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In Vitro Effects of Pirfenidone on Cardiac Fibroblasts:
Proliferation, Myofibroblast Differentiation, Migration
and Cytokine Secretion
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Abstract

Cardiac fibroblasts (CFs) are the primary cell type responsible for cardiac fibrosis during pathological myocardial remodeling.
Several studies have illustrated that pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone) attenuates cardiac fibrosis in different
animal models. However, the effects of pirfenidone on cardiac fibroblast behavior have not been examined. In this study, we
investigated whether pirfenidone directly modulates cardiac fibroblast behavior that is important in myocardial remodeling
such as proliferation, myofibroblast differentiation, migration and cytokine secretion. Fibroblasts were isolated from
neonatal rat hearts and bioassays were performed to determine the effects of pirfenidone on fibroblast function. We
demonstrated that treatment of CFs with pirfenidone resulted in decreased proliferation, and attenuated fibroblast o-
smooth muscle actin expression and collagen contractility. Boyden chamber assay illustrated that pirfenidone inhibited
fibroblast migration ability, probably by decreasing the ratio of matrix metalloproteinase-9 to tissue inhibitor of
metalloproteinase-1. Furthermore, pirfenidone attenuated the synthesis and secretion of transforming growth factor-f1 but
elevated that of interleukin-10. These direct and pleiotropic effects of pirfenidone on cardiac fibroblasts point to its
potential use in the treatment of adverse myocardial remodeling.
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Introduction

Structural remodeling of the left ventricle, which is initiated by
pathological events such as hypertension or myocardial infarc-
tion, can ultimately lead to heart failure (HF). Adverse myocar-
dial remodeling is characterized by fibrosis, myocyte death,
hypertrophy of surviving myocytes, and proliferation of cardiac
fibroblasts (CFs) [1]. CFs are the most abundant cell type present
in the myocardium and play a key role in maintaining its
structural integrity through controlled proliferation and extracel-
lular matrix (ECM) turnover, CFs are therefore perceived as the
primary cell type responsible for cardiac fibrosis during adverse
myocardial remodeling [2-5]. In response to pathological stimuli,
CFs undergo a phenotypic transformation to become cardiac
myofibroblasts that express contractile proteins. Cardiac myofi-
broblasts are highly proliferative and migrative, and remodel the
cardiac interstitium by increasing secretion of matrix-degrading
metalloproteinases (MMPs). To stimulate the remodeling process
further, they secrete increased amounts of growth factors and
cytokines, such as transforming growth factor (TGF)-B1, inter-
leukin (IL)-6 and tumor necrosis factor (INF)-ou [6-8]. Although
these changes serve initially as an important reparative wound
healing response, in the longer term, they become maladaptive
and lead to abnormal myocardial stiffness and ultimately, ven-
tricular dysfunction.
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Pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone) is a small
molecule that inhibits progression of fibrosis i vivo in a variety of
animal models of lung [9-11], kidney [12,13], hepatic [14]
and cardiac fibrosis [13,15-17]. In wvitro studies have shown
that pirfenidone inhibits proliferation and/or activation of a
wide range of cell types including human lung fibroblasts
[18], human myometrial and leiomyoma cells [19], human
Tenon’s fibroblasts [20], human T cells [21], rat hepatic stellate
cells [22], and rat renal fibroblasts [23]. In addition, pirfeni-
done modulates a variety of cytokines, and it has been shown
that it decreases levels of intercellular adhesion molecule-1 in
cultured human synovial fibroblasts [24], inhibits heat shock
protein 47 expression in human lung fibroblasts [25], down-
regulates TGF-B in human Tenon’s fibroblasts [20], and
suppresses translation of TNF-o in a murine macrophage-like
cell line [26].

As mentioned above, it has been shown that pirfenidone
attenuates cardiac fibrosis in several animal models, including a rat
model of myocardial infarction [15], canine model of pacing-
induced chronic heart failure [16], and a deoxycorticosterone
acetate—salt hypertensive rat model [17]. Although results from
these studies suggest that CFs represent the major targets of
pirfenidone, however, to the best of our knowledge, no
information is available regarding the effects of pirfenidone on
cardiac fibroblast behavior. The aim of the present study was
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therefore to investigate the specific effects of pirfenidone on the
cellular function of cultured CFs.

