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InTRoduCTIon

The obligate biotrophic ascomycete Cymadothea trifolii (Dothi­
deomycetes, Ascomycota) is the causal agent of sooty/black 
blotch of clover. Although the fungus is not regarded as a seri-
ous agricultural pathogen, it has a significant impact on clover 
plantations used for animal nutrition, and is often found at 
natural locations. In one study it was observed that sooty blotch 
was “the most frequently recorded disease” at sampling sites in 
England and Wales, with the number of leaves damaged rang-
ing from 4–21 % (Lewis & Thomas 1991). Cymadothea trifolii 
is widespread on Trifolium species (Fabaceae), but has also 
been reported on alfalfa (Medicago sativa) (Puschner 2005). 
The fungus is considered a likely cause of edema, erythema, 
vesiculation and necrosis of the light pigment areas of horses 
grazing infected clover (Puschner 2005). It is characterised by 
small black pustules, the stromata, on the lower side of clover 
leaflets. The asexual state (Polythrincium trifolii) can easily 
be identified by thick-walled, melanised, sympodially growing 
conidiophores with a spiral appearance. In its sexual state it 
produces pseudothecial ascomata and spermatogonia. Infec-
tion of the host occurs via stomata (Roderick 1993, Simon et al. 
2005b). Inside the leaf the fungus proliferates intercellularly, but 
forms an intricate interaction apparatus (IA) to obtain nutrients 
from its host (Simon et al. 2004). During the interaction with 
the attacked host cell the wall of the latter is partially degraded. 
Pectins are dissolved while cellulose and xyloglucans remain 
intact (Simon et al. 2005a). This structure is thus far unique 
among ascomycetes. 

Although the morphology of C. trifolii has been accurately docu- 
mented (Wolf 1935), no molecular evidence is currently avail-
able to clarify its taxonomy. Due to the unique interaction this 

obligate pathogen has with its host, the aim of the present study 
was to obtain DNA sequence data to resolve its phylogenetic 
position. 

MATERIALS And METHodS

Sampling

Infected leaves of Trifolium repens were collected at the edge 
of an alfalfa (Medicago sativa) field near Hohenentringen 
(Tübingen, Baden-Württemberg, Germany) on 31 July 2007 
(Herbarium CBS H-20110). Furthermore, 53 species from the 
CBS culture collection were included to supplement sequences 
obtained from GenBank due to the paucity of complete small 
subunit (SSU) data of related fungal nuclear ribosomal DNA in 
GenBank (Table 1).

DNA extraction and amplification

Approximately 12 conidial stromata of C. trifolii were dissected 
from one spot of an infected leaf with a sterilised razor blade, 
and washed in 20 µL of AE-buffer (Qiagen, Hilden, Germany). 
Each stroma was examined with a light microscope to check 
for possible contaminations with other fungi. Apparently uncon-
taminated stromata were collected in a fresh drop of AE-buffer, 
gently washed, and re-examined before placing them onto 
another 20 µL drop of AE-buffer in an Eppendorf tube (1.5 mL). 
The procedure was repeated from another spot on the same 
leaf. This method was chosen because earlier attempts to iso-
late DNA of this fungus had always resulted in contaminations 
with other species of fungi (not shown). Secondly, it allowed 
us to exclude plant material. 

To break up the thick melanised cell walls of conidiophores and 
conidia, the cups containing fungal material were placed in liquid 
nitrogen for 5 min and heated immediately afterwards for 5 min 
at 96 °C in a heating block (Dri-block DB-2A, Techne, Cam-
bridge, UK). This step was repeated twice. Because little DNA 
was present in the samples, the whole genome was amplified 
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using the GenomiPhi kit (GE Healthcare, Munich, Germany) 
according to the manufacturer’s protocol: 1 µL of each sample 
was placed into 9 µL of sample buffer and placed in a heating 
block (Techne) at 96 °C for 3 min, cooled down on ice and 
mixed with 10 µL of a prepared solution consisting of 9 µL reac-
tion buffer and 1 µL enzyme mix. The resulting 20 µL solution 
was incubated for 24 h at 30.5 °C in a thermal cycler (model 
2720, Applied Biosystems, Foster City, CA, USA) equipped 
with a heated lid. Afterwards, the samples were heated up to 
96 °C for 10 min in a heating block (Techne) and subsequently 

cooled on ice to stop polymerase activity of the kit. DNA was 
extracted with the DNAeasy Plant Mini Kit (Qiagen) according 
to the manufacturer’s instructions. 

