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A B S T R A C T   

Target-based discovery of first-in-class therapeutics demands an in-depth understanding of the 
molecular mechanisms underlying human diseases. Precise measurements of cellular and 
biochemical activities are critical to gain mechanistic knowledge of biomolecules and their 
altered function in disease conditions. Such measurements enable the development of interven
tion strategies for preventing or treating diseases by modulation of desired molecular processes. 
Fluorescence-based techniques are routinely employed for accurate and robust measurements of 
in-vitro activity of molecular targets and for discovering novel chemical molecules that modulate 
the activity of molecular targets. In the current review, the authors focus on the applications of 
fluorescence-based high throughput screening (HTS) and fragment-based ligand discovery (FBLD) 
techniques such as fluorescence polarization (FP), Förster resonance energy transfer (FRET), 
fluorescence thermal shift assay (FTSA) and microscale thermophoresis (MST) for the discovery of 
chemical probe to exploring target’s role in disease biology and ultimately, serve as a foundation 
for drug discovery. Some recent advancements in these techniques for compound library 
screening against important classes of drug targets, such as G-protein-coupled receptors (GPCRs) 
and GTPases, as well as phosphorylation- and acetylation-mediated protein-protein interactions, 
are discussed. Overall, this review presents a landscape of how these techniques paved the way 
for the discovery of small-molecule modulators and biologics against these targets for therapeutic 
benefits.   

1. Introduction 

The primary step in a drug discovery campaign involves identifying new chemical entities that have the potential to become 
therapeutic agents. Target-based and phenotypic screening are the two approaches that have majorly contributed to discovering first- 
in-class drugs in the past few decades [1,2]. Phenotypic screening does not rely on knowing the identity of the specific molecular target 
or its role in the disease [3], instead active chemical compounds are identified with desired physiological responses or phenotypes, 
typically in animal models or cell-based assays [4]. Whereas target-based screening relies on the knowledge of the specific molecular 
target that has a vital role in the disease [5–7]. The ever-growing genetic, biochemical and structural insights into disease conditions 

* Corresponding author. 
E-mail address: neelagandank@instem.res.in (N. Kamariah).   

1 These authors contributed equally to this work. 

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2023.e23864 
Received 9 May 2023; Received in revised form 14 December 2023; Accepted 14 December 2023   

mailto:neelagandank@instem.res.in
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2023.e23864
https://doi.org/10.1016/j.heliyon.2023.e23864
https://doi.org/10.1016/j.heliyon.2023.e23864
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e23864

2

have expanded the list of potential molecular targets amenable to therapeutic intervention [5,6,8]. Once the molecular target is 
identified and validated, a typical discovery process involves assay development, hit identification and lead optimization followed by 
preclinical and clinical development [9]. High-throughput screening (HTS) and fragment-based ligand discovery (FBLD) are currently 

Fig. 1. A schematic representation of fluorescence-based assays (A). FP assay: the fluorophore-labeled substrate is excited by linearly polarised 
light, and the amount of polarised light emission determines the binding with the protein. (B). FRET assay: schematic illustration of the donor- 
acceptor spectral overlap region; distant donor and acceptor - no FRET, and close donor and acceptor - successful FRET detection. (C). FLT 
assay: The fluorescence intensity decay of a fluorophore is plotted on an intensity scale versus time. The changes in the lifetime of fluorophore 
measure the effect of protein binding. (D) PIFE assay: fluorescence enhancement when a fluorophore-tagged nucleic acid binds to a protein. (E) 
FTSA assay: The curve shows the protein unfolding with rising temperature, which alters upon ligand binding. (F) MST assay: schematic repre
sentation of an MST setup showing infrared laser directed at the protein-ligand solution in capillaries and excitation light to track the fluorescently 
labeled protein in the solution. An increase in temperature results in a binding-dependent decrease in fluorescence in the region followed by a steady 
state and back diffusion. 
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the two leading paradigms to identify chemical probes or “hits” against a molecular target [10,11]. In FBLD, a library of a few thousand 
very-small-molecular-weight compounds (MW ~100–250 Da) at high concentrations are screened using biophysical methods such as 
NMR, X-ray crystallography, SPR, MST and FTSA [12]. HTS involves screening large numbers of chemical compounds, typically a few 
hundred thousand with their molecular weights ranging between 200 and 600 Da, against the target using biochemical activity and 
binding-based methods [10,13–16]. HTS and FBLD have become standard tools within the pharmaceutical industry and academia, 
identifying the hits that affect the molecular targets in the desired way. The identified hits from the screening campaign provide a good 
starting point for lead optimization. 

Screening cascades with suitable absorbance-, fluorescence- and luminescence-based high throughput biochemical and binding 
assays are developed for many important drug target classes [14,15]. However, developing robust, reliable and cost-effective assays 
while testing large libraries through them is quite challenging for the repertoire of novel molecular targets [17]. Towards this end, 
fluorescence-based assays are widely implicated in HTS and FBLD as they provide us with highly sensitive, rapid, homogeneous assays 
that are mix-and-read kind and compatible with automation. A wide diversity of available fluorescent dyes and technological ad
vancements in readout modes have made them an ideal assay platform for most of the molecular target classes [18–21]. This review 
focuses on general concepts of fluorescence-based biochemical and binding assays routinely used in HTS and FBLD, namely fluores
cence polarization (FP) and anisotropy (FA), Förster resonance energy transfer (FRET), time-resolved Förster resonance energy 
transfer (TR-FRET), fluorescence lifetime (FLT), protein-induced fluorescence enhancement (PIFE), fluorescence thermal shift assay 
(FTSA) and microscale thermophoresis (MST). In addition, the article also focuses on the rationale for the development of 
high-throughput fluorescence assays and their utilization in an array of screening activities for some therapeutic targets: G-protein 
coupled receptors (GPCRs), GTPases and phosphorylation- and acetylation-mediated protein-protein interactions. 

