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Diabetes mellitus is characterized by the body’s inability to control blood glucose levels
within a physiological range due to loss and/or dysfunction of insulin producing beta cells.
Progressive beta cell loss leads to hyperglycemia and if untreated can lead to severe
complications and/or death. Treatments at this time are limited to pharmacologic
therapies, including exogenous insulin or oral/injectable agents that improve insulin
sensitivity or augment endogenous insulin secretion. Cell transplantation can restore
physiologic endogenous insulin production and minimize hyper- and hypoglycemic
excursions. Islet isolation procedures and management of transplant recipients have
advanced over the last several decades; both tight glycemic control and insulin
independence are achievable. Research has been conducted in isolating islets,
monitoring islet function, and mitigating the immune response. However, this procedure
is still only performed in a small minority of patients. One major barrier is the scarcity of
human pancreatic islet donors, variation in donor pancreas quality, and variability in islet
isolation success. Advances have been made in generation of glucose responsive human
stem cell derived beta cells (sBCs) and islets from human pluripotent stem cells using
directed differentiation. This is an emerging promising treatment for patients with diabetes
because they could potentially serve as an unlimited source of functional, glucose-
responsive beta cells. Challenges exist in their generation including long term survival of
grafts, safety of transplantation, and protection from the immune response. This review
focuses on the progress made in islet allo- and auto transplantation and how these
advances may be extrapolated to the sBC context.
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INTRODUCTION

Patients With Insulin Deficient Forms
of Diabetes May Be Considered
for Islet Transplantation
Diabetes is characterized by the body’s inability to control blood
glucose within a tight physiological range, due to insulin
deficiency from beta cell loss or dysfunction and/or insulin
resistance. Prolonged or recurrent hyperglycemia can lead to
macro and microvascular complications, associated with
substantial morbidity and early mortality (1, 2).

Type 1 diabetes is an autoimmune attack on a patient’s own
insulin producing beta cells. If left untreated, severe insulin
deficiency leads to hyperglycemia, diabetic ketoacidosis and
potentially death. Treatment options at this time are limited to
exogenous insulin; although progress has been made in the
precision of delivery of insulin and blood glucose monitoring
(2), patients are at risk for life-threatening hypoglycemia (3).
While therapies targeted specifically at risk relatives have shown
some promise in delaying onset of disease (4) there is still no cure
for type 1 diabetes. Allogeneic islet transplantation may be
considered in highly selected type 1 diabetes patients with
either repeated severe hypoglycemic, significant glycemic
variability, or microvascular complications (usually renal
failure necessitating kidney transplant) (5). In the United
States islet allotransplant is considered investigational and only
performed in the context of a research study but is offered as
standard clinical care in areas of Canada, Europe, and elsewhere.
However, only a limited supply of suitable cadaveric donor
pancreases are available for islet isolation and transplant.

In contrast, type 2 diabetes is a condition of insulin resistance
and progressive beta cell decline (6). Patients are often treated with
oral or injectable agents that improve endogenous insulin function.
In some cases, patients with type 2 diabetes are also treated with
insulin. Because the large islet mass needed to overcome insulin
resistance is unlikely to be obtained with isolated islets, patients with
type 2 diabetes are generally not considered candidates for islet
transplantation. However, a renewable cell source could overcome
this barrier of insufficient islet mass.

While type 1 and 2 diabetes are the more common causes of
glucose dysfunction, beta cell loss and dysfunction can also occur
in the setting of persistent inflammation and stress within the
pancreas due to chronic pancreatitis (7). This is a painful and
disabling condition that can be treated with analgesics, procedural
interventions, and sometimes removal of the pancreas, rendering
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the patient without endocrine or exocrine pancreatic function.
Total pancreatectomy and intraportal islet cell autotransplantation
(TPIAT) can provide pain relief and sustained islet graft function
in these patients. In this procedure, patients receive their own islets
and therefore donor pancreases are not required. However,
because of the damage and fibrosis from pancreatitis, these
individuals usually have a sub-optimal islet mass and only about
1 out of every 3 achieves insulin independence.