Additionally, DNA was isolated from 52 fungi of the class Dothi­
deomycetes and one fungus of the class Sordariomycetes 
from the CBS culture collection (Table 1) using a CTAB-based 
method modified from Möller et al. (1992) as described in Gams 
et al. (2007).

Polymerase chain reactions (PCRs) were performed in a total 
volume of 50 µL containing 5 µL 10 × PCR-buffer (Life Technolo-
gies, Eggenstein, Germany), 34.1 µL H

2
O, 2 µL MgCl

2
 (50mM, 

Life Technologies), 2 µL dNTPs (5 mM, Life Technologies), 1 µL 
forward and 1 µL reverse primers (25 pmol/µL each), 0.2 µL 
Bovine Serum Albumin (1 %, BSA, Sigma-Aldrich, Munich, 
Germany), 0.2 µL Taq polymerase (Life Technologies) and 5 µL 
DNA extract diluted 1 : 10. The following primers were used 
for amplification: SSU: a) forward: NS17, NS19, NS21, NS23,  
b) reverse: NS18, NS20, NS22, NS24 (Gargas & Taylor 1992); 
LSU: a) forward: LR0R (Rehner & Samuels 1994), b) reverse:  
LR5 (Vilgalys & Hester 1990). PCR was carried out on a 2720 
Thermal Cycler (Applied Biosystems) equipped with a heated 
lid. Initial denaturation and enzyme activation took place at 
94 °C for 5 min and was followed by amplification for 35 cycles. 
The parameters were as follows: 30 s at 94 °C, 90 s at either 
50, 55, 60 or 65 °C (depending on primers), 4 min at 72 °C, 
plus a final 7 min extension at 72 °C with subsequent cooling 
down to 4 °C.

Sequencing

For cycle sequencing the same primers were applied as for PCR 
using the ABI PRISM BigDye Terminator v. 3.1 Cycle Sequenc-
ing Kit (Applied Biosystems) according to the manufacturer’s 
protocol, but with a reaction volume of 10 µL, and the enzyme 
diluted 1 : 6 with the supplied dilution buffer. Electrophoresis 
and data sampling were performed on an ABI 3100 Genetic 
Analyser (Applied Biosystems). Sequences were manually 
edited with SEQUENCHERTM v. 4.1.2 (Gene Codes Corpora-
tion, Ann Arbor, Mi, USA).

Phylogenetic analyses

DNA sequences were assembled, added to the outgroup and 
complemented with further GenBank sequences using Se-
quence Alignment Editor v. 2.0a11 (Rambaut 2002). Manual 
adjustments for improvement were made by eye where neces-
sary. Any large insertions were excluded. Phylogenetic analyses 
of sequence data were done with PAUP (Phylogenetic Analysis 
Using Parsimony) v. 4.0b10 (Swofford 2003) and consisted of 
neighbour-joining analysis with the uncorrected (“p”), the Kimura 
2-parameter and the HKY85 substitution model. Alignment gaps 
were treated as missing data and all characters were unordered 
and of equal weight. Any ties were broken randomly when 
encountered. For parsimony analysis, alignment gaps were 
treated as a fifth character state and all characters were unor-
dered and of equal weight. Maximum parsimony analysis was 
performed using the heuristic search option with 100 random 
taxa additions and tree bisection and reconstruction (TBR) as 
the branch-swapping algorithm. Branches of zero length were 
collapsed and all multiple, equally parsimonious trees were 
saved. The robustness of the trees obtained was evaluated 
by 1 000 bootstrap replications (Hillis & Bull 1993). Tree length 
(TL), consistency index (CI), retention index (RI) and rescaled 
consistency index (RC) were calculated and the resulting trees 
were printed with TreeView v. 1.6.6 (Page 1996). 

Bayesian analysis was conducted on the same aligned dataset 
after MrModeltest v. 2.2 (Nylander 2004) was used to determine 
the best nucleotide substitution model for each data partition 
(18S rDNA and 28S rDNA). Phylogenetic analyses were per-

Species Strain no.1 GenBank no. 

