers, such as S-312-d, nimodipine and MEM 1003 (Memory
Pharmaceuticals, Montvale, NJ, USA) [192-195]. However, meta-
analysis of clinical studies revealed that nimodipine only slows
down the disease progression and may be effective only in certain
types of dementia [196]. As for MEM 1003, late last year Memory
Pharmaceuticals announced that the drug failed to show changes
in ADAS-Cog scores between treated and control mild-to-moder-
ate AD patients in a phase Ila trial, yet the company is still testing
the efficacy of MEM 1003 in individuals with bipolar disorder
(www.memorypharma.com).

© 2009 The Authors
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Passive or active immunization

A novel and controversial approach to treating AD is based on vac-
cine therapy. Transgenic mouse models of AD actively immunized
with A [197-200] or passively immunized with humanized anti-
Ap antibodies [201-208] showed reduced AR and t-pathology,
neutralized soluble AB oligomers, attenuated synaptic degenera-
tion and improved synaptic plasticity, all of which were accompa-
nied by improved learning. Immunization against AR thus
appeared to be the much-anticipated breakthrough in the develop-
ment of AD therapeutics, in addition to being the primary test of
the amyloid cascade hypothesis. An active immunization strategy
was rapidly advanced into clinical trials by Elan, and following suc-
cessful completion of the phase | trial, a phase lIla trial with AN-
1792/Betabloc was initiated by Elan/Wyeth. This study was termi-
nated after four patients presented with symptoms consistent with
autoimmune meningoencephalitis [209, 210] and by the end of
2002 there were 18 known cases [211]. A subsequent autopsy
analysis of a phase | study patient, who died 20 months after the
first inoculation, indicated evidence of encephalitis [212]. This,
together with three later autopsy cases of AN-1792-immunized AD
patients, highlighted the persistence of CAA despite the removal of
Ap from plaques [213], consistent with observations from studies
in PDAPP mice [214, 215] and monkeys [216]. A follow-up study
of a further 36 patients demonstrated that many developed anti-
AB antibodies, which was consistent with a slowing in the rate of
cognitive decline 12 months after completion of the trial [217].
Patients with the highest titres also displayed the greatest slowing
in cognitive decline [218]. While encouraging, MRI scans of the
antibody responders revealed a reduction in total brain volume
and the rates of cognitive decline in the non-responders appeared
more rapid than typical [219]. However, a composite neuro-
psychological performance study has shown that the patients
developing Ap antibodies showed improvements in memory,
attention and concentration, along with decreases in the level of
T-protein in CSF [220]. The most recent data to emerge from the
original immunization trial, however, appear to confound some of
these earlier reports. The long-term clinical follow-up of 80
patients demonstrated that, despite a varied degree of AB plaque
removal, there was no prevention of progressive neurodegenera-
tion and no evidence for improved survival [221]. Of note, seven
of the eight immunized patients that underwent autopsy, including
two patients with near complete removal of plaques, had severe
end-stage dementia prior to death [221]. Despite its tragic out-
come, valuable lessons learnt from this failed trial have lead
researchers to develop more selective, advanced immunotherapies
[222-225], including another active AR vaccine developed by Elan
and Wyeth (Madison, NJ, USA) (ACC-001). Affiris GmbH (Vienna,
Austria) is also developing an active immunization program with
AFFITOPE ADO1 (phase | study due to be completed in November
2008) and AFFITOPE ADO2 (recruitment stage for a phase | trial
due to be completed in early 2009).