2. Principles, advantages and limitations of fluorescence-based techniques 

2.1. Fluorescence polarization (FP)/fluorescence anisotropy (FA) 

FP/FA assay is based on the principle that the degree of polarization of a fluorescently labeled molecule, called a tracer, is inversely 
proportional to its rate of molecular rotation [22]. Molecular rotation, in turn, depends on molecular mass, with larger masses having 
slower rotation frequency. When a small tracer is excited by plane-polarized light, it emits depolarized light due to its rapid motion in 
solution. However, when the tracer binds to a much larger molecule, it rotates more slowly, and the emitted light remains largely 
polarized (Fig. 1A) [22]. Polarization is expressed as milli polarization units (mP). FP/FA technique is employed to study molecular 
interactions, i.e., association and dissociation between two molecules, e.g., protein-peptide, protein-nucleic acid, and protein-ligand 
[23,24]. The assay is sensitive, mix-and-read type and readily miniaturized for HTS. However, the FP assay works best for large 
protein-small ligand combinations rather than two proteins of similar molecular weight. Moreover, FP is amenable to interference from 
fluorescently active small molecules [24,25]. Some commonly used fluorophores in FP assay are listed in Table 1 and the chemical 
structures are shown in Fig. 2. FP assay readouts are measured using a range of multimode readers such as Victor Nivo and Envision 
(PerkinElmer), Spark (Tecan), Pherastar FSX (BMG Labtech), and Spectramax iD5 (Molecular Devices) etc. Optimization of parameters 

Table 1 
List of common fluorophores arranged in increasing order of their excitation spectra with their characterization and usages in different assays.  

Fluorophore Ex/Em (nm)a Lifetime (ns)b Assay 

Europium cryptated1 320-340/615 >1000 TR-FRET 
Europium TMT chelate (donor)d2, isothiocyanato chelate (donor)d2 320-340/618 >1000 TR-FRET 
Terbium chelated3, Terbium cryptated3 320-340/490, 545 >1000 TR-FRET 
8-Anilino-1-naphthalenesulfonic acid 366/480 0.24 FTSA 
9-Aminoacridine 405/450 17 FLT 
PT14 405/450 14 FLT 
SYPRO orange 470/570 <1 FTSA 
PT22 473/556 22 FLT, FP 
Fluoresceina3 475/520 4 FP, MST, TR-FRET 
Alexa 488a3 490/525 4.1 FP, MST, TR-FRET 
Rhodamine 110a3 496/520 4 FLT, FP, TR-FRET 
BODIPY-FLa3 503/512 5.7 FLT, TR-FRET 
TAMRAa3 550/580 1.0 FP, MST, FRET 
Cy3a3 555/569 0.3 FP, PIFE, MST, FRET 
Dylight DY547 558/574 0.18 PIFE 
Rhodamine B 562/583 1.68 FLT, FP 
ROX 580/621 4.8 FTSA 
XL665a1,a2 625/665 3.0 TR-FRET 
D2a1,a2 625/665 NA TR-FRET 
Alexa Fluor 647a1,a2 650/671 1.0 FP, MST, TR-FRET 
Cy5a1,a2 651/670 1.0 FP, PIFE, MST, FRET, TR-FRET 

d – donor in FRET pair, a – acceptor in FRET pair; respective donor-acceptor pairs have been numbered d1-a1, d2-a2 and d3-a3. 
a Approximate excitation and emission maxima. 
b Approximate fluorescence lifetime. 
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such as Z-height, G-factor, and number of flashes per second improves the assay performance. These readers are also used for the 
fluorescence-based techniques described in later sections, such as FRET, TR-FRET, FLT, PIFE and fluorophore substrate-based enzy
matic assays. 

2.2. Förster resonance energy transfer (FRET) 

FRET measures the efficiency of non-radiative energy transfer between donor and acceptor fluorophores (FRET pairs) when they 
are in close proximity [26]. FRET efficiency varies inversely to the sixth power of the distance between the FRET pairs, indicating that 
small changes in distance result in a significant FRET signal (Fig. 1B) [27]. This advantage suites FRET to study intermolecular 
interaction. In general, the donor’s quantum yield, the acceptor’s extinction coefficient, spectral overlap (donor emission spectra 
should match acceptor absorption spectra), and inter-fluorophore distance (10–100 Å) and their angular orientation are the elements 
that must be considered to maximise the FRET signal. Time-resolved Förster energy transfer (TR-FRET) relies on resonance energy 
transfer between the long-lived donor fluorophore and short-lived acceptor fluorophore [28]. TR-FRET significantly reduces the 
short-lived fluorescence interference in the assay condition. The FRET-based assay measures biochemical activities, biomolecular 
interactions, and protein conformational dynamics [29]. FRET-based assays are highly sensitive, rapidly measurable, and readily 
adaptable to the HTS format. It can be used for both in vitro and in vivo assay systems. Also, there is no limitation on the molecular 

Fig. 2. Chemical structures of some commonly used dyes.  
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weight of biomolecules to be studied. However, both the interacting partners need to be labeled with suitable fluorophore pairs (refer 
to Table 1 and Fig. 2 for commonly used FRET pairs), and fluorophores should lie between 10 and 100 Å with correct orientation and 
the possibility of crosstalk between donor and acceptor fluorophores [30,31]. 

