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Abstract

Background: Lung cancer is one of the most common forms of cancer resulting in over a million deaths per year worldwide.
Typically, the problem can be approached by developing more discriminative diagnosis methods. In this paper, computer-
aided diagnosis was used to facilitate the prediction of characteristics of solitary pulmonary nodules in CT of lungs to
diagnose early-stage lung cancer.

Methods: The synthetic minority over-sampling technique (SMOTE) was used to account for raw data in order to balance
the original training data set. Curvelet-transformation textural features, together with 3 patient demographic characteristics,
and 9 morphological features were used to establish a support vector machine (SVM) prediction model. Longitudinal data
as the test data set was used to evaluate the classification performance of predicting early-stage lung cancer.

Results: Using the SMOTE as a pre-processing procedure, the original training data was balanced with a ratio of malignant
to benign cases of 1:1. Accuracy based on cross-evaluation for the original unbalanced data and balanced data was 80% and
97%, respectively. Based on Curvelet-transformation textural features and other features, the SVM prediction model had
good classification performance for early-stage lung cancer, with an area under the curve of the SVMs of 0.949 (P,0.001).
Textural feature (standard deviation) showed benign cases had a higher change in the follow-up period than malignant
cases.

Conclusions: With textural features extracted from a Curvelet transformation and other parameters, a sensitive support
vector machine prediction model can increase the rate of diagnosis for early-stage lung cancer. This scheme can be used as
an auxiliary tool to differentiate between benign and malignant early-stage lung cancers in CT images.
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Introduction

Lung cancer, one of the most common cancer-related deaths,

accounts for 1.1 million deaths annually worldwide [1]. Although

attention has been paid to early stage predictions and diagnoses,

prognosis remains very poor, with five-year survival rates ranging

from 54% for Stage I to 10% for Stage III [2]. This emphasizes the

need for a reliable early-stage prediction process that can prolong

patients’ lives. Digital Computed Tomography (CT) is currently

widely used for lung cancer in clinical practices. However, in CT

images, lung cancer usually appears as solitary pulmonary nodule

(SPN), and share similarities with those of several benign diseases

[3]. By definition, the solitary pulmonary nodule (SPN) is a single,

spherical, well-circumscribed, radiographic opacity that measures

, = 3 cm in diameter and is surrounded completely by the aerated

lung. There is no associated atelectasis, hilar enlargement, or

pleural effusion.

With the development of science and technology, computer-

aided diagnosis (CAD) has become an auxiliary tool. To our

knowledge, using automated computerized methods, such as

image texture analysis, to predict lung cancer has been reported

widely [4–9]. Way et al. [4] extracted morphological, surface and

texture features from 256 lung nodules, and established a linear

discriminant analysis. A neural network-based computer-aided

diagnosis method of lung nodule diagnosis by combining

morphometry and perfusion characteristics to predict character-

istics of solitary pulmonary nodules was introduced by Yeh et al.

[5]. In another study, McCarville et al. [6] collected 81 pulmonary

nodules, bases on CT findings to differ benign and malignant

nature of pulmonary nodules in pediatric patients whereas Wang

et al. [7] used the gray level co-occurrence matrix and the multi-

level model to predict characteristics of pulmonary nodules. Lee

et al. [8] used a two-step approach for feature selection classifier

ensemble construction to facilitate the prediction of characteristics

of pulmonary nodules. Zhu et al. [9] presented a method to find

and select texture features of solitary pulmonary nodules (SPNs)

detected by computed tomography (CT) and evaluate the

performance of support vector machine (SVM)-based classifiers

in differentiating benign from malignant SPNs. However, of these

methods, none of them have aimed to predict early-stage lung
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cancer using texture analysis, in spite of the fact that it is crucial to

prolong the lives of lung cancer patients by promptly resecting the

cancer in its early-stage.

In previous study, they just used several morphological features

(such as Mayo Clinic model and VA model) or textural features to

predict the characteristic of nodules. In this paper, support vector

machines (SVMs) were chosen as a prediction model, using a

comprehensive set of textural features extracted by Curvelets [15]

from CT images, patient demographic characteristics, and

morphological features to predict early-stage lung cancer which

appears as SPNs. To our knowledge, this is the first time that

texture analysis was used to predict early-stage lung cancer and it

is a useful undertaking.