Here, we showed that pirfenidone effectively inhibited the
proliferation, myofibroblast differentiation, collagen contraction,
and migration of cardiac fibroblasts. We also found that
pirfenidone reduced the ratio of MMP-9 to tissue inhibitor of
metalloproteinase (TTMP)-1 in CFs. In addition, it decreased both
mRNA expression and protein secretion of profibrotic cytokine,
TGF-B1, but augmented that of anti-inflammatory cytokine,
IL-10.

Methods

Ethics Statement

All procedures in the present study were conducted in
accordance with the NIH Guide for the Care and Use of
Laboratory Animals and approved by the Animal Care Commit-
tee of Cardiovascular Institute and Fuwai Hospital (Permit

Number: 308).

Reagents and chemicals

Dulbecco’s modified Eagle’s medium (DMEM), fetal calf serum
(FCS), Trizol reagent, Novex 10% zymogram gels containing
gelatin, renaturing buffer, developing buffer, and Colloidal Blue
Staining Kit were purchased from Invitrogen (Carlsbad, CA,
USA). AMV Reverse Transcriptase Kit and CellTiter 96®
AQ,cous One Solution Cell Proliferation Assay Kit were obtained
from Promega (Madison, WI, USA). Power SYBR Green PCR
Master Mix was from Applied Biosystems (Foster City, CA, USA).
Rabbit anti-Ki67 monoclonal antibody was form Abcam (Cam-
bridge, MA, USA). Alexa Fluor 488-conjugated anti-rabbit
secondary antibody was from Molecular Probes (Eugene, OR,
USA). The Fluorescein FragEL™ DNA Fragmentation Detection
Kit was from Calbiochem (San Diego, CA, USA). ELISA
detection kits for TIMP-1 and TGF-B1 were from R&D Systems
(Minneapolis, MN, USA), and kit for IL-10 was from Ray Biotech
(Norcross, GA, USA). Mouse anti-o-smooth muscle actin (6-SMA)
monoclonal antibody and angiotensin II (Ang II) were from Sigma
(St. Louis, MO, USA), monoclonal antibody against 3-tubulin and
horseradish peroxidise-conjugated anti-mouse secondary antibody
were from Santa Cruz Biotechnology (Santa Cruz, CA, USA),
rhodamine conjugated anti-mouse secondary antibody was from
Proteintech Group (Chicago, IL, USA). Cell Contraction Assay
Kit was from Cell Biolabs (San Diego, CA, USA). The Lactate
Dehydrogenase (LDH) Cytotoxicity Detection Kit was from
Jiancheng Bio-engineering Institute (Nanjing, China). Pirfenidone
was from Yingxuan Chempharm (CAS No: 53179-13-8, Shang-
hai, China).

Cell culture

CFs were obtained from the ventricles of neonatal Sprague—
Dawley rats (1-3 days old) by the trypsin digestion method and
characterized as previously described [27]. All experiments were

performed in cells of the second and third passage after starvation
in serum-free DMEM for 24 h.

Cell proliferation assay

CF proliferation was assessed using the CellTiter 96® AQ, cous
One Solution Cell Proliferation Assay (MTS) Kit. Cells in
exponential growth were harvested and plated in 96-well plates
at a density of 5000 cells/well in 200 ul DMEM, incubated
overnight, then starved by serum deprivation for 24 h, and treated
with various concentrations (final concentrations: 0, 0.1, 0.5, 1.0,
and 1.5 mg/ml; 0 mg/ml was designated as the control group) of

@ PLoS ONE | www.plosone.org

Effects of Pirfenidone on Cardiac Fibroblasts

pirfenidone in 10% FCS DMEM for 12, 24, 48, and 72 h. Twenty
microliters of CellTiter 96® AQ, .ous One Solution reagent MTS,
3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sul-
fophenyl)-2H-tetrazolium, was added to each well, and cells were
incubated for 1.5 h. Finally, the absorbance of the samples was
measured at 490 nm using a model 680 microplate reader (Bio-
Rad, Hercules, CA, USA). For cell number count, cell suspensions
were seeded onto 6-well plates, treated with different concentra-
tions of pirfenidone for 48 h. Then cells were resuspended and
counted under the microscope.

