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Background: Hepatocellular Carcinoma (HCC) is a sexually dimorphic cancer, with
female sex being independently protective against HCC incidence and progression. The
aim of our study was to understand the mechanism of estrogen receptor signaling in
driving sex differences in hepatocarcinogenesis.

Methods: We integrated 1,268 HCC patient sample profiles from publicly available gene
expression data to identify the most differentially expressed genes (DEGs). We mapped
DEGs into a physical protein interaction network and performed network topology
analysis to identify the most important proteins. Experimental validation was performed
in vitro on HCC cell lines, in and in vivo, using HCC mouse model.

Results: We showed that the most central protein, ESR1, is HCC prognostic, as
increased ESR1 expression was protective for overall survival, with HR=0.45 (95%CI
0.32-0.64, p=4.4E-06), and was more pronounced in women. Transfection of HCC cell
lines with ESR1 and exposure to estradiol affected expression of genes involved in the
Wnt/b-catenin signaling pathway. ER-a (protein product of ESR1) agonist treatment in a
mouse model of HCC resulted in significantly longer survival and decreased tumor burden
(p<0.0001), with inhibition of Wnt/b-Catenin signaling. In vitro experiments confirmed
colocalization of b-catenin with ER-a, leading to inhibition of b-catenin-mediated
transcription of target genes c-Myc and Cyclin D1.

Conclusion: Combined, the centrality of ESR1 and its inhibition of the Wnt/b-catenin
signaling axis provide a biological rationale for protection against HCC incidence and
progression in women.

Keywords: estrogen, hepatocellular carcinoma, high-throughput, network analysis, Wnt/b-catenin, ESR1,
interactome, PPIs
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INTRODUCTION

Hepatocellular carcinoma (HCC) is a high-fatality cancer that
develops in the context of chronic liver disease (1, 2). It is a
cancer with sexual dimorphism that arises in a non-reproductive
organ (3). In fact, men are up to 8 times more likely to develop
HCC and have worse prognosis than women (2). Female sex is
independently protective for HCC incidence [Hazard Ratio (HR)
0.75; 95%CI 0.65-0.86] and overall survival (HR 0.83; 95%CI
0.77-0.88) (4). A case-control study of 234 post-menopausal
women treated for HCC showed that estrogen replacement
therapy reduced incidence (HR 0.53; 95%CI 0.32-0.88) and
was associated with better survival (HR 0.55; 95%CI 0.40-0.77)
(5). Other retrospective studies suggest oral contraceptive use to
be protective against HCC (6–8). These studies suggest that HCC
biology is subject to sex hormone modulation (3, 4, 9–16).

ESR1 has been recognized as a tumor suppressor gene, with
promoter hypermethylation being predictive of tumor progression
(17). Its expression has been shown to inversely correlate with
HCC tumor size and disease stage in a genome-wide expression
analysis (18, 19), consistent with preclinical data demonstrating
that loss of ESR1 accelerates carcinogenesis. Binding of estrogen to
Estrogen Receptor-alpha and -beta (ER-a and -b) induces
receptor dimerization and transcriptional regulation (20, 21).
Hormone receptor dimers bind DNA at their specific response
elements (22–25), or interact with chromatin-associated proteins
to exert transcriptional activation of proliferation, cell cycle
progression and cell survival (26). These data suggest an
important role for ESR1 in incidence and progression of HCC,
though it is unclear how ESR1 impacts cancer signaling pathways
critical to HCC progression.

To further examine the role of estrogen receptor signaling in
driving sex differences in hepatocarcinogenesis, we performed a
comprehensive integrative analysis of publicly available HCC
patient profiles and analyzed the resulting physical protein-
protein interaction network. We discovered ESR1 to be a
central gene in HCC pathogenesis, independently protective
for survival in HCC in both men and women. Activation of
ESR1 resulted in marked inhibition of Wnt/b-catenin signaling
in both male and female mice with HCC. We finally interrogated
the mechanistic basis of this effect in vitro, by demonstrating that
colocalization of ER-a (protein product encoded by ESR1) with
the transcription factor b-catenin along the Wnt pathway results
in decreased transcription of target genes cyclin D1 and c-myc.
The effect of ER-a in suppressing HCC tumor growth through
inhibition of Wnt signaling, the most commonly dysregulated in
HCC, provides a new contributory mechanism for decreased
HCC incidence and progression in women.
MATERIALS AND METHODS