Materials

The data adopted in this paper was obtained from a cohort

study. The cohort study was set up in 2009 and implemented in 4

hospitals. The decision on patient inclusion and exclusion was

based on the results of the final diagnoses. The information in the

CT images was accessed by 8 radiologists; meanwhile, conflicts in

the final interpretation of the CT images were resolved by

consensus discussion. A total of 360 cases were obtained from this

cohort study. 317 cases (317/360) had only a time CT scan, where

the patient was only scanned once, and the final diagnosis of

malignant and benign cases was determined by either an operation

or biopsy. 33 cases (33/360) had at least two CT scans with a

follow-up period of 1 month to 2 years (patients were followed up

until final diagnoses were available), and the final diagnosis of

malignant and benign cases was determined by either an operation

or biopsy. 10 (10/360) cases were excluded because of the lack of

any final diagnosis.

CT scans were obtained using a 64-slice helical CT scanner (GE/

Light speed ultra System CT99, USA) with a tube voltage of 120 kV

and a current of 200 mA. The reconstruction thickness and

reconstruction intervals for routine scanning were 0.625 mm. Data

was reconstructed with a 5126512 matrix. In order to remove some

other tissues (such as muscle, vessel and bone), all of the SPNs in the

CT images were segmented manually to obtain a region of interest

(ROI), and the textural features were extracted ROI by ROI. The

region growing [10] algorithm, a popular tool for image segmenta-

tion, was used to remove any background pixels.

Training data included 317 cases which had only a time CT

scan. A total of 10,108 ROIs were acquired from 317 patients,

with 3131 benign ROI from 106 patients (58 males, 48 females)

and 6977 malignant ROIs from 211 patients (125 males, 86

females). The details are as follows (See Table 1). The training data

was used to establish a SVMs prediction model.

A total of 33 cases took at least two CT scans and the data set

did not include SPN images of the last CT scan of each case. The

reason why test data excluded the last CT scan of each case is that

radiologists would make clinical diagnoses based on the last CT

scan whatever correct or wrong and that the remaining data of the

SPNs CT images which were hard to diagnose by radiologists were

used to test the performance of a prediction model for early-stage

lung cancer. This data is summarized in Table 2.

Methods

A set of textural features extracted by Curvelets from CT ROIs,

demographic parameter and morphological features were used as

input data to establish a SVMs prediction model. As a fact that one

patient have several ROIs, so the malignance rate was used as the

variable to draw a ROC curve. The malignance rate was defined as:

malignance rate

~

the number of malignant images of one case by

prediction models

the total number of images of one case

ð1Þ

Ethics Statement
This study was performed with ethics approval (Ethics

Committee of Xuanwu Hospital, Capital Medical University,

Approval Document NO. [2011] 01). Written consent was given

by the patients.

Synthetic Minority Over-sampling Technique (SMOTE)
The data acquired from the hospitals was unbalanced (the ratio

of malignant to benign cases in the training data was 2:1). Those

data using for classification caused a bias on the training of

classifiers and resulted in lower sensitivity during detection in the

minority class examples [11]. If unbalanced data was used in this

research study, the results would have high sensitivity and low

specificity, which are undesirable results.

A data preprocessing method used to account for the

unbalanced data consists of the following two categories [12]:

under-sampling the majority class and over-sampling the minority

class. Under-sampling methods are applied to remove some

training majority class patterns to rebalance data sets, while over-

sampling methods are used to form a new minority-class sample.

Some researchers prefer over-sampling methods to under-

sampling methods because using under-sampling methods risks

the loss of majority class information.

The synthetic minority over-sampling technique (SMOTE) [13]

is one such over-sampling method. Its main idea is to form new

minority-class samples by interpolating between several minority-

class examples that lie together. In the SMOTE, instead of mere

data oriented duplicating, the positive class is over-sampled by

creating synthetic instances in the feature space formed by the

positive instances. For every minority example, its k (which is set to

5 in SMOTE) nearest neighbors of the same class are calculated,

then some examples are randomly selected from them according

Table 1. Training data set.

