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Abstract: The effect of gold nanoparticles (GNPs) synthesized in marine algae has been described in
the context of skin, where they have shown potential benefit. Ecklonia stolonifera (ES) is a brown algae
that belongs to the Laminariaceae family, and is widely used as a component of food and medicine due
to its biological activities. However, the role of GNPs underlying cellular senescence in the protection
of Ecklonia stolonifera gold nanoparticles (ES-GNPs) against UVA irradiation is less well known. Here,
we investigate the antisenescence effect of ES-GNPs and the underlying mechanism in UVA-irradiated
human dermal fibroblasts (HDFs). The DPPH and ABTS radical scavenging activity of ES extracts was
analyzed. These analyses showed that ES extract has potent antioxidant properties. The facile and
optimum synthesis of ES-GNPs was established using UV-vis spectra. The surface morphology and
crystallinity of ES-GNPs were demonstrated using high resolution transmission electron microscopy
(HR-TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier-transform
infrared spectroscopy (FT-IR). ES-GNPs presented excellent photocatalytic activity, as shown by
the photo-degradation of methylene blue and rhodamine B. A cellular senescence model was
established by irradiating HDFs with UVA. UVA-irradiated HDFs exhibited increased expression of
senescence-associated β-galactosidase (SA-β-galactosidase). However, pretreatment with ES-GNPs
resulted in reduced SA-β-galactosidase activity in UVA-irradiated HDFs. Intracellular ROS levels
and G1 arrest in UVA-irradiated HDFs were checked against the background of ES-GNP treatment to
investigate the antisenescence effects of ES-GNPs. The results showed that ES-GNPs significantly
inhibit UVA-induced ROS levels and G1 arrest. Importantly, ES-GNPs significantly downregulated
the transcription and translation of MMP (matrix metalloproteinases)-1/-3, which regulate cellular
senescence in UVA-irradiated HDFs. These findings indicate that our optimal ES-GNPs exerted
an antisenescence effect on UVA-irradiated HDFs by inhibiting MMP-1/-3 expression. Collectively,
we posit that ES-GNPs may potentially be used to treat photoaging of the skin.
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1. Introduction

Skin photoaging happens as a result of exposure to ultraviolet (UV) light. Only 5% of solar
radiation reaches the Earth’s surface, comprising wavelengths in the ranges of 315–400 nm (ultraviolet A
(UVA)), 280–315 nm (UVB), 100-280 nm (UVC). Specifically, UVA accounts for approximately 96.5%
of the daily UV irradiation [1,2]. UVA irradiation can penetrate the epidermal and dermal layers
of the skin, and contribute to oxidative stress, premature skin aging, and photo-carcinogenesis.
Sustained exposure to UVA affects cell growth and survival, and induces DNA damage, the production
of reactive oxygen species (ROS), and senescence-associated β-galactosidase (SA-β-galactosidase)
activity [3,4]. Repeated exposure of human dermal fibroblasts (HDFs) to UVA irradiation has been
established as a cellular senescence model to investigate certain characteristics of epidermal and dermal
skin photoaging. When HDFs are exposed to UVA irradiation, there is an increase in the production of
ROS, which leads to apoptosis, upregulation of matrix metalloproteinases (MMPs) expression, and the
induction of senescence. UVA irradiation has also been reported to directly or indirectly lead to the
release of inflammatory mediators, as well as pro-inflammatory cytokines. All these UVA-induced
factors are responsible for macro- and micro- structural deterioration of human skin [5–7].

In skin, UVA irradiation can lead to the induction of collagen fiber disorganization and
injury, substantial deposition of abnormal elastic fibers, and upregulation of glycosaminoglycans.
Prolonged exposure to UVA results in the degradation of collagen and elastin, and reduction in the
synthesis of collagen [8]. MMPs are zinc-containing endopeptidases that are able to digest various
components of the dermal extracellular matrix (ECM), such as fibrillary collagen, elastin, laminin,
proteoglycans, and fibronectin. They can be classified into five groups based on structural similarity,
as well as substrate specificity: collagenases (MMP-1, MMP-8, and MMP-13), gelatinases (MMP-2
and MMP-9), stromelysins (MMP-3, MMP-10, and MMP-11), matrilysins (MMP-7, and MMP-26),
and membrane-type-MMPs (MMP-14, MMP-15, and MMP-16). These proteins, and particularly MMP-1
and MMP-3, are thought to play a critical role in UVA-induced skin photoaging [2,9,10]. MMP-1 and
MMP-3 are mainly secreted by HDFs, and degrade fibrillary collagen and type IV collagen. Studies on
skin photoaging have shown that UVA promotes the degradation of ECM, as evidenced by a reduction
in soluble collagen in the dermis that is associated with the upregulation of MMP-1 and MMP-3 [1,9].