Data Collection, Analysis, and
Database Compiling
All available high-throughput gene expression microarray
datasets related to HCC samples were downloaded from
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published datasets. All entries on PubMed since 2002,
representing the advent of high-throughput profiling, until
February 2017 were considered for inclusion. A second search
was performed using Gene Expression Omnibus (GEO), a public
functional genomics data repository containing high-throughput
array data (https://www.ncbi.nlm.nih.gov/geo) covering all HCC
high-throughput gene expression profiling datasets comparing
HCC to adjacent non-tumoral tissue. These datasets publicly
available on GEO and published in papers were analyzed using
GEO2R (https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html), a
web tool available on the portal, to identify genes differentially
expressed between samples of HCC versus the non-tumoral
portion of the liver. GEO2R compares original submitter-
supplied processed data tables using the GEOquery and limma
R packages from the Bioconductor project (27–29). Following
instructions available online at https://www.ncbi.nlm.nih.gov/
geo/info/geo2r.html, all dysregulated genes were retrieved, and
only those with an adjusted p-value p<0.05 and an expression
fold-change value below ≤0.5 or above ≥1.5 were collected for
further analysis. We also included genes from 17 papers
presenting and validating gene signatures (Supplementary
Figure 1 and Supplementary Table 1).

The study workflow is illustrated and reasons for study
exclusion are detailed in Supplementary Figure 1. The
included papers (n=36) compared gene expression profiling in
human HCC tissue versus the non-tumoral liver tissue in the
same patient. These were obtained from 19 papers with datasets
and 17 gene signature papers. This comprised data across 1,268
HCC patient samples and 1,402 controls (Supplementary
Figure 1). Gene expression profiling had been performed using
Affymetrix and Illumina microarray platforms, as detailed in
Supplementary Table 1. The list of dysregulated genes for 19
datasets was obtained using GEO2R (p-value<0.05), and an
integrative network analysis was performed on this data as
described below. The genes from the 17 signatures and their
modulations listed in the papers were collected and curated to
serve as independent validation of the HCC relevance for the
genes identified in the network analysis.

Available patient data, including sex, etiology of liver disease
(Hepatitis C, Hepatitis B, alcohol, fatty liver disease) on the basis of
which theHCC tumors developed, presence of cirrhosis, theModel
for End-stage Liver Disease score (MELD score, an assessment of
the severity of liver dysfunction), tumor histology, stage of cancer,
alpha-fetoprotein (AFP) level, overall and recurrence-free survival
following treatment were also documented.

Network Construction
A Protein interaction network was constructed using
NAViGaTOR 3.0.13 (http://ophid.utoronto.ca/navigator), a
visualization application, wherein networks are represented as
annotated graphs and defined by nodes (for example, genes or
proteins) and edges (the relationships between the proteins, such
as physical protein interactions)12. In our study, nodes are
proteins, annotated with Gene Ontology Molecular Function
(node color), and edges represent direct physical interactions
from IID database (http://ophid.utoronto.ca/iid) (30).
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Calculation of Network Centrality
For all differentially expressed genes reported with a consistent
modulation in at least 10 out of 19 publications, we retrieved the
known interactors using the Integrated Interactions Database
(http://ophid.utoronto.ca/iid) (30) version 2017-04, selecting
only human experimentally-detected, physical protein-protein
interactions, whose encoding genes are expressed in liver tissue.
Interactors reported several times were highlighted.

Betweenness centrality was calculated in a protein-protein
interaction network comprising the most frequently
dysregulated genes (proteins) and their experimentally detected
interaction partners annotated with human liver using the
betweenness function in the igraph library version 1.0.1, in R
version 3.3.1 (31). This network was visualized and analyzed in
NAViGaTOR (32) ver. 3.0.13.

HCC Mouse Model
A genetic mouse model of HCC was generated through
hydrodynamic tail vein injection of proto-oncogene-coding
plasmids (33). Twenty µg of pT3-EF5a-G12D-mutant-K-Ras and
pT3-EF5a-S45Ymutant-b-catenin-Myc-Tag along with Sleeping
Beauty transposase (a kind gift from Dr. X. Chen at University of
California, San Francisco) in a ratio of 25:1 was diluted in 2 ml of
0.9% NaCl, filtered through a 0.22 µm filter, and injected into the
lateral tail vein of 8-10-week-old FVB/N mice [Charles River
(Wilmington, MA)] in 5-7 seconds (33, 34). The mice were
housed in the animal facility at the University of Toronto. The
experimental protocol was approved by the Institutional Animal
Care and Use Committee at the University of Toronto. Mice were
fed a standard diet and monitored according to the animal
committee’s regulations Prior to establishment of HCC tumors,
animals were started at 2 weeks post-injection on a 5-week
treatment as follows: 1) ER-a agonist Propyl pyrazole triol (PTT)
subcutaneously at 1mg/kg (Sigma-Aldrich H6036) N=6; 2) ER-a
antagonist methyl-piperidino-pyrazole (MPP) given
subcutaneously at 200ug/kg (Sigma-Aldrich M7068) N=6; and 3)
Control N=4. All animals were carefully monitored for signs of
morbidity ordiscomfort.Animalswere euthanizedat 10weeks after
injection or at the earliest signs ofmorbidity. Bodyweights and liver
weights were recorded. Gross images were obtained at the time of
sacrifice to document macroscopic tumors. The liver was collected
for histology and RNA extraction purposes. Microscopic tumor
burdenwas assessed onH&E-stained sections. All the sampleswere
cut across and the surface of each section occupied by tumor was
estimated at low magnification (2.5X) by the pathologist who
was blinded to the groups. Kaplan-Meier survival analysis was
performed with GraphPad Prism ver. 8 (GraphPad Software, La
Jolla, California).