Collagen contraction assay

Collagen gel contraction mediated by CFs was evaluated using
a Cell Contraction Assay Kit. Briefly, cells were harvested and
resuspended in DMEM  at 4x10°% cells/ml, and the collagen
lattice was prepared by mixing two parts of cell suspension and
eight parts of cold collagen gel solution. Subsequently, 500 pl of
the cell-collagen mixture was cast into each well of a 24-well
plate and allowed to polymerize at 37°C for 1 h. After collagen
polymerization, cultures were incubated in DMEM for 2 days,
during which stress developed. Pirfenidone was added to the
culture medium at different concentrations (0, 1.0 and 1.5 mg/
ml) and incubated for 24, 48 and 72 h. To initiate collagen
contraction, polymerized gels were gently released from the
walls of the wells. To determine the degree of collagen gel con-
traction, pictures of the gels were taken in flatbed scanner, and
the area of each gel was analyzed with Quantity One soft-
ware (Bio-Rad). Data were expressed as a percentage of the
uncontracted gel size.

Migration assay

CIF migration assays were performed using a modified
Boyden chamber technique with Matrigel basement membrane
matrix-coated membranes (8 um pore size, BD Biosciences,
Bedford, MA, USA) as described previously [28]. Serum-starved
CFs (10%) were loaded into the upper chamber of the migration
apparatus. DMEM containing 0.25% FCS was introduced
into the lower chamber as chemotactic stimulus. Pirfenidone
at different concentrations (0, 0.5, 1.0 and 1.5 mg/ml) were
added to the upper and lower chambers of the experimental
wells. After incubation for 24 h at 37°C in a tissue culture
incubator, inserts were collected and rinsed several times.
Adherent non-migratory cells on the upper side of the mem-
branes were rubbed off with a moist cotton swab. Migrated cells
on the underside of the membrane were visualized by crystal
violet staining and photographed using a light microscope
(Olympus BX61, Tokyo, Japan). Migration was quantified by
counting the invaded cells in 10 random high power fields
(x400) for each membrane.

RNA isolation and real-time PCR analysis

After being treated with 0, 0.5, 1.0 or 1.5 mg/ml pirfenidone
for 48 h, total RNA was extracted from the CFs using Trizol
reagent according to the manufacturer’s instructions and quanti-
fied using UV spectrophotometry. cDNA was generated from 1 pg
total RNA using an AMV Reverse Transcriptase Kit. Real-time
PCR was performed in an Applied Biosystems 7300 Fast Real-
Time PCR System (Foster City, CA, USA) with SYBR Green
PCR Master Mix. Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) mRNA amplified from the same samples served as an
internal control. The relative expression of each targeted gene was
normalized by subtracting the corresponding GAPDH threshold
cycle (Ct) values using the AACt comparative method. The
sequences of all primers used in this work are as follows: a-SMA:
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5"-AGCCAGTCGCCATCAGGAAC-3’" and 5'-CCGGAGCCA-
TTGTCACACAC-3'; TGF-B1: 5'-TGCGCCTGCAGAGATT-
CAAG-3’" and 5'-AGGTAACGCCAGGAATTGTTGCTA-3;
IL-10: 5'-CAGACCCACATGCTCCGAGA-3" and 5'-CAAGG-
CTTGGCAACCCAAGTA-3'; MMP-9: 5'-TCCAGTAGACAA-
TCCTTGCAATGTG-3" and 5'-CTCCGTGATTCGAGAAC-
TTCCAATA-3"; TIMP-1: 5'-ACAGGTTTCCGGTTCGCC-
TAC-3" and 5'-CTGCAGGCAGTGATGTGCAA-3'; and GAP-
DH: 5'-GGCACAGTCAAGGCTGAGAATG-3" and 5'-ATGG-
TGGTGAAGACGCCAGTA-3'".
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Protein extraction and western blot analysis

After being treated with 0, 0.5, 1.0 or 1.5 mg/ml pirfenidone
for 48 h, cells were lysed with lysis buffer [1% Triton X-100,
20 mM HEPES (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM
EGTA,1 mM DTT, 1 mM B-glycerol-phosphate, I mM NazVOy,
1 mM PMSF, and 10 pg/ml each of leupeptin, aprotinin, and
pepstatin]. The cell extract protein concentration was quantified by
the BCA assay. Equal protein (30 pg) amounts of the lysates were
separated by 4-12% gradient SDS-PAGE and transferred to a
nitrocellulose membrane. The membranes were blocked with 5%
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Figure 1. Pirfenidone inhibited proliferation of CFs. A. MTS assay. Cells with 10% FCS were treated with 0, 0.1, 0.5, 1.0 or 1.5 mg/ml
pirfenidone for 12, 24, 48 or 72 h. Data are expressed as mean = SEM (n=5). B. Cells with 10% FCS were treated with 0, 0.1, 0.5, 1.0 or 1.5 mg/ml
pirfenidone for 48 h. Cells were resuspended and counted under the microscope. Data represent mean = SEM. C. Representative examples of Ki67
staining in CFs, scale bar=50.0 um. D and E. Ki67 or TUNEL labelling index of the different groups expressed as a percentage of the control. Data
represent mean = SEM. Representative examples of TUNEL staining in CFs are shown in Figure S1. ¥P<<0.05, **P<<0.01, versus control.