Number of
cases ROIs

Benign cases

Tuberculosis 33 1150

Inflammatory pseudotumor 27 808

Hamartoma 30 812

Pulmonary interstitial edema 1 189

Sclerosing hemangioma 9 93

Clear cell tumor 1 11

Chondroma 5 68

Malignant cases Glandular cancer 155 5571

Squamous carcinoma 47 1125

Adenosquamous carcinoma 7 244

Malignant carcinoid tumor 2 37

doi:10.1371/journal.pone.0063559.t001
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to the over-sampling rate. After that, new synthetic examples are

generated along the line between the minority example and

selected nearest neighbors.

Texture Extraction
Texture is a fundamental characteristic of the digital images as it

usually reflects the structure of the pictured objects. Image feature

extraction is an important step in image processing techniques.

The Wavelet transformation, a textural features extraction

method, provides a multi-resolution and non-redundant represen-

tation of signals with an exact reconstruction capability, and forms

a precise and uniform framework for the space–frequency analysis.

Although Wavelets perform very well for objects with point

singularities, they are not adequate for representing 1D singularity

[14–15]. In 2000, Candes and Donoho [16] developed the

Curvelet, a type of second generation Wavelets. As an extension of

the Wavelet multiscale analysis framework, Curvelets can effec-

tively deal with linear singularities in 2D signals [14]. The Curvelet

transformation is defined as an effective tool for finding curves at

multiple resolution levels. Several studies using Curvelet transfor-

mations in image processing have shown that Curvelet transfor-

mations yield better results [17–19].

Based on the Curvelet transformation, fourteen CT image

textural features of pulmonary nodules were extracted: Entropy,

Mean, Correlation, Energy, Homogeneity, Standard Deviation,

Maximum Probability, Inverse Difference Moment, Cluster

Tendency, Inertia, Sum-Mean, Difference-Mean, Sum-Entropy,

and Difference-Entropy. As a pre-process for classification, a

Curvelet transformation produced a representation of the pulmo-

nary nodules of CT images through multi-scale level decompo-

sition. The three scales’ Curvelet coefficients matrices (the coarse

layer, the detail layer, and the fine layer) were chosen as

candidates. ROI images were decomposed into 34 sub-bands,

resulting in the extraction of 476 textural features from each ROI.

Survey of Clinical Parameters
Three demographic parameters (age, gender, and smoking

habits) were obtained from medical histories. 9 morphological

features (including substantial changes, density of the SPNs, the

presence of spicules, caverns, vacuoles, lobulation, calcification

and ground glass in the SPNs, and area) were reported by

experienced radiologists according to the SPNs.

Table 2. Classification performance of the prediction model from the test data.

NO. Actual diagnosis CT diagnosis
Pathological
diagnosis Correct NO. Actual diagnosis CT diagnosis

Pathological
diagnosis Correct

1 Hamartoma Potentially
malignant

Benign YES 17 Glandular cancer Potentially
malignant

Malignant YES

2 Hamartoma Potentially
malignant

Benign YES 18 Glandular cancer Potentially
malignant

Malignant YES

3 Hamartoma Potentially
malignant

Benign YES 19 Glandular cancer Potentially
malignant

Benign NO

4 Hamartoma Potentially
malignant

Benign YES 20 Glandular cancer Potentially
malignant

Malignant YES

5 Tuberculosis Potentially
malignant

Benign YES 21 Glandular cancer Potentially
malignant

Malignant YES

6 Tuberculosis Potentially
malignant

Benign YES 22 Squamous carcinoma Potentially
malignant

Malignant YES

7 Hamartoma Potentially
malignant

Benign YES 23 Glandular cancer Potentially
malignant

Malignant YES

8 Tuberculosis Potentially
malignant

Benign YES 24 Glandular cancer Potentially
malignant

Malignant YES

9 Inflammatory
pseudotumor

Potentially
malignant

Malignant NO 25 Glandular cancer Potentially
malignant

Malignant YES

10 Tuberculosis Potentially
malignant

Benign YES 26 Glandular cancer Potentially
malignant

Benign NO

11 Inflammatory
pseudotumor

Potentially
malignant

Benign YES 27 Adenosquamous
carcinoma

Potentially
malignant

Malignant YES

12 Tuberculosis Potentially
malignant

Malignant NO 28 Glandular cancer Potentially
malignant

Malignant YES

13 Tuberculosis Potentially
malignant

Benign YES 29 Glandular cancer Potentially
malignant

Malignant YES

14 Hamartoma Potentially
malignant

Benign YES 30 Squamous carcinoma Potentially
malignant

Malignant YES

15 Hamartoma Potentially
malignant

Benign YES 31 Glandular cancer Potentially
malignant

Malignant YES

16 Tuberculosis Potentially
malignant

Benign YES 32 Glandular cancer Potentially
malignant

Malignant YES

33 Glandular cancer Potentially
malignant

Malignant YES

doi:10.1371/journal.pone.0063559.t002

CADs for Early-stage Lung Cancer

PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e63559



Prediction Model
As suggested by a large body of literature to date, support vector

machines can be considered good algorithms for classification in

some research fields [20–22]. In a previous study, the same results

were demonstrated by our group [23].