Mouse Gene Expression Array
RNA was obtained from N=2 animals per group, (agonist and
control both male and female) from each group using RNeasy
mini kit from Qiagen.

Integrity of DNA and RNA was assessed by Agilent 2100
Bioanalyzer (Agilent, Santa Clara, CA, USA). 500 nanograms of
RNA were used for analysis with Affymetrix Mouse Gene 2.0 ST
platform (Thermo Fisher, Waltham, MA). Raw array data were
Frontiers in Oncology | www.frontiersin.org 3
processed and analyzed using the Affy package in R included in
the Bioconductor package (version 3.6).

Transcript profiling: Gene expression data is available at Gene
Expression Omnibus (GEO), (https://www.ncbi.nlm.nih.gov/
geo) with accession GSE167175.

Validation in Patient Samples
To determine whether the central gene ESR1 had prognostic
value, we used KMplotter on liver cancer RNA-seq data (n=364
patients), a web-based tool that enables survival analysis across
multiple cancers and datasets (35). KMplotter compares two
patient cohorts by plotting Kaplan-Meier curves and calculating
a hazard ratio and log-rank P value. Patient samples were split
into two groups according to auto selection of the best cutoff for
ESR1 (RNAseq probe ID 2099), in order to assess its prognostic
value. We ran multivariate overall survival analysis based on the
high versus low expression of ESR1 in tumors. The two groups
were compared by a Kaplan-Meier survival plot, and the hazard
ratio with 95% confidence intervals and log-rank p-value
were calculated.

Statistical Analysis
Data was presented as mean with standard deviation. GraphPad
Prism software ver. 8 was used for all statistical calculations
(GraphPad Software, La Jolla, California). Two-group
comparisons were performed using unpaired two-tailed Student’s
t-tests, for more than two groups comparison we used one-way
ANOVA followed byTukey’s post-hoc test. Survival curves analysis
was performed using Gehan-Breslow-Wilcoxon test.

Ethics Approval: Animal studies were conducted under the
approval of local Animal Care Committees (University of
Toronto AUP 20012289, University Health Network AUP 6105),
following Canadian Council on Animal Care (CCAC) guidelines.

Additional materials and methods used in this study are
explained in the Supplementary Material.
RESULTS

Literature Search Results
We identified 5,406 abstracts retrieved by searching PubMed for
high-throughput gene expression data on human HCC samples,
published between January 2002 and December 2017. The
flowchart outlining the selection process is detailed in
Supplementary Figure 1. Details regarding the included
studies are provided in Supplementary Table 1 and made
available as a database of curated cancer gene expression
signatures, annotated with their demographic and clinical
characteristics, at the liver page of the Cancer Data Integration
Portal (CDIP) (http://ophid.utoronto.ca/CDIPLiver).

Integrative Analysis Reveals ESR1 as a
Central Player in HCC Pathogenesis
Integrative network analysis of high-throughput gene expression
data revealed genes most frequently altered in HCC, along with
the direction of change (Supplementary Table 2). We identified
November 2021 | Volume 11 | Article 777834
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the protein-protein interactions of the top genes (considering
deregulation in greater than half the number of publications)
using IID (36, 37), and prioritized top-genes with at least 250
interactions (n=27), due to the exponential increase in number of
proteins with a degree lower than 250 (Supplementary
Figure 2). Betweenness centrality was calculated using a liver-
specific network comprising the 27 proteins and their
experimentally-detected interaction partners (Figure 1A and
Supplementary Table 3), thereby identifying the most
important proteins in the HCC network. ESR1 had the highest
betweenness centrality, suggesting its importance in the HCC
pathology, and indicating a potentially important role in
hepatocarcinogenesis.
Frontiers in Oncology | www.frontiersin.org 4
ESR1 Overexpression Affects Proliferation
and Viability of HCC Cells
To evaluate the impact of ESR1 overexpression, the HepG2 cell
line was transfected with the ESR1 plasmid. Transfected cells
were then exposed to estradiol (E2) or vehicle and monitored for
90 hours using the IncuCyte Zoom™ live cell imaging platform.
Proliferation was monitored by analyzing the area occupied by
cells (percentage confluence) transfected with ESR1 or pCMV
control vector and exposed to E2 or vehicle. The confluence of
cells growing in normal conditions for up to 90 hours showed
that ESR1 overexpression significantly reduces cell proliferation
(p<0.0001, one-way ANOVA followed by Tukey’s post-hoc test).
The antiproliferative effects of ESR1 were strongly evident in
A