The development of intravenous recombinant humanized anti-
AB monoclonal immunoglobulins (IVIg), which avoid the induction
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of an immune response, continues in parallel. Two small, inde-
pendent phase | investigations of AD patients with IVIg over six
months proved to be safe, stopped the cognitive deterioration and
in most cases even resulted in a slight improvement of ADAS-Cog
scores [226]. Examples of passive vaccines against A in
various stages of research and development are: phase | (V950,
Merck, Whitehouse Station, NJ, USA; PF-04360365, Pfizer, New
York, NY, USA), completed phase Il (LY2062430, Eli Lilly,
Indianapolis, IN, USA), and ongoing parallel phase Il and Il (AAB-
001/Bapineuzumab, Elan with Wyeth, Madison, NJ, USA). Data
from a phase Il study with LY2062430 indicate that the mono-
clonal antibodies lead to elevated levels of AB1-s0 and AB1-42,
both in serum and CSF; however, SPECT analysis did not reveal
any reduction in APs and no improvement in cognition was
detected. Despite this, the company has announced its intention to
commence a phase Il study with LY2062430 in the coming year.
With regards to AAB-001/bapineuzumab, modified intent-to-treat
(MITT) interim analysis of phase Il studies showed no significant
changes in ADAS-Cog and Disability Assessment Scale for
Dementia in the total study population and no statistically signifi-
cant changes in any of the cognitive or functional efficacy end-
points in the ApoE4 carrier sub-group. In fact, a significant eleva-
tion in ventricular volume was observed in ApoE4 carriers treated
with the drug. However, post hoc MITT analysis of the results did
show statistically significant differences from baseline in ADAS-
Cog, the Neuropsychological Test Battery and the Clinical
Dementia Rating Sum of Boxes, as well as the Brain Boundary
Shift Integral in the non-ApoE4 carrier sub-group treated with
AAB-001/bapineuzumab compared to placebo. It should be noted
that individuals treated with the drug experienced significantly
more cases of cataracts, deep vein thrombosis, syncope, seizures
and pulmonary embolism, as compared to placebo control
patients. Importantly, vasogenic edema was observed only in
drug-treated patients and mostly in ApoE4 carriers treated with
the highest dose of the drug (2.0 mg/kg). The significance of the
results, however, will only be made clear once a final analysis is
done after the completion of all phase Il and 11l trials.

The metal hypothesis of AD

It is evident that both AB and = are involved in the development
and progression of AD; however, pharmacological strategies
directed at these targets have not yet proven to be disease modi-
fying in human studies. In particular, several investigational drugs
that target AR have failed to show any correlation between a
reduction in amyloid burden and improvement in cognitive func-
tions in large-scale clinical trials (as mentioned above). While
such data might indicate that the ‘amyloid hypothesis’ of AD is not
necessarily the correct one, there remains considerable debate as
to whether it has yet to be truly tested in the clinic. Numerous fac-
tors have been proposed to account for the poor performance of
several frontline drugs, including: patient confounds (e.g. ApoE
genotype, overall rates of cognitive decline in placebo groups),
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trial design (e.g. is a ‘treatment’ protocol, as opposed to a ‘preven-
tion’ protocol, the best way to test the hypothesis) and drug pen-
etration (e.g. it is suggested that Flurizan may have failed because
of a poor pharmacodynamic profile). While the debate over the
validity of the amyloid cascade hypothesis will no doubt continue,
it remains likely that there are other critical factors playing a role
in AD pathogenesis.

Metal ions are one such possibility, as cerebral concentrations
of zinc (Zn), copper (Cu) and iron (Fe) ions are significantly ele-
vated in AD, compared to age-matched controls [227-230], and
metals have been implicated in several other neurodegenerative
diseases [231-234]. Here, we will review the various events in AD
pathogenesis in which metal ions are involved, and then discuss
the pharmacotherapeutics being developed to modulate metal
ions in AD.

There is an increasing amount of evidence suggesting that =
and NFTs may in some way be involved in, or regulated by, metal
metabolism. Zinc ions (Zn2+) [235] and the iron regulatory
protein-2 [236], for example, have been found to co-localize with
NFT-containing neurons. Addition of Zn®>" to mouse and human
neuroblastoma cells (N2a and SH-SY5Y, respectively) induces
T-hyperphosphorylation [237], whereas the opposite result is
seen in hippocampal neurons with the addition of pyrolidium
dithiocarbamate (PDTC) [238] or iron citrate (FeCeHs07) [239].
Ferric ions (Fes+) and cupric ions (Cu2+) can bind to various
‘repeat’ motifs on T, thus altering the protein’s conformation, pro-
moting its phosphorylation [238] and inducing its aggregation
[240-242]. In the case of iron, this effect can be reversed by
reducing Fe>* to Fe?" (ferrous ions) [243]. As for APs, they have
been shown to be enriched with Cu (400 uM), Zn (1 mM) and Fe
(1 mM) [114, 176, 192-194], suggesting that there may be an
interaction between metals, APP and AB that may influence A
aggregation and AB-associated toxicity.