Secondary metabolites derived from marine algae have been identified as a novel class of agents that
can be used as cosmetic ingredients, as they have topical antibacterial, antiwinkle, anti-inflammatory and
antimelanogenic properties [11]. The secondary metabolites of marine algae play an important role in the
green synthesis of gold nanoparticles (GNPs) containing active substances with antioxidant properties.
The green synthesis of GNPs could also be mediated by marine algae extracts containing molecules that
serve as reducing, stabilizing, and capping agents [12–14]. GNPs have been used to treat a number of
diseases by virtue of their biocompatibility and unique properties, such as conductivity, optical catalytic
activity, and better structural characteristics than their bulk counterparts. GNP-based marine algae have
been investigated thoroughly, and it has been experimentally documented that they possess medicinal
properties, as well as various biological effects, such as antioxidative, antibacterial, anti-inflammatory,
and antitumor activities [15–18]. Ecklonia stolonifera is a brown alga of the Laminariaceae family
that is mainly distributed in the sea forests off the coasts of Far Eastern countries, such as Korea,
China, and Japan [19]. The pharmacological effects of Ecklonia stolonifera can be attributed to the
plant’s high levels of phlorotannins, phenolic compounds, terpenoids, steroids, and vitamins, all of
which are associated with a range of effects, such as antioxidative, antimicrobial, anti-inflammatory,
antiallergic, hepatoprotective, neuroprotective, antidermal-aging activities [20–26]. The present study
demonstrated that the Ecklonia stolonifera extract is more effective than other conventional methods
for the efficient synthesis of GNPs due to the presence of a large number of secondary metabolites
which are required for the reduction, capsulation, and stabilization of GNPs. To the best of our
knowledge, this study is the first to explore the potential antiphotoaging effects of ES-GNPs in UVA
irradiated HDFs.
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2. Results

2.1. Optimization of ES-GNPs Using the ES Reductant

In this present study, GNPs were synthesized using the ES extract as the reductant. To determine
the potential effect of the ES extract on the reduction, capsulation and stabilization of GNPs, the extracts
were investigated for radical scavenging (ABTS (2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic
acid) and DPPH (2,2-diphenyl-1-picrylhydrazyl)) activity. The results of the radical ABTS and DPPH
assays revealed that the radical scavenging activity was markedly higher after treatment with the ES
extract (Figure 1A). We assessed the potential of the ES extract to reduce a gold (III) chloride solution
that resulted in the formation of GNPs. The addition of the ES extract to the gold (III) chloride solution
at room temperature resulted in the formation of ES-GNPs, which was evident from a change in color
(light-yellow to ruby red). Freshly prepared ES-GNPs in the ES extract exhibited a strong absorption
at 543 nm in the UV region (Figure 1B). The optimized parameters for ES-GNPs were taken into
consideration for synthesizing the ES-GNPs in a simple manner. Reaction parameters for optimizing
the gold nanoparticles, such as ES extract concentration, gold(III) chloride solution concentration,
and reaction times, were taken into consideration to purify the GNPs in a quick and simple manner.
Therefore, a concentration of 1 mg/mL ES extracts (Figure 1C), 1 µM gold (III) chloride (Figrue 1D) and a
reaction time of 20 min were chosen (Figure 1E). The resulting ES-GNPs were examined using Dynamic
Light Scattering (DLS) to study their hydrodynamic size distribution, zeta potential, and polydispersity
index (PDI). The hydrodynamic size distribution, zeta potential and the PDI value of the ES-GNPs
were found to be 49.5 ± 1.0 nm,−25.23 ± 1.1 mV, and 0.287 ± 0.001, respectively (Figure 1F,G).
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Figure 1. Radical scavenging activity of Ecklonia stolonifera (ES) extract and optimization of
Ecklonia stolonifera (ES)-GNPs (gold nanoparticles). (A) 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic
acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of ES extract.
(B) UV-visible spectrum analysis of ES-GNPs. Optimization of ES-GNP synthesis using ES extract
dose (C), gold (III) chloride dose (D), and synthetic times (E). The determination of hydrodynamic size (F)
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and zeta potential (G) of ES-GNPs from DLS (dynamic light scattering). The results are given as the
UV-visible spectrum, average particle size, zeta-potential, and polydispersity index (PDI) acquired
from the examination of three different batches, each of them measured three times. Three independent
experiments are expressed as mean ± standard error of the mean (SEM). * p < 0.05 and ** p < 0.01
compared to the UVA-irradiated group.