B C

FIGURE 1 | ESR1 is the most central node in the HCC protein-protein interaction network, and its overexpression affects HepG2 cells proliferation and viability
reflecting its importance in HCC pathogenesis. (A) HCC protein-protein interaction network. The diameter of the red circle is proportional to the centrality of the
protein. The size of the circles is proportional to the degree of the protein. Gene Ontology molecular function of the proteins is highlighted as node color, shown in
the legend in the bottom-right corner. Red edges highlight direct interaction of ESR1 with other most central proteins. The proteins listed on the left are those
dysregulated most commonly in the 19 datasets and with consistent modulation. Despite being the most commonly dysregulated, none of these are central to the
HCC PPI network. (B) Results from the IncuCyte proliferation assay. ESR1-overexpressing cells proliferated significantly less than the control cells. Images were
acquired every four hours for up to 90 hours. Mean with SD values from N=3 independent experiments are represented in the graph. ***p < 0.001, One-way
ANOVA, Tukey correction for multiple comparisons. (C) Viability assay with Alamar Blue performed in n=3 independent experiments at 72 hours after transfection
shows significant decrease of cell viability in cells transfected with ESR1 compared to the control vector Mean with SD values from N=3 independent experiments
are represented in the graph. **p < 0.01, One-way ANOVA, Tukey correction for multiple comparisons. SD, standard deviation.
November 2021 | Volume 11 | Article 777834
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HepG2 cells, and the addition of the ligand further improved the
antiproliferative effect (Figure 1B).

The decrease in fluorescence detected by the Alamar blue between
cells overexpressing ESR1 and receiving the control vector was
significant (p=0.0019, one-way ANOVA followed by Tukey’s post-
hoc test), even without the addition of the natural ligand E2 (p=0.0016,
one-way ANOVA followed by Tukey’s post-hoc test), confirming that
ESR1 expression directly affects cell viability (Figure 1C).

Gene Expression Array
Upregulation of ESR1 resulted in significant up- or downregulated
365 genes (abs(FC)>1.5) as compared to control, of which 175were
protein-coding (Supplementary Table 4). We submitted these
genes to pathDIP, in order to identify significantly enriched
pathways (http://ophid.utoronto.ca/pathDIP) (38). 133 of the
genes were annotated with at least one pathway. 83 pathways
were significantly enriched with False Discovery Rate (FDR) <
0.05. The cancer-associated list of pathways is provided inTable 1.
ESR1 upregulation significantly affected the Wnt/b-catenin
signaling pathway (FDR=2.05E-06). The complete list is provided
in Supplementary Table 5.

ER-a Agonist Exposure Increases Survival
in HCC Mice
To investigate the effect of ER-a activation or inhibition in HCC,
we used a well-described HCC mouse model (33). The control
and antagonist mouse livers, in both male and female groups,
had multiple HCC nodules infiltrating the liver as reported in
Figure 2A. In contrast, the female agonist group showed smaller
isolated tumor foci. ER-a activation through agonist treatment
significantly improved survival (Figure 2B) by an additional 10
days for male and up to 14 days for female mice respectively
(p<0.0001, Gehan-Breslow-Wilcoxon test). Mice exposed to ER-
a antagonist showed decreased survival in male mice (48 days for
antagonist mice compared to 52 days for the control group). The
same treatment in the female mice did not shorten their lifespan
(University Health Network Animal Use Protocol 6105). Control
mice showed a tumor burden involving 85% of their livers, while
the male mice treated with ER-a agonist showed tumor burden
decreased to 78%. The decrease in tumor burden was even more
pronounced (equal to 67%) in the female group mice treated with
ER-a agonist (Figure 2C, p<0.05 multiple t-test).