Ascochyta fabae CBS 114.36 EU167566
Ascochyta pisi var. pisi CBS 108.26 EU167557
Ascochyta vicia­pannonicae CBS 254.92 EU167559
Ascochyta viciae­villosae CBS 255.92 EU167560
Asteroma alneum CBS 109840 EU167609
Bagnisiella examinans CBS 551.66 EU167562
Cercospora beticola CBS 116456 AY840527
Cladosporium sp. 1 CBS 280.49 EU167574
Cladosporium sp. 2 CBS 282.49 EU167586
Cladosporium sp. 3 CBS 266.53 EU167592
Cymadothea trifolii  Herbarium CBS H-20110 EU167612 (SSU)
 Herbarium CBS H-20110 EU167613 (SSU)
 Herbarium CBS H-20110 EU167610 (LSU)
 Herbarium CBS H-20110 EU167611 (LSU)
Davidiella macrospora CBS 138.40 EU167591
Davidiella tassiana CBS 723.79 EU167558
Didymella bryoniae CBS 233.52 EU167573
Didymella exitialis CBS 446.82 EU167564
Didymella phacae CBS 184.55 EU167570
Didymella rabiei CBS 237.37 EU167600
Dothidea berberidis CBS 186.58 EU167601
Dothidea muelleri CBS 191.58 EU167593
Guignardia vaccinii CBS 114751 EU167584
Kabatiella caulivora CBS 242.64 EU167576
Kabatiella microsticta CBS 342.66 EU167608
Mycosphaerella aleuritidis CBS 282.62 EU167594
Mycosphaerella arbuticola CBS 355.86 EU167571
Mycosphaerella berberidis CBS 324.52 EU167603
Mycosphaerella brassicicola CBS 174.88 EU167607
Mycosphaerella coacervata CBS 113391 EU167596
Mycosphaerella crystallina CBS 681.95 EU167579
Mycosphaerella flageoletiana CBS 114302 EU167597
Mycosphaerella fragariae CBS 719.84 EU167605
Mycosphaerella gregaria CBS 110501 EU167580
Mycosphaerella handelii CBS 113302 EU167581
Mycosphaerella harthensis CBS 325.52 EU167602
Mycosphaerella laricina CBS 326.52 EU167595
Mycosphaerella linorum CBS 261.39 EU167590
Mycosphaerella microsora CBS 100352 EU167599
Mycosphaerella milleri CBS 541.63 EU167577
Mycosphaerella punctata CBS 113315 EU167582
Mycosphaerella populicola CBS 100042 EU167578
Mycosphaerella pseudoellipsoidea CBS 114709 EU167585
Mycosphaerella punctiformis CBS 113265 EU167569
Mycosphaerella pyri CBS 100.86 EU167606
Mycosphaerella grossulariae CBS 235.37 EU167588
Mycosphaerella rosigena CBS 330.51 EU167587
Mycosphaerella rubi CBS 238.37 EU167589
Mycosphaerella stromatosa CBS 101953 EU167598
Phaeosphaeria rousseliana CBS 580.86 EU167604
Phoma exigua var. exigua CBS 118.94 EU167567
Phoma medicaginis var. medicaginis CBS 533.66 EU167575
Phoma pinodella CBS 110.32 EU167565
Phoma sojicola CBS 567.97 EU167568
Pleiochaeta ghindensis CBS 552.92 EU167561
Pleiochaeta setosa CBS 496.63 EU167563
Pseudocercospora vitis  CPC 11595 DQ073923
Ramichloridium cerophilum CBS 103.59 EU041798
Schizothyrium pomi CBS 486.50 EF134948
 CBS 406.61 EF134949
Teratosphaeria fibrillosa CPC 1876 EU019282
Teratosphaeria microspora CBS 101951 EU167572
Teratosphaeria molleriana CBS 118359 EU167583

1 CBS: Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; CPC: Culture col-
lection of Pedro Crous, housed at CBS.

Table 1   Species names, culture collection and GenBank accession numbers 
of fungal strains used in this study. The GenBank accession number is for 
the concatenated 18S rDNA, ITS1, 5.8S rDNA, ITS2 and partial 28S rDNA 
sequence, unless otherwise indicated.
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formed with MrBayes v. 3.1.2 (Ronquist & Huelsenbeck 2003) 
applying a general time-reversible (GTR) substitution model 
with gamma (G) and proportion of invariable site (I) parameters 
to accommodate variable rates across sites and with inverse 
gamma rates and dirichlet base frequencies. The Markov Chain  
Monte Carlo (MCMC) analysis of four chains started with a 
heating parameter of 0.1 from a random tree topology and 
lasted 1 031 000 generations. Trees were saved each 100 gene- 
rations, resulting in 10 311 saved trees. Burn-in was set at 
2 500 generations after which the likelihood values were sta-

tionary, leaving 7 811 trees from which the 50 % majority rule 
consensus trees and posterior probabilities were calculated. 
All trees were rooted with Asteroma alneum (Sordariomycetes) 
as outgroup taxon. 