doi:10.1371/journal.pone.0028134.g001
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skimmed milk in Tris-buffered saline with Tween-20, and sub-
sequently incubated overnight at 4°C with anti-a-SMA monoclonal
antibody (1:2000), washed, and then incubated with horseradish-
peroxidase-conjugated secondary antibody (1:5000) for 1 h at room
temperature. Immunoreactive bands were visualized using en-
hanced chemiluminescence reagent, and quantified by densitome-
try with the Bio-Rad Universal Hood and Quantity One software.
Protein levels of o-SMA were standardized by comparison with
respective levels of B-tubulin.

Immunocytochemistry and TUNEL assay

CFs were plated on cover slides in six-well culture plates and
treated with 0, 0.5, 1.0 or 1.5 mg/ml pirfenidone for 48 h, fixed
with 4% paraformaldehyde, and permeabilized with 0.3% Triton
X-100. The cells were blocked with 10% normal goat serum,
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incubated with primary antibodies to Ki67 (1:50) and a-SMA
(1:500), respectively. After incubation with the primary antibodies,
cultures were rinsed in PBS and incubated in either Alexa Fluor
488 or rhodamine-conjugated secondary antibodies. Nuclei were
stained with 4’,6-diamidino-2-phenylindole (DAPI). For TUNEL
assay, dead cells were detected using the Fluorescein FragEL™
DNA Fragmentation Detection Kit following the manufacturer’s
instructions. Fluorescent staining was visualized on a BX-61
microscope (Olympus). The labeling index of Ki67 or TUNEL
(the percentage of positively stained nuclei) was calculated in 10
random high power fields (x400).

Gelatin zymography
Relative levels of MMP-9 in cell culture supernatants were
determined by zymography. Cell-free culture supernatants were

DAPI

a-SMA

Merge

Figure 2. Effects of pirfenidone on u-SMA expression. CFs were treated with 0.5, 1.0 or 1.5 mg/ml pirfenidone for 48 h. A. Effects of
pirfenidone on a-SMA mRNA expression of CFs were determined by real-time PCR. B. Effects of pirfenidone on a-SMA protein expression in CFs were
determined by western blotting. Upper panel shows a representative immunoblot, and the lower panel the pooled relative values of densitometric
scanning. C. Effects of 1.0 or 1.5 mg/ml pirfenidone on o-SMA expression and morphological changes of CFs were determined by
immunofluorescence staining with anti-a-SMA antibody. Scale bar=50.0 um. Data are the mean = SEM, *P<C0.05 versus control.

doi:10.1371/journal.pone.0028134.g002
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harvested at 48 h after treatment with pirfenidone at different
concentrations (0, 0.5, 1.0 and 1.5 mg/ml), samples were stored at
—70°C, and their protein concentrations were determined by BCA
assay. Equal protein amounts were loaded onto Novex 10%
zymogram gels containing 0.1% gelatin and separated under non-
reducing conditions. Gels were washed with renaturing buffer for
30 min and incubated at 37°C in developing buffer. After 20 h,
gels were stained with the Colloidal Blue Staining Kit according to
the protocol. Gels were scanned, and density analysis of the bands
was performed using Quantity One software.

ELISA

Secretion of TGF-f1, IL-10 and TIMP-1 in the culture
supernatants of CFs with or without pirfenidone treatment (0,
0.5, 1.0 and 1.5 mg/ml for 48 h) was determined by ELISA using
the commercially available kits, according to the manufacturer’s
instructions. Absorbance was measured at 450 nm using a
microplate reader. Results were compared with a standard curve
constructed by titrating standards respectively. The cellular
protein contents per culture flask were determined with the BCA
assay. All forms of concentrations were standardized to respective
cellular protein contents, transformed to pg/pg (cellular protein),
then expressed as a percentage of the controls.