ER-a Agonist Treatment Inhibited
Wnt/b-Catenin Signaling
Given the differences in survival and tumor burden with ER-a
agonist treatment, gene expression profiling was performed to
compare the agonist versus control mice. A higher number of
dysregulated genes were identified in the female mice treated
with ER-a agonist, with 266 upregulated and 280 downregulated
genes (log2FC>1 or log2FC<-1, p value<0.05), while male mice
treated with ER-a agonist had 173 upregulated and 64
downregulated genes compared to male control group.
Pathway enrichment analysis was performed separately for the
up- and down-modulated genes (Table 2 and Supplementary
Tables 6, 7). Female mice treated with ER-a agonist had marked
Frontiers in Oncology | www.frontiersin.org 5
enrichment in the Wnt/b-catenin signaling pathway, followed by
mTOR and Hippo signaling pathways (Supplementary Tables 6,
7). The male mice showed a similarly marked enrichment for
downmodulated genes involving the Wnt signaling pathway,
followed by MAPK.

ER-a Agonist Exposure Decreases
Tumor Proliferation
To evaluate if the downmodulation in Wnt/b-catenin signaling
identified by gene expression affected HCC cell proliferation, mice
treated with ER-a agonist were evaluated for b-catenin, cyclin-D1
and Ki67 IHC staining as a reflection of tumor proliferation rate in
comparison to controls. The overall decrease of b-catenin in the
agonistmice compared to control (SupplementaryFigure3A),was
followed by a decrease in the intensity of its target proteins cyclin-
D1 and Ki67, both known markers of DNA replication and cell
proliferation (Supplementary Figures 3B, C).

Further, we found that mice treated with ER-a agonist
showed an overall different cellular positivity and distribution
of ER-a compared to the control mice, supporting the hypothesis
that activation of the receptor was responsible for its nuclear
translocation (Supplementary Figure 3D). Moreover, there was
increased nuclear positivity for both b-catenin (Supplementary
Figure 4A) and ER-a (Supplementary Figure 4B) with
concomitantly decreased nuclear positivity of cyclin-D1
(Supplementary Figure 4C) in the mice treated with ER-a
agonist compared to control.

ER-a Agonist Downmodulated ESR1
Interactor Genes Involved in
Wnt/b-Catenin
To better understand the molecular connection between Wnt-b-
catenin and ER-a, the protein interactors of ER-a were retrieved.
66 protein members of Wnt signaling are interactors of ER-a.
Among these interacting proteins was b-catenin (CNNTB1), a
crucial member of the nuclear transcription machinery
(Supplementary Figure 5A). Moreover, CCND1 and MYC
were identified as target genes of b-catenin (Supplementary
Table 8). HepG2 cells overexpressing ESR1 (FC=4.85, p<0.0001
Student’s t-test) (Supplementary Figure 5B) showed a decreased
expression in b-catenin-transcribed genes like CCND1 (FC=0.31
p=0.0019 Student’s t-test) and MYC (p=0.0023, Student’s t-test)
(Supplementary Figures 5C, D).

ER-a Colocalization With b-Catenin
Decreases Target Gene Expression
Cytoplasmic localization ofb-catenin andER-a inHeLa andMCF7
cells by confocal microscopy was used as positive control (top left
panel Figure 3A). ER-a was detected in the nucleus of MCF7
(bottom left panel Figure 3A). HepG2 transfected with the empty
vector showed cytoplasmic localization of b-catenin with no
concomitant ER-a (Figure 3B). HepG2 transfected with ESR1
vector and exposed 72 hours to E2 had evidence of colocalization
of ER-a and b-catenin (yellow signal as indicated by the white
arrows in the bottom right panel, Figure 3C). There was
significantly decreased expression of the b-catenin-transcribed
November 2021 | Volume 11 | Article 777834
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TABLE 1 | ESR1 overexpression modulated genes associated with cancer pathways.

Cancer-related pathways q-value (FDR: BH-method)

Formation of b-catenin: TCF transactivating complex 2.35E-08
Senescence-Associated Secretory Phenotype (SASP) 3.65E-07
RHO GTPases activate PKNs 3.21E-08
Oxidative Stress Induced Senescence 5.82E-06
Cellular Senescence 6.94E-07
TCF dependent signaling in response to Wnt 9.09E-08
Signaling by Wnt 2.05E-06
Tumor Necrosis Factor Pathway 2.46E-03
Viral carcinogenesis 8.64E-05
Frontiers in Oncology | www.frontiersin.org November 20216
FDR, False discovery Rate; BH, Benjamini-Hochberg.
A

B C

FIGURE 2 | ER-a agonist exposure improves survival and decreases tumor burden (A) Gross images of livers from mice upon sacrifice show notable macroscopic
disease in all groups. H&E staining of representative liver sections from the three groups in both male and female mice. Control group livers show more malignant
nodules infiltrating the tissue. The agonist groups have smaller foci of tumor nodules (Magnification: 100X). (B) Kaplan-Meier curve comparing survival of HCC control
mice (N = 4) and mice injected with ER-a agonist (N=6) or antagonist (N = 6). Agonist mice show significantly increased survival as compared to the control groups.
p < 0.0001, Gehan-Breslow-Wilcoxon test. (C) Bar plot depicting tumor burden expressed as percentage of tumor cells in the liver tissue. Control groups livers show
a higher percentage of infiltrating malignant cells. Mean with SD values are represented in the graph. *P < 0.05, multiple t-test. SD, standard deviation.
| Volume 11 | Article 777834
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genes CCND1 (p<0.0001, Student’s t-test) and MYC (p<0.0001,
Student’s t-test) by real-time PCR.