2.2. ES-GNPs Characterization by HR-TEM/EDS

In this study the surface morphology of ES-GNPs was investigated via the HR-TEM/EDS analysis.
Typical HR-TEM micrographs displayed many spherical particles, and the ES-GNPs were found
to have an average diameter of 27.9 ± 4.3 nm with hexagonal-shaped morphology (Figure 2A,B).
The SAED Pattern showed similar diffraction patterns which confirm the nanocrystalline nature of
the ES-GNPs (Figure 2C). The FFT pattern of ES-GNPs also indicated a face-centered cubic crystal
structure, which exhibited bright circular spots (lattice planes of Bragg’s reflection (111), (200), (220),
and (311) planes) (Figure 2D). Figure 2E shows the representative red-particle image of the GNPs and
the corresponding map for the gold (Au) atoms. The distribution of the Au atoms in the ES-GNPs was
studied using High-angle annular dark-field scanning transmission electron microscopy (Figure 2F).
The EDS technique represents a precise tool for analyzing the elemental composition of ES-GNPs.
The results showed peak indexing of Au at 0.17 keV, 2.12 keV, and 9.81 keV; this corresponded to the
results of the surface plasmon resonance analysis of the ES-GNPs that can be attributed to the presence
of gold (Figure 2G). These observations suggest that it is possible to synthesize high quality ES-GNPs
using our simple method.
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Figure 2. Characterization of ES-GNPs. High resolution transmission electron microscopy (HR-TEM)
images at (A) low magnification, (B) high magnification, (C) Selected area electron diffraction (SAED)
pattern, (D) Fast Fourier transform (FFT) pattern (E,F) High-angle annular dark field (HAADF) image,
and (G) Energy dispersive spectroscopy (EDS) analysis of ES-GNPs. The results are given as the
HR-TEM images acquired from the examination, each of them measured three times.

2.3. Physicochemical Characterization of ES-GNPs

To examine the crystallization pattern of the gold atoms in the ES-GNPs, XRD measurements were
recorded, as represented in Figure 3A. The main peaks were obtained at (111), (200), (220), and (311)
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corresponding to the Bragg’s reflections, with 2θ values (30–80◦) of 37.19◦, 43.35◦, 66.82◦, and 78.51◦,
respectively. The peak of the XRD spectrum confirmed that the highly purified GNPs were composed
of crystalline gold. The “green” synthesis of GNPs involves biocompatible materials that can act as
functionalizing ligands under physiological conditions, thereby aiding in the synthesis of GNPs that are
more appropriate for biomedical applications [27]. ES extracts also provide possible functional groups
that can attach to the surface of the ES-GNPs and form a cap, leading to efficient stabilization. The FT-IR
spectra of the ES extracts and the corresponding ES-GNPs indicated extensive similarities. In particular,
the prominent peak in ES—that corresponded to that in ES-GNPs—at 3401.81 cm−1, was related to the
O–H stretch and H bonds. The peaks at 2928.15 cm−1 were attributed to the C–H stretch. Additionally,
the peaks at 1262.45 cm−1 could be attributed to the C=O stretch of aromatic compounds (Figure 3B).
These characteristic peaks of ES-GNPs corresponded with those in ES, indicating that the ES was
successfully intercalated into the ES-GNPs. On the basis of these observations, and because of the many
functional groups in the ES extract due to the presence of secondary metabolites such as phlorotannins,
phenolic compounds, terpenoids, steroids, and vitamins, it was shown that our procedure could
provide active sites for improving biocompatibility. The reduction of methylene blue and rhodamine
B was studied using sodium borohydride in the presence of ES-GNPs, and monitored by a UV-Vis
spectrophotometer. Absorption peaks corresponding to those of pure methylene blue and rhodamine B
were observed at 665 nm and 555 nm, respectively. In the presence of ES-GNPs, the intensity of the deep
blue (methylene blue) and pink-red (rhodamine B) colors gradually decreased and finally disappeared.
In Figure 3C,D, the UV-vis spectra revealed that the peak intensity completely disappeared within
8 min of addition of ES-GNPs. Based on these data, it can be seen that we have persuasively shown that
the ES extract is an important parameter for regulating the synthesis and influencing the properties
of ES-GNPs.
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Figure 3. Physicochemical characterization of ES-GNPs. (A) X-ray diffraction (XRD) pattern and (B)
Fourier-transform infrared spectroscopy (FT-IR) spectra of ES-GNPs, and UV-visible spectrum of (C)
methylene blue and (D) Rhodamine B after addition of ES-GNPs. The results are given as the XRD
pattern, FTIR spectra, UV-visible spectrum acquired from the examination, each of them measured
three times.