It has been demonstrated that APP contains putative zinc and
copper-binding domains (CuBD) both in its ectodomain and in its
AR sequence (see Fig. 3). Little is known about the APP Zn-binding
domain; however, it has been established that its CuBD consists of
a tyrosine (Tyrws), a methionine (Metﬂo) and two histidine
(His'*" 1) residues that are able to coordinate Cu?" and reduce
it to Cu™ [244]. The similarities between the CuBD on APP and Cu
chaperone proteins suggest that APP may play a role in metal
homeostasis [245]. This notion has recently gained support from
findings that the translation of APP mRNA is governed by the
binding of an iron-regulatory element to its 5’-untranslated region
such that in an Fe-enriched environment APP translation is up-
regulated, whereas it is down-regulated in response to an Fe-defi-
cient milieu [246, 247]. Moreover, increasing Cu levels in vitro can
shift APP processing towards the non-amyloidogenic pathway and
result in decreased AR production [222-225]. This may result
from an increase in GSK-38 phosphorylation, which activates
phosphatidylinositol-3-kinase (PI3K) to result in the secretion of
MMPs that can degrade AB [225]. In addition, genetically modified
animal models of AD provide vital clues as to the affects of APP
and Ap on metal-ions and vice versa. Tg2576 mice that over-
express the Swedish double mutant APPggs (K-670-N and M-671-L)
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Fig. 3 Copper binding domains on APP. APP
contains two high-affinity copper binding
domains: one on its N-terminus and the
other on the AB sequence. Highlighted in red

124SDALLVPDKCKFLHQERMVC
ETHLHWHTVAKETCSEK

J. Cell. Mol. Med. Vol 13, No 1, 2009

™

STNLHDYGMLLPCGIDK Lumen o~vv8 Cytosol
FRGVEFVCCPLisg NN
o~~O

are the copper binding ligands in the CuBD APP NI

[ CuBD |

and in the AB1-42 sequence. Abbreviations:
AB (amyloid-B); APP (amyloid precursor
protein); CuBD (copper binding domains);
TM (trans-membrane).

exhibit AD-related behavioural and cognitive changes (memory
and spatial learning impairments) [248] and AD-related pathology
(substantially elevated levels of full-length APP, CTFs and cerebral
extracellular AB) [249]. However, their cerebral Cu (but not Fe)
levels are significantly reduced [224, 250]. C100 mice over-
express Ap and the C-terminal of APP, yet have significantly lower
levels of both Cu and Fe in the brain [250]. Conversely, APP (and
APLP2) knockout mice have raised brain and liver Cu levels [251]
and develop reactive cerebral gliosis and locomotor-behavioural
changes with age [252]. These studies all suggest a role for APP
in metal homeostasis. As a further demonstration that metal
homeostasis is important in the pathogenesis of AD, when
APPswe/PS1p-264-L-eXpressing mice, which also have ~15% lower
brain Cu levels compared to non-transgenic controls, are crossed
with TxJ ‘toxic milk’ mice (that have a mutated ATPase7b trans-
porter and a consequent elevation in Cu levels), the resulting progeny
have markedly reduced AP load and AR levels [224]. Similarly,
increasing dietary copper intake in APP23 mice (carrying the
Swedish mutation of human APP7s1, regulated by the murine Thy-
1.2 promoter [253]) resulted in reduced AR levels and a prolonged
lifespan [222]. Conversely, increasing dietary Cu intake in normal
rabbits resulted in elevated AR levels and impaired learning [134,
254]. Thus, metal homeostasis appears to be intimately involved
in AB metabolism.