ESR1 Overexpression Reduces b-Catenin
Transcriptional Activity
Given that colocalization experiments revealed ESR1
translocation into the nucleus and colocalization with b-
catenin, we evaluated whether this alters transcription by b-
catenin of the target genes CCND1 andMYC. Thus, we evaluated
if overexpression of ESR1 and exposure to E2 could
downregulate b-catenin transcriptional activity compared to
HepG2 cells transfected with control vector (p=0.0015).
(Figure 4A). Using Real-Time PCR analysis, we determined
that ESR1 overexpression in the presence of E2 effectively
downregulated the mRNA expression of b-catenin target genes
such as CCND1 (FC=0.02, p< 0.001, Student’s t-test) (Figure 4B)
and MYC (FC=0.05, p=0.0013, Student’s t-test) (Figure 4C).

ESR1 Is Prognostic of HCC Survival,
Independent of Sex and Race
Overall survival analysis was evaluated using The Cancer
Genome Atlas (TCGA) HCC RNAseq data normalized with
DESeq. ESR1 was significantly predictive of overall survival in
364 HCC patients with a significantly decreased hazard ratio of
0.45 (95%CI 0.32-0.64, log-rank p=4.4E-06), as shown in
Figure 5A. Patients with high ESR1-expressing tumors had a
median survival of 81.9 months, as compared to the cohort with
low ESR1-expressing tumors at 27.6 months. This finding was
independent of sex: overall survival was significantly improved in
both males (HR 0.43 (95%CI 0.27-0.67, log-rank p=0.0001)
(Figure 5B) and females (HR 0.39 (95%CI 0.22-0.68, log-rank
p=0.0007) when ESR1 was upregulated (Figure 5C).
Furthermore, we identified ESR1 to be significantly predictive
of recurrence-free survival (HR 0.54 (95%CI 0.43-0.79, log-rank
p=0.00044)) and progression-free survival (HR 0.4 (95%CI 0.25-
Frontiers in Oncology | www.frontiersin.org 7
0.63, log-rank p=3.6E-05)) (Supplementary Figure 6).
Separation of patients by ESR1 expression in Kaplan-Meier
plotter was based on the best cutoff computed from all the
possible cutoff values between the lower and upper quartile (39).
DISCUSSION

It has been well established that women are protected against
HCC incidence and progression in comparison to men,
independent of environmental exposures (40). This significant
impact of sex on HCC incidence and survival has been ascribed
to hormones, though the mechanistic basis has not been well
delineated. In this study, we substantiate these sex-specific
differences in HCC by demonstrating that ESR1, and therefore,
the estrogen-mediated effect is an important contributor to sex
differences in HCC. We employed the betweenness centrality
measure on the HCC protein-protein interaction network
obtained through a comprehensive integrative analysis of all
publicly available gene expression data in HCC. In vivo
validation confirmed that ER-a agonism decreases HCC tumor
burden and enhances overall survival. This was accompanied by
significant inhibition of the Wnt/b-catenin signaling cascade, a
critical pathway in hepatocarcinogenesis. Additionally, we
demonstrated through knockdown in vitro experiments that
the mechanistic basis of ESR1’s effect is through its
colocalization with b-catenin, thereby preventing transcription
of the pro-oncogenic genes c-myc and cyclin D1. Thus, using a
network analysis approach, we demonstrate ESR1 as being
important to HCC pathogenesis through inhibition of Wnt
signaling, and more specifically through inhibition of b-catenin
transcriptional activity, thereby providing a molecular
explanation for women being protected against HCC incidence
and progression.
TABLE 2 | ESR1 agonist affects genes involved in crucial HCC pathways.