The support vector machine (SVM) is described as a popular

classifier based on the structural risk minimization principle.

Compared to other classifiers, the SVM aims to find the

hyperplane that maximizes the distance from the hyperplane to

the nearest examples in each class. Given a set of training vectors (l

in total) belonging to separate classes x1,y1ð Þ, x2,y2ð Þ,::, xl ,ylð Þ,
xi[Rn denotes the ith input vector and yl[fz1,{1g is the

corresponding desired output. The maximal margin classifier seeks

to find a hyperplane w : wxzb~0 to separate the training data.

In the possible hyperplanes, only one maximizes the margin (the

distance between the hyperplane and the nearest data point of

each class). The support vectors denote the points lying on the

margin border. The solution to the classification is given by the

decision function:

f xð Þ~sign
XNsv

j~1

ajyj sj ,x
� �

zb

 !
ð2Þ

Where aj is the positive Lagrange multiplier, sj is the support

vectors (Nsv in total), and k sj ,x
� �

is the function for the

convolution of the kernel of the decision function.

R 2.14.0 software was used to implement the support vector

machines and the SMOTE. The radial basis function kernel was

used as the kernel of the SVMs in this study.

Results

SMOTE for Pre-processing the Unbalanced Data Set
The distribution of 3 demographic parameters is shown in

Table 3. The original training data included images of 3131

benign ROIs and 6977 malignant ROIs, with a ratio of malignant

to benign cases of 2:1. Using the SMOTE as a pre-processing

procedure, new data including the textural texture, demographic

parameters and morphological features was generated, and the

final training data included observations of 9393 benign ROIs and

9393 malignant ROIs.

Prediction Results
In order to test the SVM model based on balanced data

whether it was sensitive to lung cancer, two methods were used:

10-fold cross-evaluation and new testing data evaluation.

Accuracy based on 10-fold cross-evaluation for the original

unbalanced data and the balanced data was 80% and 97%,

respectively. It was proven that the SMOTE algorithm would

greatly increase the performance of the prediction model.

33 cases (17 malignant cases, 16 benign cases) were chosen as

test data to evaluate the classification performance for early-stage

lung cancer. The SVM prediction model was successfully

established using 488 textural features. The information about

the cases was analyzed, and the malignance rate (Formula 1) was

adopted as the independent variable to draw ROC curves, with

the results presented in Figure 1. The area under the curve of the

SVM was 0.949 (P,0.001, accuracy was 15/17 for malignant

cases, 14/16 for benign cases). This result is summarized in

Table 2. To test data in this study, every case had a CT diagnosis

before operations and the results are shown in Table 2. CT

diagnoses of 33 cases were all potentially malignant indicating that

although through a period of follow-up time it is rather difficult to

make a clear clinical decision.

Also we did assess the change of textural features between the

first CT scan and the last CT scan based on the test data set. We

found the Curvelet textural feature (Standard Deviation) had a

great difference between benign and malignant cases. Figure 2

demonstrates the change in trend of the textural feature (Standard

Deviation) average value.

Discussion

Currently, the incidence and mortality rates of lung cancer have

ranked first among various tumors. The use of CT scans is

common in clinical practices to distinguish between benign SPNs

and malignant tumors. A meta-analysis [24] found that it has a

pooled sensitivity of 0.57 (95% confidence interval, 0.49 to 0.66)

and a pooled specificity of 0.82 (95% confidence interval, 0.77 to

Table 3. The distribution of the three demographic
parameters between benign and malignant cases.