These in vivo studies are supported by a wealth of in vitro data
demonstrating that low concentrations of yA promote the rapid
aggregation of AB at physiological pH [255-259]. At mildly acidic
pH, Cu®" (and Fe*™) have also been shown to induce AB precipi-
tation [227, 230, 260-262]. These data suggest that the synaptic
cleft is an ideal location for A metallation and aggregation, as
neurotransmission results in peak concentrations of ~300 wM
Zn?* [263, 264] and up to 100 pM Cu®" [265-267]. This is sup-
ported by observations of a significant reduction in plaque forma-
tion in a transgenic mouse model of AD (Tg2576) lacking the zinc
transporter 3 (ZnT3) protein (Tg2576/ZnT3_/_) [268, 269], which
is responsible for zinc enrichment and transport into pre-synaptic
vesicles [270, 271]. The complicated process of A aggregation
makes it is difficult to characterize the binding of metals to A, and
while there have been numerous reports on the affinity and stoi-
chiometry of Ag-metal binding, results have varied depending on:
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the AB source (mouse, rat or human), Ag sequence or length
(ABx-16/28/40/42), AB species (monomers, oligomers, etc.), as well
as the reaction conditions (sample preparation, type and concen-
tration of buffer, pH, incubation time and/or technique usedg. Most
researchers are in agreement that AB binds Cu®" and Zn®" in a
1:1 ratio [272-276]; however, there have also been reports of
%t binding to A in a 2:1 [277] and 3:1 stoichiometry [278],
and of Cu?" binding to AR in a 2:1 ratio when copper is in excess
[279, 280]. Mounting evidence indicates that the AB:metal ions
ratio modulates not only A conformation (random coil, «-helix or
[B-sheet) and aggregation [281-283], but also the morphology of
the AB aggregates (amorphous, non-fibrillar or fibrillar) [280, 284,
285]. There is also an ongoing debate as to the binding affinity and
kinetics of AB to Cu®" and Zn?", with dissociation constants (Kp)
ranging from nM to M for Cu“-AB [272, 286, 287] and for
Zn“-AB [255, 276, 287-291]. A novel study has even suggested
an initial, weak Zn2+-AB4o complex, which quickly turns into a
high-affinity complex, possibly due to a conformational change of
the peptide [287]. In order to resolve the issues above, it is imper-
ative that the metal-binding site(s) of A and APP are defined and
that the relationship between the structural features of the protein
and its function in health and disease can be elucidated. Recent
studies [287, 292] utilizing the electrospray-ionization mass spec-
trometry, Raman spectroscopy, electron paramagnetic resonance,
circular dichroism, nuclear magnetic resonance, X-ray diffraction
and extended X-ray absorption fine structure spectroscopies have
determined the coordination of Cu and Zn by Hise, His13, His'
[163, 255, 262, 272, 284, 286, 293-301] and a fourth ligand. The
fourth donor could be Tyr'® [293, 301] and/or Glu'" [288, 302] for
Zn?*, or Tyr'® [293, 296] and/or Asp' [272, 298, 299] for Cu?".
Interestingly, mouse and rat A contains three amino acid substi-
tutions (R-5-G, Y-10-F and H-13-R), which prevent the formation
of intermolecular histidine bridges [293, 303, 304] and therefore
do not allow metal-induced AB aggregation in vitro [256, 260] and
cerebral AR deposits in vivo [305].

In summary, the above findings demonstrate APP and/or A
play a major physiological role in regulating metal-ion levels. This
cumulative data has lead Bush, Tanzi and colleagues to propose
‘the metal theory of AD’ [306], which stipulates that age-related
endogenous metal dyshomeostasis in the brain allows binding of
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redox-active metal ions (Cu?" and Fe**) to AB. This can lead to
neurotoxicity as Cu®" stabilizes the neurotoxic, oligomeric A
species [307-309], induces the covalent di-tyrosine crosslink of
Ap [274, 286, 287, 310-317] and promotes the generation of
SDS-resistant copper-derived diffusible ligands [278, 286, 316].
Metallated-AB also has an increased affinity for the phospholipid
heads of the membrane bilayer [318, 319], which acts as a reduc-
tant in the production of reactive oxygen species (ROS) via Fenton
and Haber-Weiss chemistry [320, 321]. The resulting radicals,
such as hydrogen peroxide (H202) and superoxide (OH ), induce
oxidative stress damage of lipids, proteins and DNA, ultimately
leading to synaptic and neuronal loss [230, 231, 320-326]. Based
on this hypothesis, pharmacotherapeutics that aim to restore
metal homeostasis, inhibit Ag-metal interactions and/or inhibit
metallated AB-catalysed oxidation are being developed.

AD pharmacotherapies targeting
metal ions

The equilibrium (concentrations, distribution, stability and bio-
availability) of metal ions is critical for many physiological func-
tions. This is particularly true for the CNS, where metals are
essential for development and maintenance of enzymatic activi-
ties, mitochondrial function [327, 328], myelination [329], neuro-
transmission [330], learning and memory [331, 332]. Due to their
importance, cells have evolved complex machinery for controlling
metal-ion homeostasis. However, when these mechanisms fail,
the altered homeostasis of metal ions can result in a disease state,
including several neurodegenerative disorders [333, 334].
Understanding the complex structural and functional interactions
of metal ions with the various intracellular and extracellular com-
ponents of the CNS, under normal conditions and during neurode-
generation, is essential for the development of effective therapies
[335]. Accordingly, modulation of metal ions has been proposed
as a disease-modifying therapeutic strategy for AD [336-338] and
other neurodegenerative diseases [339, 340]. Antioxidants and
metal-modulators represent two such therapeutic strategies.