Agonist vs Control (Female) Upregulated genes (n=266)

Pathway Name q-value (FDR: BH-method)

Nucleosome assembly (linked to histone) 3.27E-24
Mismatch repair 5.25E-11
Regulation of TP53 Activity through Methylation 3.57E-02
PRC2 methylates histones and DNA 1.19E-06
Agonist vs Control (Female) Downregulated genes (n=280)
Wnt-b-catenin 1.53E-07
DNA replication initiation 2.09E-04
Hippo signaling 1.58E-02
PI3K_AKT_MTOR 3.44E-02
Wnt/Beta-catenin 1.53E-07
DNA replication initiation 2.09E-04
Hippo signaling 1.58E-02
Agonist vs Control (Male) Upregulated genes (n=173)
Interleukin-3, Interleukin-5 and GM-CSF signaling 2.53E-02
Agonist vs Control (Male) Downregulated genes (n=64)
JNK MAPK Pathway 4.25E-02
Wnt Signaling 2.53E-02
November 2021
ESR1 agonist upregulates genes involved in Methylation and DNA mismatch repair and downregulates genes involved in cancer progression pathways, such as Wnt-b-catenin signaling,
PI3K-mTOR, DNA replication and Hippo pathway. FDR, False discovery Rate; BH, Benjamini-Hochberg.
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A
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D E

FIGURE 3 | ER-a colocalization with b-catenin decreases b-catenin target gene expression in vitro. (A) Immunofluorescent analysis of b-catenin (top left panel) and
ER-a (bottom left panel) on HeLa and MCF7 cells. Nuclei (top right panel) were stained with DAPI. Merged image (bottom right panel) showing a nuclear localization
of ER-a in MCF7 and cytoplasmic localization of b-catenin in both cell lines. The images were captured at 40X magnification. (B) Immunofluorescent analysis of b-
catenin (top left panel) and ER-a (bottom left panel) on HepG2 cells transfected with the control vector and exposed to vehicle or E2. Nuclei (top right panel) were
stained with DAPI. Merged image (bottom right panel) showing the detection of cytoplasmic localization of b-catenin and absence of ER-a in the nucleus of HepG2
cells. (C) Immunofluorescent analysis of b-catenin (top left panel) and ER-a (bottom left panel) on HepG2 cells transfected with ESR1 coding vector and exposed to
vehicle or E2. Nuclei (top right panel) were stained with DAPI. Merged image (bottom right panel) showing the concomitant detection in the nucleus of both b-catenin
and ER-a in HepG2 cells represented by the yellow fluorescence as indicated by the white arrows. The images were captured at 40X magnification. (D) HepG2 cells
overexpressing ESR1 expressed less CCND1 (FC = 0.3), MYC (FC = 0.065). Mean with SD values from N = 3 independent experiments are represented in the
graph. ****p < 0.0001, Student’s t-test. SD, standard deviation.
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These findings are in line with previous literature on female sex
being independently protective for HCC incidence in patients aged
18 to 44 years (HR 0.75; 95%CI 0.65-0.86, p<0.001) (17). Overall
survival in women with HCC was also significantly higher, with a
hazard ratio of 0.83 (95%CI 0.77-0.88) (17). This male
predominance of HCC has led to questioning the importance of
sex hormones in HCC pathogenesis. A case-control study of 234
female patients treated for HCC showed that estrogen replacement
therapy reduced risk (HR 0.53; 95%CI 0.32-0.88) and decreased the
risk of death from HCC (HR 0.55; 95%CI 0.40-0.77, p=0.01) (41).
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Median survivalwas also significantly higher in estrogenusers (33.5
months) as compared to non-users (24.1 months, p=0.008) (5). A
retrospective study of over 3,000 patients determined that oral
contraceptive use was associated with increased survival in women
with HCC (5).

Susceptibility to HCC has also been demonstrated with
specific ESR1 polymorphisms, as evidenced by a study of 248
patients with HCC compared to controls. There was a greater
than two-fold increase in susceptibility to HCC when one of
three ESR1 polymorphisms were found (42). ESR1 has been
A B C

FIGURE 4 | ESR1 overexpression decreases transcriptional activity and gene expression of b-catenin and Wnt/b-catenin signaling targets. (A) Representative bar
graphs showing reduction of b-catenin transcriptional activity, as measured by luciferase assay in HepG2 cells following ESR1 co-transfection or control vector and
exposure to E2 or vehicle. (B) Representative bar graphs showing reduction of mRNA expression of CCND1 in HepG2 cells as measured by Real-Time PCR.
(C) Representative bar graphs showing reduction of mRNA expression of MYC in HepG2 cells as measured by Real-Time PCR. Mean with SD values from N = 3
independent experiments are represented in the graph. **p < 0.01, ****p < 0.0001 Student’s t-test. SD, standard deviation.
A B C