In these etiologies of dysglycemia, replacement of beta cell
function is a potential treatment to alleviate glycemic variability
and reduce risk for the complications associated with long term
hyperglycemia. A common challenge is obtaining a sufficient
number of islets to successfully treat individual patients and offer
cell therapy to a larger number of patients with diabetes. Here we
review the uses of allo- and auto- islet transplantation and how
stem cell derived beta cells (sBCs) or islets may overcome
barriers and limitations currently inherent in islet
transplantation (Table 1).

Islet Allotransplantation
Allogenic transplantation of cadaveric islets as a functional
source of beta cells has become a treatment for patients with
type 1 diabetes, particularly those with either life-threatening
hypoglycemia or diabetes-related kidney failure requiring kidney
transplantation. Although whole organ pancreas transplants can
also be performed for these individuals (8–10), the appeal of islet
transplantation is the lack of major surgery and very low risk for
procedural complications. There have been improvements in
isolation of islets and the procedure is considered minimally
invasive. Initial transplants of pancreatic islets were trialed as
early as the 1970s, with initially low rates of success (11). A
turning point came with the introduction of the Edmonton
Protocol in 2000 (12)—by introducing glucocorticoid-free
immunosuppression and using multiple donors to increase
islet mass, all 7 patients transplanted in the initial Edmonton
trial achieved insulin independence. Subsequent refinements in
immunosuppression protocols have improved the longevity of
insulin independence (5, 13).

Even when insulin independence is not achieved, islet
transplantation is highly successful in preventing severe
hypoglycemia, if islet graft function is maintained (5, 14, 15).
While success of islet transplants have generally improved over
the last 20 years (5), variability in achieving insulin independence
and concern for immunosuppression impact on kidney function
(16) remain a concern. In addition, donor tissue availability
TABLE 1 | Considerations in islet transplantation.

Allotransplantation Autotransplantation Stem cell transplantation

Patient
Population

Patients with type 1 diabetes and severe hypoglycemia,
glycemic variability or microvascular complications

Patients with chronic pancreatitis
undergoing pancreatectomy

Investigational; type 1 diabetes with potential
application to other forms of diabetes

Source of
Islet Material

Cadaveric islets Autologous transplant Human pluripotent stem cells (induced pluripotent
stem cells or embryonic stem cells)

Limitations - Immunosuppression required
- Limited supply of donors

- Limited cell mass, from one’s own
diseased pancreas

-Remains investigational
- Need to scale up to sufficient functional mass to
reverse diabetes in humans
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continues to be the limiting factor of allogenic islet transplantation
as a treatment for diabetes as 2–3 donors are typically required to
obtain the necessary beta cell mass required for transplantation (17).

Despite improving long-term outcomes after islet
allotransplantation, challenges remain around the longevity of
insulin independence. Transplanted islets are subjected to non-
immune attrition, and at risk for alloimmune rejection and
recurrent autoimmunity (18–20). Immunosuppressive drugs
necessary for islet allotransplant also carry risk for beta cell
toxicity (21). Although intraportally transplanted islets are rarely
accessible for study, limited histopathology of intraportal islet
allografts have shown amyloid deposition, postulated due to
over-stimulation of insulin production from a marginal islet
mass or immunosuppressive drug toxicity (22); a recent report
documenting absence of islet amyloid in an islet autograft patient
with marginal islet mass suggests drug toxicity as a more likely
culprit (23). More recently de-differentiation of the mature beta
cell phenotype was observed in two islet allotransplant recipients,
possibly consequences of hypoxia and metabolic stress (23).
Innate immune destruction of islets stimulated upon
intraportal infusion of islets has led to study of alternate sites
for transplant , including omentum, bone marrow,
intramuscular, and subcutaneous sites, though none has yet
established the same efficacy as the liver (24–27).

As with any organ transplant, alloimmune rejection can occur
in islet transplant and is more common in patients exhibiting high
levels of HLA-sensitization pre-transplant (28–31). Unfortunately,
immune rejection is difficult to treat due to limitations in early
detection and lack of effective treatment strategies (10, 18, 32–34).
Genetically engineered human beta cell lines can be used in vivo to
augment the immune response to evaluate immune interactions
and perhaps protect transplanted beta cells from immune
destruction (35). Recurrent autoimmunity has been associated
with positive autoantibodies, but the presence of autoreactive T-
cell studies is more strongly associated with islet graft failure (36–
39). Potential strategies to address these immunologic losses
include encapsulation and use of bioengineered scaffold devices
with enhanced vascularization and/or local drug release.