Antioxidants

Antioxidant molecules are capable of neutralizing free or incor-
rectly bound metals, thereby interfering with the ‘down-stream’
generation of ROS and other radicals. Therefore, antioxidants may
be used mainly as a preventative approach [341]. Numerous mole-
cules with antioxidant properties, such as oestrogen, melatonin,
vitamin C and E (L-ascorbate and «- topopherol, respectively),
ginkgo bilboa extract, curcumin and flavonoids, have been shown
to have neuroprotective effects against Ag-induced toxicity in cell-
based experiments [342, 343] and animal models [344-348], but
have had conflicting results in a clinical setting [349-351].
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Metal chelators

By definition, metal chelators bind strongly to two or more metal
ions and form a cyclic ring, which converts the metal ions into an
inert form and depletes the total pool of bioavailable metals.
Desferrioxamine (DFQ), an Fe chelator with high binding affinities
for Zn, Cu and aluminium (Al) [352], was the first such agent to
enter clinical investigations for the treatment of AD. Results of a
2-year-long, blinded phase Il trial with a cohort of 48 AD patients
demonstrated that 125 mg intramuscular injections twice daily for
5 days a week significantly slowed down the decline of some cog-
nitive functions, compared to the two control arms (an oral
placebo or no treatment) [353]. DFO, however, is a large
hydrophilic molecule, which is not orally bio-available and does
not normally penetrate the BBB. Hence, it is unknown whether the
beneficial effect seen with the DFO treatment was due to the drug’s
interaction and/or chelation of metals, or due to a different mech-
anism all together [354]. Another hexadentate chelator, DP-109
(DPharm, Rehovot, lIsrael), is a large synthetic pro-drug that
becomes activated following the cleavage of its two long-chain
esters. Daily administration of DP-109 by oral gavage to female
Tg2576 mice over a 3-month period reduced the formation and
deposition of CAA and APs, as well as re-solubilized AB [355].
Like DFO, DP-109 is not expected to cross the BBB, therefore the
way it exerts its anti-amyloidogenic effect is still not clear.
Recently, DP-109 and DP-460 (another Ca, Cu and Zn lipophilic
chelator) were reported to have neuroprotective effects in a G93A
transgenic mouse model of amyotrophic lateral sclerosis [356],
another neurodegenerative disease associated with metal imbal-
ance [357, 358]. Other chelating agents have been reported to
have different effects in vitro, including reduced AB42-induced
oxidative stress [359], and the solubilization of hypophosphory-
lated 7 [360] and A from AD brain [361]. Further in vivo studies
with these chelators is required to further advance this therapeu-
tic route and to rule out any systemic effects.

An alternative approach to chelation is to modulate metals with
metallo-complexes. Such an approach serves to remove metals
from biologically deleterious sites and potentially deliver them to
areas of deficiency, thereby maintaining overall metal homeostasis.

Metal complexes

Metallo-complexes are emerging as a new potential therapeutic
for AD. The rational guiding this strategy is the delivery of Cu, for
example, to cellular compartment which are Cu-deficient, using
metallo-complexes of pyrrolidine dithiocarbamate (l\/l2+-PDTC) or
bis(thiosemicarbazone) (I\/I“-BTSC), or preventing the harmful
binding of Cu to AB, using platinum (Pt) complexed to 1,10
phenanthroline derivatives (L-PtCly).

PDTC is traditionally considered an inhibitor of the transcrip-
tion-factor regulator nuclear factor-xB (NF-«B) with anti-inflam-
matory, antioxidant and anti-apoptotic properties [362—-364] — all
of which have been attributed to the synergistic interaction
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between PDTC, Cu and/or Zn [365-371]. As well as preventing the
nuclear translocation of NF-«B in a neonatal hypoxia-ischaemia
model, PDTC also activates Akt and inhibits GSK-38 [372]. In
vivo, oral PDTC treatment of APP/PS1 double transgenic mice
resulted in increased cerebral Cu levels, as compared to non-
treated APP/PS1 mice, as well as down-regulation of the GSK-33
signalling cascade, which lead to a decrease in T-phosphorylation
and an improvement in spatial memory, but had no effect on amy-
loid burden, glial activation or oxidative stress [238]. The latest
data to emerge indicate that PDTC complexed to either cu" or
Zn®" can act as proteasome inhibitors to induce apoptosis in
numerous human cancer cells [373-375]. It would be of interest
to examine if the same effects occur in cellular and/or animal mod-
els of AD.