2.4. ES-GNPs Ameliorate SA-β-Galactosidase Activity in UVA-Irradiated Human Dermal Fibroblasts

Before evaluating the potential antiphotoaging properties of ES-GNPs, cell viability was
investigated using the Cell Count Kit 8 (CCK-8) assay. The results showed that the ES extract
and ES-GNPs (up to 200 µg/mL) did not affect cell viability (Figure 4A,B). Therefore, in all the
subsequent experiments, the cells were treated with ES extract or ES-GNPs, at doses of 100 µg/mL.
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The goal of our experiment was to examine the effect of ES-GNPs on the cellular senescence model
that involved the induction of senescence by UVA irradiation of HDFs. As senescence-associated
β-galactosidase (SA-β-galactosidase) is an important indicator of cellular senescence in models of skin
photoaging, the activity of SA-β-galactosidase in the HDFs was determined. The results indicated that
in comparison with the control group, the SA-β-galactosidase activity was markedly higher after UVA
irradiation. However, pre-exposure with ES-GNPs remarkably reduced the SA-β-galactosidase activity
(Figure 4C). We further confirmed the quantitative cellular senescence assay using flow cytometry,
and found that senescence is elevated after UVA irradiation. The SA-β-galactosidase staining levels
were remarkably higher in the UVA-irradiated group than in the control group. However, ES-GNPs
could inhibit the increase observed in SA-β-galactosidase staining levels after UVA irradiation,
indicating that ES-GNPs alleviate cellular senescence in UVA-irradiated HDFs (Figure 4D). Importantly,
ES-GNPs inhibited the SA-β-galactosidase activity in HDFs to a greater extent against the background
of UVA irradiation than the ES extracts. ES-GNPs also seemed to show more anti-SA-β-galactosidase
activity than Cit-GNPs. These results suggest that ES-GNPs alleviate senescence in HDFs by inhibiting
SA-β-galactosidase activity.
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Figure 4. ES-GNPs attenuate the SA-β-galactosidase activity in UVA-irradiated human dermal
fibroblasts. (A,B) Cell viability of ES extracts and ES-GNPs for 24 h, 48 h and 72 h, respectively, were
detected by the CCK-8 (cell count kit 8) assay. (C) SA-β-galactosidase activity was detected by using the
Senescence β-Galactosidase Staining Kit. (D) Fluorometric SA-β-galactosidase activity was detected
by using the Quantitative Cellular Senescence Assay Kit and expressed as relative fluorescence unit
(RFU). Three independent experiments are expressed as mean ± standard error of the mean (SEM).
* p < 0.05 and ** p < 0.01 compared to the UVA-irradiated group. Control: untreated and unirradiated
cells. ES extracts: ES extracts treated cells. ES-GNPs: ES-GNPs treated cells. Cit-GNPs: Citric acid
(0.25 mM)-GNPs treated cells. UVA: UVA irradiated cells. ES extracts + UVA: ES extracts treated
and then UVA irradiated cells. ES-GNPs + UVA: ES-GNPs treated and then UVA irradiated cells.
Cit-GNPs + UVA: Citric acid-GNPs treated and then UVA irradiated cells.
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2.5. ES-GNPs Inhibit ROS Production and Lysosome Content in UVA-Irradiated Human Dermal Fibroblasts

Cellular senescence is characterized by the oxidative stress that results from the accumulation of
ROS and lysosome content [28]. We conducted a CM-H2DCFDA staining assay using flow cytometry
to assess whether ES-GNPs could effectively inhibit the intracellular ROS production in UVA-irradiated
HDFs. As shown in Figure 5A, UVA-irradiated HDFs exhibited significantly increased ROS production
levels compared to the control group; however, pretreatment with ES-GNPs (100 µg/mL) inhibited the
intracellular ROS production in UVA-irradiated HDFs. To further investigate the antisenescence effect
of ES-GNPs, the reduced lysosome content of ES-GNPs was examined in UVA-irradiated HDFs by the
LysoTracker Green DND-26 detection. Figure 5B shows that irradiation with UVA markedly increased
the lysosome contents in HDFs, and that ES-GNPs inhibited the lysosome contents in UVA-irradiated
HDFs. The results also show that ES-GNPs significantly decreased the levels of intracellular ROS
and lysosome content, compared to the ES extract at an equivalent concentration in UVA-irradiated
HDFs. Thus, our data indicate that ES-GNPs suppress UVA irradiation-induced senescence in HDFs
by inhibiting ROS production and lysosome content.
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Figure 5. ES-GNPs inhibited the ROS production and lysosome content in UVA-irradiated human
dermal fibroblasts. (A) The ROS generation was measured by flow cytometry using CM-H2DCFDA
General Oxidative Stress Indicator and expressed as relative fluorescence unit (RFU). (B) The lysosome
content was measured by Flow cytometry using LysoTracker Green DND-26 and expressed as relative
fluorescence unit (RFU). Three independent experiments are expressed as mean ± SEM. * p < 0.05
and ** p < 0.01 compared to the UVA group. Control: untreated and unirradiated cells. ES extracts:
ES extracts treated cells. ES-GNPs: ES-GNPs treated cells. UVA: UVA irradiated cells. ES extracts + UVA:
ES extracts treated and then UVA irradiated cells. ES-GNPs + UVA: ES-GNPs treated and then UVA
irradiated cells.