Islet Autotransplantation
TPIAT is a treatment option for patients suffering from intractable
abdominal pain from chronic pancreatitis. Total pancreatectomy
provides pain relief by removing the primary source of chronic
pain but results in complete exocrine insufficiency and insulin
deficient diabetes. By combining total pancreatectomy with islet
transplantation, patients can maintain some beta cell mass with
insulin secretory capacity, in order to mitigate the severity of post-
operative diabetes (40). Unlike allotransplantation, TPIAT does
not require immunosuppression and patients serve as their own
islet donors (41). Rather the challenge with islet transplantation is
obtaining a sufficient number or mass of islets from a
diseased pancreas.

TPIAT was first performed in the 1970s at the University of
Minnesota (42) and since then has been adapted to many centers
worldwide as a treatment for chronic pancreatitis (43–46).
Because of the limitations in obtaining sufficient islet mass,
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only around one out of every three individuals is insulin
independent after the procedure, but the majority preserve
some endogenous insulin secretion benefiting glycemic control
(41). Younger age and higher islet mass transplantation are
predictors for functional graft survival (47) and normal
preoperative glucose status can also improve post-operative
graft success (48). Improvements have been made in the
isolation of the islets and minimization of ischemia to the
pancreatic islets (41). Work has been done to minimize risk of
ischemia by avoiding prolonged cold ischemia to the isolated
tissue but length of time has not been shown to have a
detrimental effect on islet isolation and location of isolation
(remote or onsite) does not affect insulin independence (49).
Although some patients have maintained insulin independence
for >10 years after TPIAT, as seen with Considerations in islet
transplantation, insulin independence, and islet graft function
wane over time (50). It is possible that metabolic strain due to
glucotoxicity, exposure to toxins and medications (51) or the
inability for islet neogenesis to occur in the liver (52) may
contribute to the observed decline in islet graft function. An
autologous renewable cell source could address the diabetes
challenges after TPIAT by increasing islet mass and providing
potential to “redose” islets later to address the apparent slow loss
of islet mass over time after the procedure. For obvious reasons,
autologous transplantation can only occur once in a patient’s
lifetime and cadaveric islets require a deceased donor, therefore a
source of renewable islet sources could benefit patients with islet
dysfunction, either due to diabetes or chronic pancreatitis.

Moving Beyond Allo and Autotransplantation
There is clearly a need for access to a renewable cell source for
allotransplantation, and for re-transplant after autotransplantation
or in chronic pancreatitis. There are some key lessons to be learned
from allo- and autotransplantation for the future of cell therapy.
From islet autotransplantation, we have functional data to establish
a dose-response in the absence of targeted immunity– Islet graft
function (C-peptide positivity) is nearly universal when a
minimum threshold of 5,000 IEQ/kg is transplanted in the
autograft setting, suggesting this may be an appropriate
minimum “dose” target for a stem cell-derived therapy
[particularly if immune barriers are fully addressed (41)]. Islet
attrition occurs due to immune and non-immune stressors, and
thus engineering the proper microenviroment for renewable cell
sources may enhance the potential for long-term benefit.
Encapsulation, engineered scaffolds, and alternate transplant sites
are particularly relevant to stem cell therapy, where encapsulation
may also both immunoprotect and to “contain” the cell product
and sites outside the liver may be desired for safety. Addressing
auto and alloimmunity, such as through encapsulation approaches,
will continue to be a need for stem cell derived therapy.