Cytotoxicity assay

Cell viability was assessed both by the trypan blue exclusion test
and by measuring the release of lactate dehydrogenase (LDH). For
trypan blue exclusion test, following treatment with different
concentrations of pirfenidone (0, 0.5, 1.0 and 1.5 mg/ml) for the
specified time periods (24, 48 and 72 h), CFs were harvested and
labeled with trypan blue (0.4% in PBS). Trypan-blue-positive and
-negative cells were calculated with a hematocytometer. Trypan-
blue-negative cells were regarded as viable cells. The percentage
cell viability was calculated using the following formula: % cell
viability (viable cell count/total cell count) x100. In assays
investigating LDH activity, after treatment with different con-
cerntrations of pirfenidone, the culture medium was collected and
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assayed using the LDH Cytotoxicity Detection Kit according to
the manufacturer’s instructions. Cell death was determined as
LDH release, expressed as a percentage of the mean absorbance
measured in untreated control cultures.

Statistical analysis

Data are expressed as the mean £ SEM of at least three
independent experiments, unless otherwise stated. Differences
among groups were tested by one-way ANOVA. A value of
P<0.05 was considered statistically significant.

Results

Effects of pirfenidone on CF proliferation

MTS assay (Figure 1A) showed that, at concentrations of 0.1,
0.5, 1.0 and 1.5 mg/ml, pirfenidone inhibited proliferation of CFs
in a dose- and time-dependent manner compared with the control
group. A time course experiment with 1.5 mg/ml pirfenidone
suggested that the maximal inhibitory response was observed after
48 h treatment. The significantly inhibited cell proliferation of CFs
after treatment with different concentrations of pirfenidone for
48 h was also validated by the cell counting results (Figure 1B).
Further assessment of proliferative activity of CFs was performed
by immunostaining of Ki67, a cellular marker for proliferation
(Figure 1C). Quantification showed a significant decrease in
proliferating CFs following pirfenidone treatment (Figure 1D),
with no significant increase in apoptosis compared with control
(Figure 1E and Figure S1).

Effects of pirfenidone on a-SMA expression and collagen
contraction

Myofibroblast differentiation is perceived to be important for
the development of cardiac fibrosis. Therefore, we investigated the
effects of pirfenidone on CF differentiation. The expression and
organization of o-SMA are hallmarks of myofibroblast differen-
tiation. Real-time PCR and western blotting were used to detect o-
SMA expression after 48 h treatment with 0.5, 1.0 or 1.5 mg/ml

120 —— control

- 1.0 mg/ml
= 1.5 mg/ml

Incubate time

Figure 3. Pirfenidone inhibited the ability of CFs to contract collagen gels. CFs were seeded in collagen lattice in the absence or presence
of pirfenidone at concentrations of 1.0 and 1.5 mg/ml. Cell contractility was assessed by measuring the reduction in the surface area of the collagen
gel discs for the times shown (1-3 days). A. Photographs of one representative experiment. B. Graphic representation of the mean = SEM. *P<0.05

versus control.
doi:10.1371/journal.pone.0028134.g003
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pirfenidone, which showed that doses of 1.0 and 1.5 mg/ml
significantly inhibited o-SMA expression at both the mRNA and
protein levels in CFs (Figure 2A, B).

In addition, effects of pirfenidone on myofibroblast differenti-
ation were further investigated by immunofluorescence. Staining
for a-SMA was used to visualize actin stress filaments and cellular
morphological changes in CFs. Immunofluorescent analysis
revealed that 1.0 and 1.5 mg/ml pirfenidone markedly decreased
formation of stress fibers and brightness of a-SMA staining in CFs
induced by 10% serum (Figure 2C).

To determine the effect of pirfenidone on ECM contraction
induced by CFs, CFs were seeded in free-floating collagen gels and
incubated in the presence or absence of pirfenidone for 24, 48 and
72 h. Pirfenidone at 1.0 and 1.5 mg/ml significantly inhibited
collagen lattice contraction by CFs, when compared with the
control group (Figure 3).