2.3. Fluorescence lifetime (FLT) 

Fluorescence lifetime is an intrinsic property of a fluorophore defined as the average time a fluorophore takes in the excited state 
before returning to the ground state [32]. The lifetime of a fluorophore (τ) is dependent on the physicochemical molecular envi
ronment, so changes in the environment influence the changes in the FLT measurement [33]. The intensity decay of a fluorophore is 
plotted on an intensity scale versus time, and the fluorescence lifetime is calculated based on the fluorescence intensity decays to 1/e of 
the initial intensity (Fig. 1C). FLT measurement is independent of fluorescence intensity or fluorophore concentration [34]. Most 
commonly used fluorophores and compound interference typically have fluorescent lifetimes ranging from 100 ps to 5 ns [35]. The FLT 
fluorophores such as 9AA (Almac Group, FLEXYTE™), PT14 and PT22 (GE Healthcare) have fluorescence lifetimes of 14, 17 and 22 ns, 
respectively (Table 1 and Fig. 2). Principles of FLT can be used in different formats such as FLT assay, FLT sensing and fluorescence 
lifetime imaging [36]. FLT assays are successfully applied for enzyme activity assays for proteases, kinases and phosphatases for in
hibitor screening [37,38]. Whereas FLT sensing is used for sensing pH, Ca2+, Mg2+, K+, glucose, antigen, and other metabolites in vitro 
and FLT imaging applications involve studying molecular environments of the probes in cell [36]. With improved plate readers and a 
new range of long-lifetime dyes, the application of FLT is being extended to molecular targets other than enzymatic peptide modi
fications [33]. 

2.4. Protein-induced fluorescence enhancement (PIFE) 

PIFE is based on the photophysical phenomenon whereby the intensity of fluorophore increases upon proximal binding of a protein 
(Fig. 1D) [39]. The technique is routinely used to probe the binding affinity and kinetics of protein and DNA/RNA interactions, 
wherein the nucleic acid is labeled with a single dye and binding to unlabeled protein causes a change in the fluorescence signal [40, 
41]. Since the technique bypasses protein labeling, it mitigates the risk of labeling-induced structural changes. Also, PIFE is sensitive 
within short distances (0–3 nm) [40]. So far, the technique is limited to studying protein-nucleic acid interactions and has not been 
routinely used in HTS format. This phenomenon is limited to the dyes exhibiting cis-trans photoisomerization [42,43]. A class of 
cyanine dyes (Cy3 and Cy5), Dylight DY547 and Alexa dyes (Thermo Fisher Scientific) are commonly used (Table 1 and Fig. 2). 

2.5. Fluorescence thermal shift assay (FTSA) 

FTSA exploits the phenomenon whereby a ligand binding to a target protein enhances the target protein’s thermal stability [44]. 
Specific binding of a ligand to a defined site of the protein will enhance or decrease the structural stability of the protein and hence 
change the melting temperature (Tm), the temperature at which there is 50 % denaturation (Fig. 1E) [44]. The Tm of a protein can be 
measured either under native and label-free conditions by detecting temperature-dependent changes in the intrinsic fluorescence of 
tryptophan residues in proteins as the protein unfolds or by monitoring the fluorescence signal of a fluorescent dye that binds pref
erentially to the denatured state of a protein as a function of temperature [44]. A variant of FTSA is cellular thermal shift assay 
(CETSA), which is used for testing ligand binding to the target protein inside cells [45]. Since FTSA provides information on protein 
stability, it is helpful for the optimization of buffer conditions needed in protein purification, storage, and crystallization [46,47] and 
protein-ligand binding [48]. Due to the ease of optimization and miniaturization, it has been used for the screening of small molecules 
(e.g., fragments) and compounds with high affinities [49–51]. FTSA does not require special plate readers, as real-time PCR in
struments such as Applied Biosystems, Qiagen, Biorad etc., can be used for measuring Tm. Although FTSA is often used for qualitative 
measurement of the binding event, it can be leveraged for quantitative measurement of binding constant at a constant temperature 
[52]. Another caveat is that intrinsically disordered proteins are unsuitable for FTSA [53]. SYPRO Orange (Sigma-Aldrich), ROX and 
ANS (Thermo Fisher Scientific) are routinely used fluorophores for FTSA (Table 1 and Fig. 2). Although beyond the scope of FTSA, it is 
worth mentioning two luminescent methods: (i) a highly sensitive protein-probe method uses Eu3+ chelate conjugated to a peptide 
probe that preferably binds to an unfolded state of a protein, helps measure protein denaturation and ligand binding [54–56]. (ii) 
Aggregation-induced emission (AIE), based on the phenomenon, in which luminescent molecules emit more efficiently in the ag
gregation state than in the solution state [57]. Though AIE has potential applications in antibiotic screening, biosensing and 
biomedical sciences, their use in target-based compound library screening is yet to be explored [58–60]. 

2.6. Microscale thermophoresis (MST) 

MST measures the affinity between two molecules based on temperature-related intensity change in fluorescence signal plus the 
movement of molecules along the temperature gradient induced inside a thin glass capillary using an IR-laser [61] (Fig. 1F). The 
thermophoretic movement of the biomolecules is tracked either by using the intrinsic fluorescence of tryptophan in proteins or an 
extrinsic fluorophore coupled to any one interaction partner [62]. MST can measure the binding affinity of molecular interactions. The 
technique has low sample consumption, short analysis time, no limitation on the molecular weight of interacting molecules and re
quires no immobilization of probes. MST has mostly been used as an orthogonal assay to validate hits found from primary screening 
[63,64]. The technique has capillary-based as well as plate-based formats available. Commercial kits for labeling proteins are available 
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from NanoTemper [65], which provides dyes that can label amino acid residues lysine (RED-NHS 2nd Generation), cysteine (RED-
MALEIMIDE 2nd Generation) and histidine (RED-tris-NTA 2nd Generation). The availability of these three labeling residues on the 
protein’s surface and their role in the binding event under study must be considered before the dye selection. The degree of labeling, i. 
e., the number of residues labeled per molecule, is a critical factor in assay quality and affects the reproducibility of measurements. To 
avoid such variations, proteins or peptides synthesized with tags such as GFP, FITC and Alexa-488 can be used [66]. For MST readouts, 
NanoTemper provides capillary (Monolith) and plate-based (Dianthus) readers. The availability of residues amenable for covalent 
labeling without altering the interaction or stability of a protein is a limitation [67,68]. Since the thermophoretic ability of a 
biomolecule depends upon its charge along with size and solvation shell, a better response is observed with charged biomolecules such 
as DNA and RNA [62,69,70]. Further, the capillary-based technique is incompatible with high-throughput screening and the 
plate-based approach is relatively new. 