A Future for Stem Cell Derived Islets
Given the limitations of donor availability, the generation of
glucose responsive human sBCs and islets from human
pluripotent stem cells (hPSCs) are a potential future treatment
for those with diabetes. Both human embryonic stem cells
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Triolo and Bellin Cell Therapies for Diabetes
(hESCs) and induced pluripotent stem cells (iPSCs) are potential
sources of hPSCs from which sBCs can be generated. hESCs are
have been derived from blastocysts (53, 54). iPSCs are somatic
cells that can be taken from a patient blood sample or fibroblast
and reprogrammed with defined factors to the pluripotent state
(55). Both hESCs and iPSCs are able to undergo differentiation
and self-renewal to generate an unlimited source of potentially
therapeutic cells. Much work has been done to direct the
differentiation from hPSCs to the pancreatic lineage through
stepwise differentiation protocols (56–59) (Figure 1). These cells
are functionally mature (60) and display insulin secretory
properties similar to human islets (61–63). Transplantation of
stem cell derived pancreatic endoderm can mature to functional
islets in vivo in rodents (58). Further work has been done to make
this process functional and scalable (64). While in their infancy,
current and future studies are underway in humans to investigate
safety and efficacy of hPSC derived islets (NCT02239354,
NCT03163511, and NCT02939118). These advances are the
initial steps to providing renewable, functional islets to patients
with beta cell dysfunction (65).

While great progress has been made in the development of these
sBCs, there are several challenges and factors to consider. One factor
to consider is the presence of off-target or undifferentiated cells that
could interfere with the functional sBCs or be tumorigenic. Current
and future clinical approaches using partially mature (pancreatic
endoderm) or fully mature islets for implantation may reduce this
risk, but close clinical follow up will be needed.

A second consideration is the role of immunogenicity of the
sBCs or stem-cell derived islets. hESC derived cells, in the
absence of genome editing, are subject to risk for alloimmune
rejection which may require immunosuppression or
encapsulation. Using iPSCs subverts this risk of alloimmunity
and would be ideal for a cell source in TPIAT. Autologous sBCs
have been successfully derived from patients with type 1 diabetes
(62), but in this setting would remain at risk for autoimmune
attack by autoreactive T-cells against pancreatic beta cells
characteristic of type 1 diabetes. Therapeutic strategies for
delaying this autoimmune attack have shown promise in at-
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risk relatives (4) but there is not yet an accepted therapy for
halting this immune response. Even in the setting of allogeneic
islet or simultaneous pancreas-kidney transplantation, where
multi-drug immunosuppression is administered, islet
autoimmunity can recur (66). Transplanted islet exosome
profiling can be used as a way to monitor for evidence of
recurrent autoimmunity (67). This can be tracked from a
peripheral blood sample from a patient and may be a marker
of beta cell injury patients who have undergone islet
transplantation. Plasma detection of glutamate decarboxylase
(GAD-65) can serve as a marker of beta cell loss after
transplantation (68). Although hPSCs can evade allogenic
response (69) once fully differentiated, these cells lose their
immunologic privilege (70). Additionally, strategies being
explored include the use of genetically engineered immune
silent cells. Advances in genome engineering using CRISPR/
Cas9 allows for modification of hPSCs (71) and can knock out
HLA surface molecules implicated in autoimmunity (72, 73).

Pluripotent stem cells may be better poised to overcome the
immunologic challenges of allotransplantation when combined with
genetic engineering, encapsulation, or scaffolding technology.
Bioengineered scaffolds offer novel opportunity to improve islet
vascularization and optimize the islet microenvironment to protect
grafts (27, 74, 75). Macroencapsulation of sBCs have been explored
as a way to protect sBCs in vivo (76, 77) which could block
transplanted sBCs from an immune attack but provide an
environment to allow the survival of transplanted tissue. Trials
are underway of to encapsulate sBCs for transplantation (78). These
considerations will be important aspects to consider prior to
considering transplantation of sBCs.
DISCUSSION

While much progress has been made in transplantation
functional islet tissue as a treatment for diabetes, there are still
many aspects that must be faced. While sBCs and islets can be
generated on a large scale, there are still challenges to ensure
FIGURE 1 | Generation of stem cell derived beta cells from human pluripotent stem cells through a stepwise differentiation protocol. Courtesy of Dr. Holger Russ.
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protection from rejection, continued functionality and assurance
of safety. Lessons learned from allo and auto islet transplantation
will be helpful to apply in the sBC context.
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