RESuLTS

Complete SSU and partial LSU sequences were obtained for 
Cymadothea trifolii using the GenomiPhi Kit (GE Healthcares). 
Despite repeated attempts and specific primer design we were 
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Fig. 1   One of 141 equally most parsimonious trees obtained from the combined SSU and LSU sequence alignment. The scale bar shows 10 changes and 
bootstrap support values from 1 000 replicates are shown at the nodes. The tree was rooted to Asteroma alneum. The relevant order and class names are 
given on the right with family designations included for Capnodiales. D = Dothideomycetes.
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unable to obtain ITS sequences for this species. Sequence 
comparisons of the two isolations showed that both isolates 
were 100 % identical. Additionally, we were able to gener-
ate sequences from another 19 species thus far absent from 
GenBank (checked both by CoreNucleotide search of names 
and by using BLAST searches against the NCBI database, 
(http://www.ncbi.nlm.nih.gov/)). GenBank accession numbers 
are provided in Table 1.

The manually adjusted alignment contains 60 taxa plus the 
outgroup sequence. 2 419 characters including alignment gaps 
(available in TreeBASE) were used for phylogenetic analyses. 

Of these, 371 were parsimony-informative, 154 were variable 
and parsimony-uninformative, and 1 894 were constant. Neigh-
bour-joining analyses using the three substitution models on the 
sequence data yielded trees with similar overall topology and 
bootstrap support values. The parsimony analysis yielded 141 
equally most parsimonious trees (TL = 1 438 steps; CI = 0.524; 
RI = 0.855; RC = 0.448), the first of which is shown in Fig. 1. 
These trees differed mainly with regard to the order of taxa in 
the Pleosporales and in the Mycosphaerellaceae (see thick-
ened consensus lines in Fig. 1). Also, the Schizothyriaceae 
was placed within the Mycosphaerellaceae in some of these 
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Fig. 2   The 50 % majority rule tree of 7 811 trees obtained from a Bayesian analysis of the combined SSU and LSU sequence alignment. Bayesian posterior prob-
abilities are given at the nodes and the scale bar shows 0.1 expected changes per site. The tree was rooted to Asteroma alneum. D = Dothideomycetes.
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Fig. 3   Cymadothea trifolii and its anamorph Polythrincium trifolii. a. Ascomata and spermatogonia on the leaf surface; b. vertical section through spermato-
gonia; c. trichogynes arising from developing ascoma; d, e. vertical section through ascomata; f–h. fasciculate conidiophores arising from leaf tissue. Basal 
part consisting of tightly aggregated subcylindrical cells that give rise to one or more curved conidiogenous cells with flattened, darkened scars along the 
length of one side of each conidiogenous cell; i–k. conidiogenous cells with developing conidia; l. mature (0–)1-septate conidia. — Scale bars = 10 µm, except 
a = 150 µm, b = 120 µm.
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trees. MrModeltest identified the same substitution parameters 
for both data partitions. The Bayesian analysis resulted in a 
consensus tree (Fig. 2) with the same topology and clades as 
that obtained from the parsimony analysis. 

Both analyses show that C. trifolii unequivocally belongs to 
Mycosphaerellaceae s.str. (Dothideomycetes, Capnodiales) 
with M. aleuritidis, M. rosigena and Ramichloridium cerophilum 
as nearest relatives. However, the Bayesian analyses sup-
ported this cluster with a posterior probability value of 0.84 
(Fig. 2), whereas the parsimony analysis failed to provide 
bootstrap or consensus support for the association (Fig. 1). 
The Mycosphaerellaceae as family was highly supported only 
in the Bayesian analysis while many subgroupings received 
only little support or appeared paraphyletic in both analyses. 
In the parsimony analysis, the clustering of Mycosphaerella­
ceae and Schizothyriaceae were well supported but not the 
Mycosphaerellaceae in itself.

dISCuSSIon

Our analyses based upon whole nuclear ribosomal SSU and 
partial LSU (D1-D3) sequence data show that Cymadothea 
trifolii belongs to the Mycosphaerellaceae s.str. However, the 
position of this clade within the Mycosphaerellaceae remains 
uncertain due to the lack of high MP bootstrap support values 
or Bayesian posterior probabilities. Furthermore, recent stud-
ies have led to the conclusion that the genus Mycosphaerella 
is polyphyletic (Crous et al. 2007a), and that this morphology 
type occurs in several families within the Capnodiales, includ-
ing Mycosphaerellaceae, Schizothyriaceae (Batzer et al. 2008) 
and Davidiellaceae (Crous et al. 2007b, Schubert et al. 2007). 
Within the Mycosphaerellaceae, however, several genera other 
than Mycosphaerella can be distinguished. Although these are 
chiefly recognised based on their anamorphs, the fact that these 
anamorph genera are also paraphyletic within the order is cause 
for more confusion (Arzanlou et al. 2007, 2008, Cheewangkoon 
et al. 2008, Crous et al. 2007a, 2008a, b).