Effects of pirfenidone on CF migration

To examine the effects of pirfenidone on CF migration, a
modified Boyden chamber assay was used, in which cell culture
inserts were coated with a thin layer of the Matrigel basement
membrane matrix, to mimic the # viwo situation of cellular
migration, which includes two distinct phases: degradation of
ECM, followed by cellular migration towards a chemotactic
stimulus. After 24 h incubation, fewer cells were observed on the
bottom side of the polyethylene terephthalate membranes in
pirfenidone-treated groups (0.5, 1.0 and 1.5 mg/ml) when
compared with the control group. This indicated that pirfenidone
significantly impeded the capability of CFs to invade across the
layer of the Matrigel matrix (Figure 4).

Effects of pirfenidone on MMP-9, TIMP-1 synthesis and
secretion

The migratory activity of CFs is believed to be directly
proportional to the MMP activity and inversely proportional to
the TIMP activity, hence the synthesis and secretion of MMP-9
and TIMP-1 were further investigated in CFs treated with or
without pirfenidone. Real-time PCR showed that treatment with
pirfenidone resulted in a dose-dependent decrease in MMP-9
mRNA expression, whereas TIMP-1 mRNA levels were increased
by pirfenidone dose-dependently. In addition, gelatin zymography
indicated that the inhibitory effect of pirfenidone on MMP-9
activity in cell culture supernatants was dose-dependent, with
maximal MMP-9 inhibition at 1.5 mg/ml for 48 h incuba-
tion. ELISA also showed that pirfenidone stimulated TIMP-1
secretion in cell culture supernatants in a dose-dependent manner
(Figure 5).

Effects of pirfenidone on TGF-f1 and IL-10 synthesis and
secretion

Expression and secretion of TGF-f1 and IL-10 by CFs was
investigated at both mRNA and protein levels. As shown in the
upper panel of Figure 6, exposure of CFs to pirfenidone led to a
decrease in TGF-B1 transcription, and on the contrary, IL-10
mRNA expression levels were elevated. Next, the secretion of
TGF-B1 and IL-10 from the cell culture supernatants was
examined by ELISA. As shown in the lower panel of Figure 6,
adding pirfenidone to CFs resulted in decreased TGF-B1 secretion
but enhanced IL-10 secretion significantly. Additionaly, as it is
well-recognized that Ang II is an effective inducer of TGF-B1, we
further investigated the effects of pirfenidone in Ang II-stimulated
CFs, and results showed that pirfenidone also attenuated Ang II-
stimulated TGF-B1 expression significantly (Figure S2).

@ PLoS ONE | www.plosone.org
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Figure 4. Pirfenidone inhibited migration of CFs. A. Represen-
tative images of CFs migrating to underside of membrane after 24 h in
presence or absence of 0.5, 1.0 or 1.5 mg/ml pirfenidone. Pores in the
membrane are visible as dark circles. Scale bar=50.0 um. B. Pooled data
expressed as percentage migration observed with controls. Data
represent mean = SEM, *P<<0.05 versus control.
doi:10.1371/journal.pone.0028134.g004

Toxicology of pirfenidone

To exclude the possibility that the antifibrotic effects of
pirfenidone were mediated by cellular toxicity, the trypan blue
exclusion test and LDH release assay were carried out to examine
the viability of CFs after administration of pirfenidone at different
concentrations and time periods. Results indicated that at the
tested concentrations and time periods, pirfenidone had no
significant cytotoxicity effect on cultured CFs (Figure 7). This
suggests pirfenidone might exert its antifibrotic effects in a non-
cytotoxic manner.

Discussion

The present study was designed to determine whether
pirfenidone has direct cellular effects on CF functions that are
important in the cardiac remodeling process. We demonstrated
that pirfenidone: (1) inhibited proliferation of CFs; (2) inhibited
myofibroblast differentiation, collagen contractility and migratory
ability of CFs; (3) reduced the synthesis and secretion of MMP-9
and increased that of TIMP-1, i.e., decreased the ratio of MMP9/
TIMP-1 in CFs; and (4) decreased the synthesis and secretion of
TGF-B1 but enhanced that of IL-10 in CFs.
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Figure 5. Effects of pirfenidone on MMP-9 and TIMP-1 synthesis and secretion. CFs were treated with 0.5, 1.0 or 1.5 mg/ml pirfenidone for
48 h. A. Upper panel: MMP-9 mRNA expression determined by real-time PCR. Lower panel: MMP-9 activity determined by gelatin zymography.
Representative gelatin zymogram is shown. Graphic representation of pooled data depicts densitometric analysis of MMP-9 band intensity. B. Upper
panel: TIMP-1 mRNA expression determined by real-time PCR. Lower panel: TIMP-1 protein secretion determined by ELISA. Data represent mean =