The metallo-complexes of diacetylbis(N4-methylthiosemicar-
bazone) (M>*-ATSM) and glyoxalbis(N*- methylthiosemicar-
bazone) (M -GTSM) have both been shown to have anti-bacterial,
anti-fungal and anti-neoplastic/cytotoxic activities, by selectively
deliverin% exogenous metal ions into metal-deficient cells [376,
377]. Cu®*-ATSM is membrane permeable, selective for oxygen-
deprived (hypoxic) cells, and is redox inactive therefore the ligand
retains its Cu molecule [378, 379]. These properties are being
exploited for its development as a radiotherapeutic agent
[380-382] and as a radiopharmaceutical for positron emission
tomography imaging [383, 384]. Cu?"-GTSM can also cross the
BBB; however, once inside the cell it is reduced by various cellular
reductants and releases its Cu molecule, which is made available
for the cell [378, 385, 386]. Treatment of hAPPggs-0verexpressing
CHO cells with Cu®'/zn?"-BTSC ligands resulted in increased
intracellular metal levels that, in turn, activated Akt/PI3K, c-Jun
N-terminal kinase and GSK-3 [387]. Phosphorylation of the above
kinases lead to the up-regulation of MMPs, which reduced extra-
cellular levels of AR [387]. Examination of the effects of
Cu’*/zn?*-BTSC ligands on T and translation of these studies to
animal models of AD is currently underway.

Other radiopharmaceutical-based compounds being evaluated
for treatment of AD are 1,10 phenanthroline derivatives complexed
to platinum (Pt2+). These ligand-PtClo complexes have been
designed to bind and alkylate the imidazole side chains on histidine
residues 6, 13 and 14 on A, thereby preventing the detrimental
binding of Cu®" to this AB metal binding site and subsequent AB-
cu®? binding to the cell membrane [388]. This study identified the
Pt(4,7-diphenyl-[1,10] phenanthroline)Clo as a compound that
binds to AB, changes the conformation of A and inhibits A
aggregation [388]. In addition, this complex is able to inhibit A-
related neurotoxicity (restore the cell viability of primary mouse
cortical neurons and suppresses the Cu2+-AB-dependent H202
generation), and reverse AB-inhibited long-term potentiation
(LTP) of mouse hippocampal slices as a measure of synaptotoxi-
city [388]. Future evaluation of the compound’s ability to cross
the BBB and exert beneficial effects in animal models for AD
need to be performed prior to its advanced development as an AD
pharmacotherapeutic.

The Ap-metal interaction can be targeted not only to the A
sequence that binds metals, but also to the metals themselves.
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Metal-protein attenuating compounds (MPACs)

MPACs have weak, reversible affinity towards metals, which
enables them to compete with endogenous ligands for metal ions,
target the harmful ‘up stream’ metal-protein reactions and restore
normal metal levels in specific cellular compartments [389]. The
first-generation series of MPACs were based on clioquinol (CQ;
5-chloro-7-iodo-8-hydroxyquinoline). CQ is highly lipophilic,
absorbed quickly, can convert to glucuronated and sulphate
metabolites, is able to cross the BBB and is excreted in urine and
faeces [390-395]. CQ had been used as a therapeutic in cattle and
human beings with Zn-deficiency diseases and for many decades
was prescribed as an oral anti-amebic in addition to being used for
the treatment of dysentery and diarrhoea [396, 397]. However, its
oral preparation was withdrawn from the market during the 1960s
to 1970s, as it was suspected to be involved in the development
of subacute myelo-optico-neuropathy (SMON) [398-401]. SMON
is characterized by sensory and motor disorders in the lower
limbs, peripheral neuropathy and visual impairment due to demye-
lation of the spinal cord, optic nerve and peripheral nerves [402].
SMON affected people worldwide; however, it reached near-epi-
demic proportions in Japan, where a few related deaths were
reported [403]. At the time, a mechanistic link between CQ and
SMON was not established [404]. Later, it was suggested that CQ
may transport metals into the CNS, which leads to neurotoxicity.
Early studies demonstrated that CQ-Fe**, but not CQ or Fe>"
alone, induced degeneration of cultured retinal neuroblasts [405]
by increasing cellular Fe concentrations and promoting lipid per-
oxidation [406]. However, it is now believed that intake of CQ at
doses far exceeding the recommended ones and for prolonged
periods, together with a post-World War Il iron-deficient diet, are
the reasons for a vitamin B12 deficiency that presented as SMON
in Japan [407, 408].