3. Development of HTS assays for therapeutic targets 

3.1. G protein-coupled receptors (GPCRs) 

GPCRs are the largest membrane receptor superfamilies regulating diverse physiological processes and are the most sought-after 
drug targets, with ~35% of approved drugs targeting these receptors [71–74]. In general, upon the ligand binding, GPCRs activate 
downstream heterotrimeric G-proteins consisting of Gα, Gβ and Gγ subunits (Fig. 3) [71]. Due to the challenges involved in the pu
rification of stable GPCRs, considerable efforts have been made using mutagenesis [75,76], protein microarrays [77,78], reconstituted 
lipid nanodisc [79,80] and viral envelope [81] to obtain the active GPCRs for biochemical and biophysical studies. So far, HTS assays 
on GPCRs primarily rely on changes in the intracellular concentration of Gα-protein mediated secondary messengers such as cyclic 
adenosine monophosphate (cAMP), calcium, diacylglycerol (DAG), inositol 1,4,5-trisphosphate (IP3) and RhoA activation (Fig. 3) 
[82]. G-protein independent β-arrestin signaling can be detected either by β-arrestin recruitment or β-arrestin mediated internalization 

Fig. 3. An illustration of the G-protein-coupled receptor in action and β-arrestin signaling. The G-protein alpha subunit separates from the beta- 
gamma subunit in response to external stimulation, and GDP is exchanged for GTP, activating additional molecules in the cell. The three assays 
to quantify this, namely (A) cAMP detection by FRET-based assay, (B) IP3 detection by FP-based assay, and (C) calcium detection by the dye-based 
method are shown as insets. (D) The recruitment of β-arrestin to the phosphorylated GPCR terminates the G-protein mediate signaling and initiates 
G-protein-independent signaling. 
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of GPCRs (Fig. 3) [83]. 

3.1.1. Fluorescence-based secondary messenger GPCRs assays 
The GPCRs-dependent activation of Gαs and Gαi subunits stimulate and inhibit adenylate cyclase, respectively, which in turn 

increases and decreases the cellular cAMP levels [71]. Activation of Gαq results in the accumulation of inositol phosphates (IP1/IP3) 
and calcium (Ca2+) levels (Fig. 3) [84]. FRET, TR-FRET and FP-based robust and sensitive assays are best suited to quantitatively 
measure cAMP, IP1/IP3 and DAG modulation in response to Gα-proteins [85]. In TR-FRET, the exogenous cAMP, IP1 and IP3 molecules 
labeled with an acceptor fluorophore compete with GPCR-coupled endogenously produced cAMP, IP1 and IP3 molecules, respectively, 
for binding to their donor-labeled monoclonal antibodies [85–87] (Fig. 3A). In FP assay, the cellular cAMP and IP1/IP3 displace a 
fluorescent derivative of counterparts from an unlabeled specific binding protein (Fig. 3B) [82,87]. Some of the commercially available 
HTS assay formats of GPCR modulators are cAMP-Gi kit (Cisbio), LANCE cAMP kit (PerkinElmer), HTRF cAMP (Cisbio), cAMP Gs 
dynamic kit (Cisbio), cADDis (Montana Molecular), IP-One Gq kit HTRF (Cisbio), HitHunter IP3 assay (DiscoveRx), HTRF 
cAMP/IP-One HTplex (Cisbio) etc. FRET and FP assays are widely used to identify small-molecule and peptide agonists and antagonists 
as well as to study monoclonal antibodies [88–93]. 

3.1.2. Calcium assay 
As mentioned earlier, calcium is another secondary messenger for GPCR signaling. Gαq activation results in the accumulation of 

inositol phosphates (IP3), which increases the intracellular Ca2+ levels by opening the endoplasmic IP3-gated calcium channel [94]. 
Commercial availability of Ca2+-sensitive fluorescence dyes (Fluo, Fura, Indo, Quin etc.) [95,96] and “no-wash” assays such as Fluo-4 
Direct Calcium assay kit (Life Technologies), FLIPR Calcium 4 assay kit (Molecular Devices), Calcium No WashPLUS (DiscoverX) and 
FLUOFORTE Calcium assay kit (Enzo Life Sciences) has enabled the measurement of Ca2+ levels in HTS format. The assay is based on 
the principle that the inactive esterified dye penetrates the cell membrane and becomes active once inside the cell upon binding to 
Ca2+. Esterification is an effective way to increase the lipophilicity of the dye to improve cellular penetration of chemical entities. 
Intracellular esterases hydrolyse the dye once inside the cell, generating the negatively charged form of impermeable dye through the 
cell membrane. The calcium-binding moiety portion of the probe quenches the fluorescence signal in the absence of calcium through 
photo-induced electron transfer. In the presence of calcium, it relieves quenching and increases the fluorescence emission intensity in 
several order magnitudes, with no shift in wavelength, thus characterizing GPCRs (Fig. 3C) [97–100]. 