SEM, *P<<0.05 versus control.
doi:10.1371/journal.pone.0028134.g005

Pirfenidone is a novel, broad spectrum antifibrotic agent. Its
antifibrotic effect was first described in 1995 in a hamster model of
bleomycin-induced lung fibrosis [29], and since then, its beneficial
effects have been confirmed in several animal models with
fibrosing diseases in different organs. It has been reported that
pirfenidone inhibits cardiac fibrosis in several animal models, and
in one recent study in a rat model of myocardial infarction [15], it
was shown that pirfenidone is able to improve cardiac function,
reduce infarct dense scarring, and attenuate left ventricular fibro-
sis. Together with results from earlier publications [13,16,17],
there is strong evidence that pirfenidone has antifibrotic effects
during adverse cardiac remodeling. However, although results

@ PLoS ONE | www.plosone.org

from these m vivo studies suggest that CFs represent the major
targets of pirfenidone, the effects of pirfenidone on isolated and
cultured CFs are at present largely unknown.

CF proliferation is vital for ventricular remodeling. The
mnhibitory effect of pirfenidone on proliferation has been illustrated
in a variety of cell types in vitro [18-23]. In the present study, by
using different methods, we showed that pirfenidone inhibited CIF
proliferation in a dose- and time-dependent manner. Furthermore,
at the tested doses, pirfenidone did not induce any significant
changes in the viability of cells treated with pirfenidone compared
with that in control cultures, as detected by TUNEL assay, trypan
blue exclusion test and LDH assay. Therefore, the antiprolifera-
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Figure 6. Effects of pirfenidone on TGF-f1 and IL-10 synthesis and secretion. CFs were treated with 0.5, 1.0 or 1.5 mg/ml pirfenidone for
48 h. A. Upper panel: TGF-B1 mRNA expression determined by real-time PCR. Lower panel: TGF-f31 protein secretion determined by ELISA. B. Upper
panel: IL-10 mRNA expression determined by real-time PCR. Lower panel: IL-10 protein secretion determined by ELISA. Data represent mean = SEM,

*P<0.05 versus control.
doi:10.1371/journal.pone.0028134.g006

tion effect was probably not due to a direct cytotoxic effect of
pirfenidone. CFs represent the largest class of cells residing in the
heart, and the proliferation of CFs is the main characteristic of
myocardial fibrosis. Hence, these results indicate the potential
effectiveness of pirfenidone in the treatment of cardiac fibrosis.
The phenotypic transformation of CIs to myofibroblasts is
perceived to be another key event in the wound-healing and
remodeling processes. Myofibroblasts are highly active cells that
express 0-SMA, and exhibit increased proliferative, migratory and
secretory properties. Under normal circumstances, the myofibro-
blasts are scavenged from the repaired wound site by apoptosis
[30,31]. However, persistence of myofibroblasts can facilitate
hypertrophic scarring and fibrosis, which results in myocardial
stiffness and impairment of cardiac function [32,33]. Prevention of

@ PLoS ONE | www.plosone.org

myofibroblast differentiation might therefore represent a potential
target for therapies aimed at limiting fibrosis in the heart. In this
study, we found that pirfenidone attenuated the a-SMA expression
in CFs, and decreased their collagen contractility.

Another important step in the remodeling process is activation
of MMPs that are necessary for degrading the basement
membrane matrix, a prerequisite for both cell proliferation and
migration i vivo. TIMPs are locally synthesized proteins that bind
to active MMPs and thereby regulate net proteolytic activity,
therefore the MMP-TIMP axis plays a crucial role in cardiac
remodeling. Cardiac MMP-9 activity is increased in animal
models of heart injury [34,35] and in HF patients [36,37], and
targeted deletion of MMP-9 attenuates myocardial remodeling in
mice [38]. In a recent study [39], by constructing a recombinant
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Figure 7. Cytotoxicity effects of pirfenidone on CFs. Following treatment with different concentrations of pirfenidone (0, 0.5, 1.0 and 1.5 mg/
ml) for the specified time periods (24, 48 and 72 h). Trypan blue exclusion test (A) or LDH assay (B) was carried out to examine the cytotoxicity effects
of pirfenidone on CFs. Data represent mean * SEM. P>0.05 versus control.