FIGURE 5 | Survival curves based on expression of ESR1 (RNAseq ID 2099) in the TCGA dataset. (A) Overall survival according to ESR1 status based on auto
selected best cutoff value (79). (B) Survival according to ESR1 status and further stratified by Male sex, based on auto selected best cutoff value (79) (C) Survival
according to ESR1 status and further stratified by Female sex based on auto selected best cutoff value (43). Separation of patients by ESR1 expression in Kaplan-
Meier plotter was based on the best cutoff computed from all the possible cutoff values between the lower and upper quartile (39).
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identified as a tumor suppressor protein whose expression
inversely correlates with tumor size and disease stage, based on
genome-wide expression and microRNA analyses (18). An
epigenetic study of HCC also confirmed ESR1 as a tumor
suppressor gene, with up to 83% of HCC patient tumors
demonstrating ESR1 promoter hypermethylation (5) and
predicting tumor progression (17). Variant ESR1 expression is
predominant in male patients with hepatitis B-associated HCC
and is predictive of worse survival (18, 19, 41).

ESR1 is a ligand-dependent transcription factor that, upon binding
to estrogen, recruits coregulatory proteins and binds regulatory DNA
sites containing an estrogen responsive element. This alters
transcription of genes relevant to tumorigenesis and the immune
response (43, 44). In vitro and in vivo data have demonstrated that
estrogen inhibitsHCCgrowth throughupregulationof the JAK-STAT
pathway (16), suppression of Interleukin-6 secretion, decreased
hepatocyte growth factor production (13, 45), suppression of
PPARa-associated hepatocarcinogenesis (46, 47), and inhibition of
NF-KB (48). Specific effects of estrogen on the immune cellswithin the
HCC tumormicroenvironment have also been shown in vivo (49, 50).
Estrogen repressed HCC growth through inhibition of tumor-
associated macrophages and the NLRP3 inflammasome (49).
Conversely, in a preclinical model of diethylnitrosamine-induced
HCC, loss of ESR1was shown to accelerate hepatocarcinogenesis (51).

Our in vivo validation revealed that ER-a particularly inhibits
the Wnt signaling cascade. In terms of processes, ESR1
significantly impacted transcription regulation, histone
methylation, DNA repair, cell cycle and senescence. The effect
of ESR1 on these processes is compatible with the literature on
the impact of ESR1 in other cancers (52–60), with impact on
transcriptional regulation (61), cell cycle, and tumor suppression
(62). Interestingly, ER-a antagonist did not produce the opposite
effect, but rather resulted in tumor burden similar to the control
conditions. This again suggests that the positive effects of ER-a
agonism are through inhibition of b-catenin transcriptional
activity, without any graded effect once ER-a is inactivated.

Although Wnt signaling is the dominant pathway
dysregulated in 40% of HCC tumors (15, 63), the current first-
line therapies of lenvatinib or atezolizumab and bevacizumab
target other less crucial pathways such as Ras/Raf/MAPK (64).
The Wnt signaling pathway has remained elusive to therapeutic
targeting, due to issues with protein-binding sites (b-Catenin) or
significant side effects (65, 66). Beyond consideration for
signaling pathways, sex differences have been noted in
treatment response. Women have better outcomes than men,
by virtue of slow-growing HCC that presents early enough for
curative therapy (67, 68). Our studies could inform a potentially
synergistic targeting of Wnt signaling, under sex hormone
receptor modulation, alongside the current first-line therapy
targeting other less dysregulated pathways in HCC.

The current study also represents a large integration of publicly
available gene expression data in HCC, covering 36 studies and
1,268 patient sample profiles. We integrated gene expression data
from PubMed and the Gene Expression Omnibus enabled the
identification of the most consistently deregulated genes involved
Frontiers in Oncology | www.frontiersin.org 10
in hepatocarcinogenesis as detected by transcriptomics. These
systematically curated data are made available in our Cancer
Data Integration Portal (http://ophid.utoronto.ca/CDIPLiver)
and will serve as a public resource for analyzing integrated HCC
high-throughput gene expression data.

One key study limitation was that most HCC samples in this
integrative analysis came from patients who had undergone
hepatectomy, which we discovered was the nature of most
publicly available gene expression data. The molecular features
of different HCC stages could potentially differ, and ESR1 may
not be central in those contexts.

Additionally, estrogen receptor signaling likely has an impact
on other aspects of HCC biology, but we chose to focus on Wnt/
B-catenin given the impact of ER-a agonist treatment on this
critical HCC pathway.

In conclusion, we provide amechanism bywhich ESR1 plays an
important role in the sexual dimorphism of HCC, by inhibiting
Wnt/b-catenin signaling, the most commonly dysregulated
pathway in HCC. Our results suggest that ER-a colocalizes with
the transcription factor b-catenin to inhibit transcription of pro-
oncogenic genes. Our study findings serve to enhance our
understanding of the mechanistic basis for protection against
HCC incidence and progression in women as compared to men.
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