Fig. 4. A. An illustration of the GTPase activity cycle shows the interconversion between GDP-bound inactive and GTP-bound active forms, which 
are catalysed by GEFs and GAPs, respectively. B. Fluorescence-based and C. FRET-based nucleotide exchange assays measure the loading or 
unloading of labeling GDP and GTP, respectively. The antibody conjugated with donor fluorophore is mentioned as ‘D’ in Figure C. 
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3.1.3. β-arrestins recruitment assays 
β-arrestins (1 and 2) are essential regulators of GPCRs. GPCR kinase-mediated phosphorylation of GPCR recruits β-arrestins, which 

eventually terminates G-protein signaling and leads to desensitization, inactivation, and internalization of GPCRs (Fig. 3D) [101]. 
There are chemiluminescence-based assay technologies such as PathHunter β-arrestin assay (DiscoverX) [102] and GPCR/β-arrestin 
Signaling Pathway LinkLight assay (BioInvenu) [103] available that measure β-arrestin recruitments. However, the Tango GPCR 
enabling model (Thermo Fisher Scientific) reporter gene assay is a fluorescence-based system that employs the release of non-native 
transcription factor (TF) linked to GPCR via a protease cleavage site. Recruitment of protease-tagged β-arrestin irreversibly cleaves and 
releases the TF to enter the nucleus for transcription. The TF directly regulates the transcription of a β-lactamase reporter construct, 
which catalyzes the turnover of an exogenous fluorescent substrate containing two fluoroprobes – coumarin and fluorescein. An 
HTRF-based total β-arrestin cellular kit (PerkinElmer) quantifies the expression level of β-arrestins [104]. Also, another HTRF-based 
β-arr2 recruitment kit (PerkinElmer) helps to characterize the β-arrestin recruitment by monitoring the interaction between the 
endogenous β-arrestin and adaptor protein AP-2, which plays a critical role in clathrin-mediated endocytosis [105]. 

3.1.4. Fluorescent ligand-based assay 
Fluorescent-labeled ligands such as GPCR agonists or antagonists linked to fluorophore are employed in a range of fluorescence- 

based applications, including FP/FA and FRET, to characterize GPCR biology successfully, in particular, GPCR-ligand interactions 
[106–110]. GPCR-fluorescent ligands are advantageous over classical GPCR radioligands in HTS approaches for the development of 
novel therapeutics. However, care must be taken in designing the fluorescence ligand so that the attachment of fluorophore through a 
suitable linker should not affect the binding affinity and selectivity of the parent ligand [111]. Fluorescent dyes such as Cy5, ALEXA, 
BODIPY, TAMRA, Texas Red and Fluorescein (Thermo Fisher Scientific) linked to GPCR-binding peptides and small molecules are 
often used as fluorescent ligands in competitive binding experiments to identify novel small molecules [112–116]. More detailed 
applications of GPCR fluorescent ligands can be found in the published literature [117–119]. 

3.2. GTPase activity assay 

Activated GPCRs act as an exchange factor to enhance the release of GDP and subsequent binding of GTP to G-proteins to initiate 
unique intracellular signaling responses [120]. Moreover, Gα12/13, Gαq and Gβγ subunits are known to directly interact with guanine 
nucleotide exchange factor (GEF) RhoGEF through which GPCRs activate the small GTPase Rho (Fig. 4) [121–123]. Small GTPases 
constitute a superfamily of enzymes that function as molecular switches and are grouped into five subfamilies, i.e., Ras, Rho, Rab, Ran 
and Arf, based on sequence homologies [124,125]. The interplay between GTP-bound ‘on’ and GDP-bound ‘off’ states of GTPases is 
regulated by GEFs and GTPase activating proteins (GAPs), respectively (Fig. 4A) [126,127]. Usually, the interaction between the 
GTP-bound GTPases with the downstream effector proteins regulates the cellular responses [128,129]. Activating mutations in Ras 
GTPases are found in 30%–60% of human malignancies and hence are one of the most sought-after targets for drug discovery 
[130–132]. Most commonly, the fluorescence-labeled GTP, GDP or their inactive analogues are used in HTS assay formats such as FP, 
FI, FRET and TR-FRET and are demonstrated to be valuable tools to measure the activity and discovery of bioactive molecules for 
modulating GTPases, GEFs, GAPs and downstream effectors [133–138]. MANT (n-methyl-3′-o-anthranoyl) and BODIPY are the widely 
used dyes in these assays. Still, there are other commercially available fluorophores as well (e.g., Jena Biosciences provide a wide range 
of fluorophore-labeled nucleotides). Interestingly, fluorescently labeled γ-phosphate-linked GTP analogues were shown to readily 
displace the native bound GDP with high intrinsic exchange rates in the presence of Mg2+, accompanied by substantial fluorescence 
enhancements and thereby acting as a synthetic low-molecular-weight nucleotide exchange factor [139]. GEF-mediated GTPases 
activity is measured in two complementary fluorescence intensity-based assays: (i) measuring the loss of fluorescence intensity due to 
GEF-mediated deloading of fluorescently labeled GDP and (ii) measuring an increase in fluorescence due to GEF-mediated loading of 
labeled GTP into a binding pocket occupied by unlabeled GDP (Fig. 4B). Bell Brook Labs have developed Transcreener GDP assay kits 
that selectively immunodetect the GDP produced by GTPases during GTP hydrolysis (www.bellbrooklabs.com). The kit contains a 
far-red fluorescent labeled GDP as a tracer and an antibody selective to GDP. The GDP produced in the reaction competes with the 
tracer, changing the fluorescent properties and providing fluorescence readout. This assay is available in HTS-compatible FI, FP and 
TR-FRET formats and provides a platform to screen compound libraries [140–146]. Also, KRAS WT GTP binding kit (Cisbio) helps test 
the compounds competing with GTP-red reagent as a tracer binds to 6-His tagged human GTPase protein and an anti-6His crypt
ate-labeled antibody. Recently, a TR-FRET based assay was developed to find inhibitors targeting Ras GTPase activity [147]. The assay 
measures the loading of fluorescently labeled GTP analogue (FRET-acceptor) onto GST-tagged GTPase that binds anti-GST-terbium 
(FRET-donor), which results in an increased FRET signal (On-assay). Similarly, a secondary assay was developed to measure the 
unloading of labeling GDP from GST-tagged GTPase that binds anti-GST-terbium, which results in decreased FRET signal (off-assay) 
(Fig. 4C). These on- and off-assays complement each other to pick GTP-competitive hits and eliminate false positives at the same time. 
Some fluorescence-based methods permit real-time monitoring of GTPase activity by measuring of inorganic phosphates (Pi) released 
during GTP hydrolysis (Fig. 4A). These assays measure the increase in fluorescence intensity when Pi binds to either phosphate-binding 
protein modified with a fluorophore (e.g., MDCC-tagged protein from Thermo Fisher Scientific) or coupled with other enzymes 
resulting in the formation of a fluorescent product (e.g., resorufin in case of PiPer™ Phosphate assay kit from Invitrogen). Interestingly, 
a new dual-parametric FRET-based technique enables the GEF-mediated loading of Eu3+-labeled GTP monitored by emission at 650 
nm and subsequent Eu3+-labeled GTP-loaded RAS interaction with effector protein labeling with Alex680 monitored at 730 nm. This 
homogeneous dual-parametric assay enables separable detection of nucleotide exchange and GTPase-effector interaction inhibitors 
[148]. 
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3.3. Protein-protein interactions (PPIs) 