On a general scale, the phylogenetic placement of the included 
orders is congruent with the multi-gene phylogeny for Dothideo­
mycetes published recently (Schoch et al. 2006). The relatively 
comprehensive representation of Pleosporales is due to the 
fact that some of our preliminary analyses had pointed to the 
genus Didymella as the group to which C. trifolii might belong. 
Later we discovered that these earlier findings were due to 
contaminations (see below). We were also able to contribute 
sequences for 19 species hitherto unrepresented in GenBank, 
including M. aleuritidis and M. rosigena, which have turned 
out to be most closely related to C. trifolii. Morphologically,  
C. trifolii is a typical member of the Mycosphaerellaceae (Fig. 3),  
having spermatogonia, and hyaline, 1-septate ascospores in 
8-spored, bitunicate asci, formed in fascicles in pseudothecial 
ascomata. Its anamorph, which is placed in the monotypic 
genus Polythrincium, is passalora-like (Crous & Braun 2003), 
but should be retained as separate due to the unique morphol-
ogy of its conidiophores and arrangement of its conidial scars. 
Subsequently, based on its phylogeny and unique anamorph, 
the genus Cymadothea should be regarded as a distinct genus 
within the Mycosphaerellaceae. Apparently, the closest relatives 
of Cymadothea have yet to be found. Since this species is an 
obligate biotroph, other members of its group may turn out to be 
well-known biotrophic Mycosphaerellaceae that could thus far 
not be grown on agar media. In our analyses, only the Bayesian 
analysis provided strong support for the Mycosphaerellaceae 
with little resolution within the family. Using only LSU data, 
Crous et al. (2007a) obtained bootstrap support of 76 % and a 
posterior probability value of 0.83 for parsimony and Bayesian 
analyses respectively for the Mycosphaerellaceae. The lack 

of support for this family obtained during this study could be 
due to the high homoplasy because of the taxon sampling 
and/or selected gene regions adversely influencing the phylo-
genetic signal. Using only LSU and representatives of the 
Mycosphaerellaceae and Teratosphaeriaceae, Cheewangkoon 
et al. (2008) obtained a bootstrap support value of 88 % for the 
Mycosphaerellaceae.

To our knowledge, this is the first report of sequence data for a 
truly obligate biotrophic member of this economically important 
family, which contains thousands of serious plant pathogens, 
including some of which the genomes are, or soon will be, avail-
able, such as M. graminicola (septoria leaf and glume blotch of 
wheat) and M. fijiensis (black leaf streak of banana). During this 
study it was extremely difficult to obtain uncontaminated DNA of 
C. trifolii – a problem well known to all researchers working with 
obligate biotrophs. While the SSU sequences were relatively 
easy to obtain, more than 50 previous attempts to generate 
clear LSU sequences with a variety of primer combinations 
tested were unsuccessful. Even cloning produced no obvious 
results because contaminations were so abundant. Only after 
extremely careful removal, washing and light microscopic ex-
amination of conidiostromata and then applying the GenomiPhi 
kit (GE Healthcares), which allows amplification of DNA from 
very small samples (see Tan & Murray 2006), we succeeded in 
obtaining clear sequences. Thus, we strongly recommend using 
this kit in combination with the cleaning procedure described in 
this manuscript when there is little DNA present, or when there 
is a high risk of contamination.

Cymadothea trifolii has a hitherto unique mode of nutrient acqui-
sition via an extremely complex IA as documented in previous 
work (Simon et al. 2004, 2005b). Applying immunocytochemical 
methods it was found that C. trifolii differentially dissolves the 
host cell wall at the contact area: skeletal elements (cellulose 
and xyloglucans) are left intact, while the pectin matrix gets de-
graded (Simon et al. 2005b). Thereby the pathogen presumably 
increases the host cell wall pore size without totally disrupting 
the integrity of the attacked cell. Both the cellular interaction 
and the highly localised differential host wall degradation make 
C. trifolii at present unique among fungi.

Such an intricate cellular interaction is unlikely to have evolved 
without intermediate forms. Accordingly, there should be fungi 
producing structures resembling those of C. trifolii as shown by 
Bauer et al. (1997) for a somewhat similar kind of interaction 
in the Exobasidiales (Basidiomycota). However, these species 
have yet to be discovered. Only by widening the sampling, 
especially of biotrophic species, will we be able to tell whether 
or not this mode of interaction is mirrored in phylogenetic rela-
tionships and evolutionary trends. 
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