CQ binds Cu?" and Zn?* (2:1 ratio) in a square, planar arrange-
ment [409, 410] and exerts different effects on Cu and Zn, depend-
ing on its route of administration and the system in which it is tested
[411-413]. The known interaction of CQ with cu®* and Zn" thus
prompted an investigation into the effects of CQ on AD-related
pathology. CQ was initially shown to dissolve synthetic Ap-
Cu®*/Zn"" aggregates and amyloid deposits from post-mortem AD
brain [414]. This then prompted a study of the oral administration
of CQ to Tg2576 mice over 9 weeks, which resulted in the normal-
ization of cerebral Cu and Zn levels, a reduction in H202 synthesis,
and a significant decrease in cortical amyloid deposition by ~49%,
compared to control littermates [415]. Subsequently, CQ was
shown to reverse Cu-suppressed, but not Zn-suppressed AB1-40
fibril formation [416], and to rescue Ca’"-mediated AB toxicity in
neuronal cell culture [417]. Other studies, however, have suggested
that CQ increases oxidative neurotoxicity [418]. As previously men-
tioned, CQ treatment caused a reduction in A levels in CHO-APP
cells, accompanied by increased phosphorylation of GSK-3 and
MMP2/3 activity [225]. The cumulative data led to CQ being entered
into clinical trials for the treatment of AD (PBT-1, Prana
Biotechnology, Melbourne, Victoria, Australia), in which CQ slowed the
cognitive decline of moderate to severe AD patients, with no signs of
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severe adverse effects. It also influenced CSF-7, lowered plasma
AB1-42 with no change to CSF-AB1-42 levels [419]. Subsequent
phase /11l studies, however, were stalled by the difficulties encoun-
tered in preventing di-iodo-8-hydroxy quinoline contamination dur-
ing the required larger scale chemical synthesis for such trials
[420]. The subsequent drug discovery program identified PBT2
(Prana Biotechnology) as an 8-hydroxy quinoline that lacks iodine,
thereby enabling easier chemical synthesis, and which also has
higher solubility and increased BBB permeability than CQ. This com-
pound was then extensively screened in a variety of pre-clinical
assays. In APP/PS1 Tg mice, PBT2 was shown to decrease soluble
interstitial AR within hours, and to improve cognitive performance
to levels equivalent to or greater than wild-type controls within days
of treatment [421]. In addition, there was a significant decrease in
insoluble AB load and the phosphorylation of T, as well as a signif-
icant increase in synaptophysin levels — suggesting that a number
of primary indices that characterize the AD brain had been success-
fully modulated by this orally bioavailable MPAC [421]. PBT2 then
progressed into human clinical trial, and following a successful
phase | study, it entered into a randomized, double blind, placebo-
controlled, multi-centred, 12-week-long phase lla trial with 78 mild
AD patients (Prana Biotechnology). This study demonstrated safety
and tolerability, reduced CSF levels of AB1-42 and improved cogni-
tion in patients taking PBT2 as compared to placebo [422]. Taken
together, these data support the notion that the modulation of met-
als may be sufficient to significantly alter the onset and progression
of AD, and that targeting metals may represent a more potent dis-
ease intervention than systemically targeting the production or
degradation of the AR protein; however, these concepts need to be
further explored in a larger phase Il trial.

While CQ is continuing to be examined as a therapeutic for
other diseases, such as Parkinson’s disease, Prion diseases,
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Huntington’s disease, diabetes and cancer [373, 411, 423-431], a
finer dissection of the mechanism of action of drugs such as CQ
and PBT2 will enable researchers to better design additional
pharmacotherapies for the treatment of AD and other diseases.

Conclusion

It is evident that AD pathogenesis is a complex process involving
both genetic and environmental factors; therefore development of
effective disease-modifying drugs is proving to be a difficult task.
AB, 7 and metals are some of the therapeutic targets identified and
compounds that modulate them represent promising drug candi-
dates. With ongoing basic science and clinical research, we look
forward to a greater understanding of the pathogenesis of AD, the
completion of several comprehensive clinical trials and the devel-
opment of new potential pharmacotherapeutic agents for the treat-
ment and/or prevention of AD.
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