3.3.1. Phosphorylation-mediated interaction 
In almost all cellular pathways, PPIs have been recognized as crucial regulators [149,150]. Targeted modulation of PPIs has 

enormous potential as therapeutic targets in drug development as that would enable selective interference with specific signaling 
pathways. However, probing PPIs with small-molecule inhibitors or stabilizers is often difficult due to large and shallow binding 
interfaces, because of which PPIs are classically recognized as “undruggable” [151]. Notably, despite the inherent difficulty in tar
geting PPIs, there have been efforts leading to the successful discovery of novel PPI modulators [152]. Posttranslational modifications 
(PTMs) are reversible processes that change the functional diversity of proteins via the covalent addition of functional groups such as 
phosphorylation, acetylation, glycosylation, ubiquitination, nitrosylation, methylation and lipidation [153]. Cellular signaling is 
frequently initiated by phosphorylation at amino acids serine, threonine, and tyrosine by protein kinases [154]. Further, these 
modifications are recognized by specialized protein modules such as 14-3-3, forkhead associated (FHA) and BRCA1 C-terminal (BRCT), 
effectively rewiring the downstream cellular responses [155]. Phosphorylation-dependent PPIs are vital events, and any defect in these 
interactions leads to abnormal phenotypes [156]. For example, nuclear protein BACH1 in its phosphorylated form directly interacts 
with the highly conserved C-terminal BRCT repeats of tumor suppressor protein BRCA1, and any mutation within the BRCT repeats 
disrupts the interaction, leading to defects in DNA repair, and is reported in breast and ovarian cancer [157]. Our group and others 
have a long-standing interest in targeting these phosphoprotein-binding modules for therapeutic intervention [158,159]. Protein 
kinases phosphorylate specific Ser/Thr/Tyr residues located in the conserved region commonly observed in the unstructured region of 
proteins [159]. The phosphorylated Ser/Thr/Tyr and the residues that span the site of phosphorylation, called “hot spot”, confer the 
most binding energy and specificity for interaction with specialized protein modules such as 14-3-3, BRCT and FH [160–162]. Thus, 
these phosphorylation-mediated interactions in hot spots are targets for small-molecule and peptidomimetics modulators. A suitable 
synthetic fluorescent-labeled phosphopeptide (tracer) derived from substrate protein is crucial in successfully developing a 
high-throughput FP assay. A typical phosphopeptide is designed with the region spanning approximately − 5 to +5 residues from the 
site of phosphorylation (pSer, pThr or pTyr) that acts as a hotspot region and binds with phosphopeptide-binding protein modules. The 
size and molecular weight of phosphopeptides change upon binding to protein modules and, thereby, are a factor in determining the 
dynamic range of FP assays [23]. Also, the choice of fluorophores can influence the dynamic range and quality of the assay (Table 1) 
[163]. Usually, dyes with red-shift spectra might help to avoid blue/green fluorescence interference from compound libraries. Based 
on understanding of the peptide interaction, fluorophore labeling of phosphopeptides can be done either at the N- or C- terminal ends. 

Fig. 5. A. An illustration of the FP-based HTS screening of peptidomimetics/small molecules towards the BRCA1 – tBRCT domain. B. A fragment 
screening pipeline with FTSA as a primary screening tool. 1D NMR, SPR and ITC are employed for orthogonal validation and the availability of co- 
crystal crystal reveals the binding mode fragments for Hit elaboration. 
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As a case example, we have identified bioactive inhibitors for BRCA1-tBRCT domain interaction with its cognate BACH1 phospho
peptide using an N-terminal TAMRA-labeled serine phosphorylated BACH1 peptide (12-mer spaning − 6 to +5 pSer site; 
GGSRSTpSPTFNK) [158]. The non-labeled BACH1 phosphopeptide was used as a positive control that efficiently displaced the labeled 
phosphopeptide leading to a loss in FP values (Fig. 5A) [158]. A similar approach has been made in finding inhibitors targeting the 
14-3-3 phosphobinding protein module [164,165]. In general, FP assays are a popular choice in HTS for targeting PPIs due to their ease 
of design [23,166–169]. 