Benign Malignance Statistic P

Smoking
habits

N (Missing) 106(0) 212(0) 2.79 0.0949

No (%) 64(60.38) 107(50.47)

Yes (%) 42(39.62) 105(49.53)

Age N (Missing) 106(0) 212(0) 46.37 ,0.0001

Mean (Std) 50.8(13.26) 62(11.54)

Median (Q1,Q3)50.5(42,60) 63(54,72)

Sex N (Missing) 106(0) 212(0) 0.78 0.3766

Female (%) 48(45.28) 85(40.09)

Male (%) 58(54.72) 127(59.91)

doi:10.1371/journal.pone.0063559.t003
Figure 1. ROC curve created by SVMs.
doi:10.1371/journal.pone.0063559.g001
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0.86) for lung cancer using CT scans. All the above researches

focused on lung cancer, and not on early-stage lung cancer. Thus,

sensitivity and specificity for early-stage lung cancer could be

poorer. Based on clinical practice, a high proportion of patients

with suspicious benign conditions who could not exclude a possible

malignancy would require further investigations or surgery, which

would increase the burden on patients. Computer-aided diagnosis

(CAD) technology has become more prevalent in assisting

radiologists with making diagnoses. To our knowledge, researches

on SPN image analysis discuss the prediction of the characteristics

of lung cancer using texture analysis, not early-stage lung cancers

which have more significant clinical value. In this study,

longitudinal data was used as test data to evaluate the classification

performance of the SVM prediction model for early-stage lung

cancer. The area under the curve of the SVM was 0.949

(P,0.001), and the model has potential competence to predict

early-stage lung cancer. Related literature has not yet been

reported.

The data obtained from the hospitals was unbalanced. Using

unbalanced data may cause a lower specificity when predicting

benign cases. In this study, the SMOTE, an over-sampling

method, was used as the pre-processing procedure to balance the

data, and the classification performance (accuracy) of the

prediction model had a great improvement from 80% to 97%.

Thus, the SMOTE is a useful method to account for unbalanced

data and can improve the capability of the models.

Several methods for extracting the textural features of images

have been developed. One of the most popular methods is a

Wavelet which is being widely used in the processing of medical

images [14–15]. Compared to Wavelets, Curvelet transformations

may provide stable, efficient, and near-optimal representations of

smooth objects having discontinuities along smooth curves [14]. As

a fundamental characteristic of the digital images, textural features

usually reflect the microcosmic structure of the pictured objects,

overlooking the macroscopic characteristics of the cases. In this

paper, textural features extracted by Curvelets, in addition to 3

patient characteristics and 9 morphological features which were

applied to describe macroscopic characteristics of tissues, were

used as input variables to establish a SVMs prediction model. This

scheme is sensitive to early-stage lung cancer and can therefore

increase the accuracy rate of diagnosis.

In this study, we found the Curvelet textural feature, Standard

Deviation, had a great difference between benign and malignant

cases. Although all the cases did not have the same date for the

previous CT scan, the textural feature (Standard Deviation) of

benign cases had an obvious increase from the first CT scan to the

last CT scan in most cases, but it was relatively steady in malignant

cases. This result could be helpful as a clue to find a biomarker for

lung cancer.

Figure 2. Change of textural features between the first CT scan and the last CT scan.
doi:10.1371/journal.pone.0063559.g002
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For 33 cases, the average CT scan per case was 3.2 times. The

mean, median, interquartile range and standard deviation of

follow-up time was 6.9, 2.0, 8.0 and 11.0 months, respectively. If

the method involved in this paper can be used in clinical practice

to help radiologists for decision making, the time for diagnoses will

shorten by 6.9 months and save the cost of 2.2 CT scans (in Beijing

China, the cost of 2.2 CT scans is about 1,000 RMB). Based on a

meta-analysis [25], direct economic cost for lung cancer patients is

different, ranging from 18,019.4 RMB per person for Stage I to

3,2534.0 RMB per person for Stage IV RMB per person in China

and it is increasing year after year. Mental burden on patients and

indirect economic cost are also important. China is one of the

countries with the highest suicide rate among cancer patients in

the world. Thus, if the scheme introduced in this study is used in

clinical practice, it can reduce economic and mental burden on

patients and prolong time of lung cancer patients. The architec-

tures of the SVM and Curvelets are simple, redressed easily, and

are appropriate for software design. It might be used in daily

radiological practice because of its advantage in not far future.

There are, however, limitations involved in this study. The time

interval between the first CT scan and the last CT scan is different

across patients.
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