doi:10.1371/journal.pone.0028134.9g007

protein encoding catalytic domain of MMP-9, it was shown that
MMP-9 induces CFs migration, differentiation and cytokine
secretion directly. Previously, it has been reported [16] that
pirfenidone attenuates MMP-9 expression in the atrial tissue in a
canine chronic HF model. Our results showed that addition of
pirfenidone to CFs significantly decreased MMP-9 mRNA
expression and activity. In addition, elevated mRNA and protein
levels of TIMP-1 were observed after pirfenidone treatment in this
study. It has been demonstrated that MMP levels are high and
TIMP levels are low in HF patients [37,40,41], and in particular,
the MMP-9/TIMP-1 ratio is increased in HF patients [36]. This
disparity between MMP and TIMP levels favors a persistent MMP
activation state within the myocardium and probably contributes
to cardiac remodeling in the setting of developing chronic HF.
The opposite regulatory effects of pirfenidone on MMP-9 and
TIMP-1 in CFs imply that pirfenidone is able to normalize the
balance between MMPs and TIMPs, which may serve as an
important mechanism underlying its cardioprotective effects.
TGF-B1 is now the most well-investigated profibrotic cytokine,
it’s crucial role in cardiac remodeling has been well recognized [42]
and i vitro studies have confirmed that it can enhance myofibroblast
differentiation of CFs significantly [43,44]. Many studies have
shown that pirfenidone can reduce production of TGF-B1 in vitro
[20,45] and i wiwo [46-49], and one study in particular has
demonstrated that pirfenidone prevents congestive-HF-induced
TGF-B1 overexpression in the atrium [16]. In the present study,
we found similar results: pirfenidone treatment reduced both the
synthesis and secretion of TGF-B1 in cultured CFs. In a previous
study using a murine model of endotoxic shock [50], it has been
shown that the production of IL-10, which is recognized as an anti-
inflammatory cytokine, was markedly enhanced after administra-
tion of pirfenidone. In this study, we found that the synthesis and
secretion of IL-10 were also increased in cultured CFs, as a result of
pirfenidone treatment. The antifibrotic effects of IL-10 have been
reported in different animal models of liver [51], airway [52] and
kidney [53] fibrosis, in addition, it has been shown that IL-10
inhibits proliferation and a-SMA expression in cultured neonatal
CFs [54]. Thus, augmentation of IL-10 expression might be another
mechanism that underlies the antifibrotic effects of pirfenidone.
Taken together, we illustrated that pirfenidone could further exert

@ PLoS ONE | www.plosone.org

its antifibrotic effects by modulating cytokine secretion in CFs,
suppressing cytokine TGF-B1 production, but on the other hand,
enhancing that of IL-10.

In summary, the results of the present study suggest that
pirfenidone is able to exert its antifibrotic effect in CFs in a direct
manner, and acting at both a cellular and a molecular level. At a
cellular level, pirfenidone inhibited CF proliferation, contraction
of collagen, and migration; and at a molecular level, pirfenidone
reduced a-SMA expression, decreased the MMP-9/TIMP-1 ratio,
and suppressed profibrotic cytokine TGF-B1 production, but
enhanced that of anti-inflammatory cytokine IL-10. Although the
detailed mechanisms underlying these effects remain to be
determined, it is unlikely that they are the results of cytotoxicity.
Coupled with the results of previous in vive studies, we propose that
pirfenidone may be a promising candidate for the treatment of
cardiac fibrosis during pathological myocardial remodeling.

Supporting Information

Figure S1 Representative examples of TUNEL staining
in CFs. Cells with 10% FCS were treated with 0, 0.5, 1.0 or
1.5 mg/ml pirfenidone for 48 h. Nuclei were stained with DAPI
(blue), no significant increase in TUNEL staining (green) was
observed in pirfenidone-treated groups. Scale bar =50.0 pum.

(TIF)

Figure S2 Effect of pirfenidone on Ang II-induced TGF-
Bl expression. CFs were cotreated with 100nM Ang II and
different concentrations of pirfenidone (0, 0.5, 1.0 or 1.5mg/ml)
for 24 h. A. TGF-B1 mRNA expression determined by real-time
PCR. B. TGF-B1 protein secretion determined by ELISA. Data
are the mean £ SEM, *P<<0.05 versus control; #P<<0.05 versus
Ang Il-stimulated cells.

(TTF)
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