3.3.2. Acetylation-dependent interaction 
One of the predominant types of histone modifications is acetylation, which is catalysed by ‘writers’ histone acetyltransferases 

(HATs), cleared by ‘erasers’ histone deacetylases (HDACs) and recognized by ‘readers’ bromodomains [170]. Acetylation can locally 
disrupt the condensed state of the chromatin fiber, increasing the accessibility of DNA for protein factors [171]. These epigenetic 
regulators are involved in critical cellular processes such as nucleosome assembly, DNA damage repair and transcriptional regulation 
[172]. The aberrant levels and activities of histone acetyl modification proteins are correlated with several human diseases and 
therefore make them an important class of drug targets [170–173]. HATs transfer a negatively charged acetyl group from acetyl-CoA to 
the lysine residues at the ε-amino group on histone proteins generating free coenzyme A (CoA-SH). The familiar fluorometric-based 
assay measures the free CoA produced by the HAT on reacting with a sulfhydryl-scavenging probe, such as MMBC (LGC Biosearch 
Tech.) and CPM (Abcam, Thermo Fisher Scientific), to form a highly fluorescent CoA-MMBC/CPM adduct quantified by fluorescence 
intensity [174–176]. Both these probes are non-fluorescent until they react with thiols, giving a clear activity profile of target proteins. 
Similarly, there are simple two-step fluorometric assays available such as FLUOR DE LYS®HDAC (Enzo Life Sciences), Amplite® 
Fluorimetric HDAC activity assay kit (AAT Bioquest) and Calbiochem® HDAC assay kit (MilliporeSigma) that measure the removal of 
an acetyl group from lysines by HDACs. In addition, the TR-FRET assay developed by PerkinElmer LANCE Ultra epigenetic kit has been 
used in HTS discovery against HATs, HDACs and bromodomains [174,177,178]. Cayman Chemical and BPS Biosciences offer TR-FRET 
HTS bromodomain kits [179,180]. 

3.3.3. Fragment screening using FTSA to target acetylation reader protein 
In the FBLD approach, fewer low-molecular-weight ligands (~150 Da) are screened against the target of interest. Although FBLD 

hits from initial screening have low binding potency, ranging from micromolar to millimolar concentrations, this approach offers a 
more effective and fruitful optimization campaign [181]. In general, FTSA has been employed alone or in combination with bio
physical techniques such as ligand-based nuclear magnetic resonance (STD and WaterLOGSY NMR), surface plasmon resonance (SPR) 
and MST for fragment screening and hit identification (Fig. 5B) [182]. Protein-based NMR technique HSQC and isothermal titration 
calorimetry (ITC) are used for orthogonal validation of hits. Finally, the binding mode of fragments is resolved by a high-resolution 
crystallographic structure providing a fruitful way forward for fragments to be developed into a potent chemical molecule (Fig. 5B) 
[183]. 

In an interesting study, FTSA was used to discover inhibitors for bromodomain-1 of BRD4, in which 3695 fragments were screened 
using 4-μM BRD4, 6X SYPRO Orange dye and 100 μM of fragments at 1% DMSO. Compounds showing positive (48 fragments) and 
negative (31 fragments) thermal shifts were considered as initial hits, of which 73 fragments were reconfirmed at higher fragment 
concentrations. Based on the primary hits, 3200 new compounds were synthesized as “Active” and “Random” sets. Similarly, a “Non- 
active” set of 3432 compounds was generated from non-hit fragments. Re-screening of the new molecules resulted in 1.59%, 0.81%, 
and 0.97% hit rates for Active, Random and Non-active sets, respectively. Intriguingly, most of the Active-set hits showed positive 
thermal shifts. Totally, 108 hits from all sets were re-tested using FTSA for BRD4 protein at 10, 20, and 40 μM concentrations yielding 
61 validated hits, which were further tested using TR-FRET assay. Of these, 18 compounds showed at least 50% inhibition at 20 μM and 
11 were from the Active set. At least one molecule from each set had IC50 in the low single-digit micromolar range [50]. Another report 
used FTSA in parallel with SPR and MST assays, and a library of about 1700 compounds was screened against the bromodomain of 
BRD9. FTSA screening was performed with 10-μM protein, 25x SYPRO Orange, 400 μM fragments with 2% DMSO, and ΔTm ≥ 1 ◦C was 
considered a hit. MST screening resulted in 124 hits compared to 36 from FTSA and 45 from SPR. About 10% overlap was observed 
between SPR and FTSA hits; however, the overlap was very low for MST hits with SPR and FTSA hits. The hits identified using FTSA 
were more consistent in HSQC orthogonal validation. Out of 77 hits reconfirmed by 2D 1H–15N HSQC NMR spectra, 34 out of 36 
primary hits were from FTSA screen, 38 out of 45 primary hits were from SPR, and 38 out of 124 primary hits were from MST and 7 
common hits from all the three methods. Later, X-ray structures were resolved for 55 fragments by crystal soaking, yielding a fruitful 
fragment optimization strategy [184]. In another successful example, FTSA-based screening was applied to discover CBP/EP300 
bromodomain inhibitors from 2000 fragments. The screening was performed with 4 μM of protein, 5X SYPRO Orange dye and 800 μM 
fragments with 0.8% DMSO, and ΔTm ≥ 1 ◦C was considered for hit selection. The hits re-confirmed using TR-FRET assay were further 
validated with 1H–15N HSQC NMR, ITC and X-ray crystallography [185]. There are other reports as well that successfully employed 
FTSA-based fragment screening for the identification of bromodomain inhibitors [186–188]. Additionally, FTSA has been utilized to 
validate the hits identified from computational virtual screening approaches [189,190]. In the study, high throughput docking and MD 
simulations resulted in 24 virtual hit compounds for bromodomain1 of BRD4. When tested in FTSA with 2 μM of protein, 5X SYPRO 
Orange dye, 50 μM of compounds with 0.4% DMSO, 4 compounds showed ΔTm ≥ 1 ◦C [191]. Another interesting application of FTSA 
is in the evaluation of the selectivity of the ligand towards a panel of bromodomain-containing proteins referred to as BROMOscan, 
wherein a specific ligand is tested using FTSA for binding to multiple bromodomain proteins and the selectivity profiling is determined 
from Tm shifts [192,193]. FTSA has been actively employed in FBLD for other protein targets such as GTPases, GPCRs and PPIs as well 
[147,194–197]. 

V. Kumar et al.                                                                                                                                                                                                         



Heliyon 10 (2024) e23864

11

4. Challenges and future perspectives 

Fluorescence-based techniques such as FI, FP/FA, FRET and TR-FRET are routinely used to measure the binding kinetics of fluo
rescently labeling ligands and the competitive binding of unlabeled ligands. They have gained usage in the last decade with the 
advancement in synthetic chemistry of fluorophore dyes, plate readers and ready-to-use assay kits. A search for high throughput 
screens using fluorescence-based methods on Google Scholar returns over 87,200 hits since 2012. Significantly, FP and TR-FRET are 
vastly preferred as primary assays to identify hits from large chemical libraries. These also have immense value as an orthogonal assay 
to validate identified hits, helping to measure binding affinity and inhibition constant to further optimise their potency and selectivity. 
However, fluorescent compounds and fluorescent impurities in screening libraries can interfere with fluorescence assay readouts 
[198]. A red-shifted dye labeling fluorescence ligand combined with TR-FRET assay provides the best solution to overcome compound 
interference arising from auto-fluorescence signal and other short-lived fluorescence sources. Commercially available TR-FRET assays 
have continued to evolve over the years for important drug target classes. For example, a fluorescently labeled substrate and an 
antibody selective to the substrate, cryptate-labeled anti-His/anti-GST antibody for capturing His-tag/GST-tag of molecular target 
binding to fluorescently labeled substrate/ligand, and direct covalent fluorescent labeling of target proteins offer robust development 
of TR-FRET assays for a vast range of molecular targets. 

Many therapeutically attractive protein targets have not been pursued or there have been few attempts to discover small molecules 
against them due to large and featureless interacting surfaces. In recent years, fragment-based screening has proven to be a precious 
tool in identifying small molecules against “undruggable” targets such as PPIs. FTSA has been widely implicated in fragment-based 
screening due to the ease of its implementation in a high-throughput format. The fragments produce poorly defined thermal 
unfolding curves and have fluorescence properties that are not amenable to FTSA. Fragment binding can result in both positive and 
negative thermal shifts. In general, only the fragments that produce positive thermal shifts are pursued for optimization, while those 
that result in negative thermal shifts are excluded. However, the negative thermal shift fragments were also demonstrated to have 
potential values [199,200]. Therefore, evaluating both positive and negative thermal shift hits in orthogonal validation methods like 
NMR, SPR, and MST is worthwhile. During the fragment optimization campaigns, fluorescence-based assays that measure the 
inhibitory effect of optimized fragments are preferred. 

Only a small fraction of functionally significant protein targets encoded in the human genome is accessible to modulation using 
small-molecule chemical tools, impeding chemical biology and the development of new therapeutics [201–203]. Multiple assessment 
aspects such as genetic validation, assayability, druggability and safety issues have to be considered to expand the portfolio of targets 
amenable to chemical modulation. In such a scenario, having a wide repertoire of biochemical and biophysical HTS assays becomes 
imperative to assess novel biological targets. To this end, the fluorescence-based assays have huge translational potential both in 
academia and biopharma industries, exploring fundamental biomolecular functions and developing potent and safe chemical probes 
against novel targets that are different from traditional drug targets. 

5. Conclusion 

An overview of principles, advantages, and limitations of various fluorescence-based high-throughput techniques such as FP, FRET, 
TR-FRET, FLT, PIFE, FTSA and MST have been discussed here. These techniques have gained widespread applications in early drug 
discovery processes due to their sensitivity, robustness, and availability for high-throughput formats. Recent advances in fluorescence- 
based assays for important drug target classes such as GPCR and GTPases, as well as phosphorylation- and acetylation-mediated PPIs 
are reviewed, focusing on the commercially available high-throughput assay kits. The recent development in these techniques has 
facilitated extending their usage for characterization and screening activities against novel targets for developing therapeutics. 
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Abbreviations 

ANS 8-anilino-1-naphthalenesulfonic acid 
BODIPY Boron-dipyrromethene 
BRCA1 BReast CAncer gene 1 
BRCT BRCA1 C-terminal 
cAMP Cyclic adenosine monophosphate 
CETSA Cellular thermal shift assay 
CoA-SH Free coenzyme A 
CPM N-[4-(7-diethylamino-4-methylcoumarin-3- yl)phenyl]maleimide 
Cy3 Cyanine dye 3 
Cy5 Cyanine dye 5 
DAG Diacylglycerol 
DMSO Dimethyl sulfoxide 
FBLD Fragment-based ligand discovery 
FA Fluorescence anisotropy 
FHA Forkhead associated domain 
FI Fluorescence intensity 
FLT Fluorescence lifetime 
FP Fluorescence polarization 
FRET Förster resonance energy transfer 
FTSA Fluorescence thermal shift assay 
Gαq Gq alpha subunit 
GAP GTPase activating proteins 
GDP Guanosine diphosphate 
GEF Guanine nucleotide exchange factors 
GPCR G protein-coupled receptors 
GTP Guanosine-5′-triphosphate 
HAT Histone acetyltransferases 
HDAC Histone deacetylases 
HSQC Heteronuclear single quantum coherence spectroscopy 
HTS High-throughput screening 
IP1 Inositol monophosphate 
IP3 Inositol trisphosphate 
ITC Isothermal titration calorimetry 
MANT n-methyl-3′-o-anthranoyl 
MMBC Methyl 10-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-9-methoxy-3-oxo-3H-benzo[f]chromene-2-carboxylate 
mP Milli polarization 
MST Microscale thermophoresis 
ns Nanosecond 
PIFE Protein-induced fluorescence enhancement 
pSer Phosphoserine 
pThr Phosphothreonine 
pTyr Phosphotyrosine 
PPI Protein-protein Interactions 
PTM Posttranslational modification 
RhoA Ras homolog family member A 
ROX Carboxy-X-rhodamine 
TF Transcription factor 
Tm Melting temperature 
TR-FRET Time-resolved Förster energy transfer 
SPR Surface plasmon resonance 
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