2.6. ES-GNPs Inhibit G1 Arrest and Senescence-Related Proteins in UVA-Irradiated Human
Dermal Fibroblasts

Cellular senescence is defined as an irreversible cell cycle arrest, wherein cells undergo changes at
the chromatin and transcript levels. The effect on the G1-arrest was confirmed using the cell cycle kit
by Flow cytometry. We observed an increase in the G1-arrest in HDFs irradiated with UVA; this could
be inhibited by pre-exposing cells to ES-GNPs (Figure 6A). According to the results above, we suggest
that ES-GNPs alleviate HDF senescence. In order to further verify our hypothesis, we used western
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blot to detect senescence related proteins such as p16, p21, p-p53 and p53 in UVA-irradiated HDFs.
As shown, UVA irradiation can promote the expression of p16, p21 and p-p53. However, ES-GNPs
significantly decreased the expression of p16, p21 and p-p53 (Figure 6B). These results demonstrate
that ES-GNPs can suppress the G1-arrest via the downregulation of p16, p21 and p-p53 expression in
UVA-irradiated HDFs.Mar. Drugs 2020, 18, x FOR PEER REVIEW 8 of 15 
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Figure 6. ES-GNPs inhibited the G1 arrest and protein expression of p16, p21 and p-p53 in
UVA-irradiated human dermal fibroblasts. (A) The G1 arrest was measured by Flow cytometry
using a cell cycle kit. (B) The protein expression of p16, p21, p-p53, p53 and β-tubulin were measured
by western blot. Three independent experiments are expressed as mean ± SEM. * p < 0.05 compared
to the UVA group. Control: untreated and unirradiated cells. ES extracts: ES extracts treated cells.
ES-GNPs: ES-GNPs treated cells. UVA: UVA irradiated cells. ES extracts + UVA: ES extracts treated
and then UVA irradiated cells. ES-GNPs + UVA: ES-GNPs treated and then UVA irradiated cells.

2.7. ES-GNPs Downregulate MMP−1/−3 mRNA, Protein Expression and Secretion in UVA-Irradiated Human
Dermal Fibroblasts

HDFs are the main cells found in skin, and are responsible for the synthesis and degradation
of epidermal ECM. During the progression of skin-photoaging, there is an induction in oxidative
stress in the HDFs that results in ECM changes, leading to the degradation of the dermal skin layer.
MMP-1/-3 play a pivotal role in skin-photoaging induced by UVA irradiation [29]. Moreover, the UVA
irradiation-induced senescence in HDFs is associated with the degradation of the epidermal ECM.
Taken together, these changes in UVA irradiated HDFs contribute to the initiation and progression of
skin-photoaging. UVA irradiated HDFs exhibit upregulation of MMP-1/-3, which then upregulate
cellular senescence in UVA-irradiated HDFs [4]. To further investigate the mechanisms of the
antisenescence effect of ES-GNPs via MMP-1/-3, we studied the effects of the ES-GNPs on the
transcription and translation of MMP-1/-3 in the UVA-irradiated group. Thereafter, we analyzed
the mRNA level of MMP-1/-3 in UVA irradiated HDFs. Real time PCR revealed that ES-GNPs
decreased the mRNA level of MMP-1/-3 in HDFs irradiated with UVA (Figure 7A,B). Furthermore,
we examined whether ES-GNPs could suppress the protein expression of MMP-1/-3 in UVA irradiated
HDFs. As shown in Figure 7C,D, ES-GNPs abolished UVA-induced expression of MMP-1/-3 proteins.
Furthermore, pretreatment with ES-GNPs significantly downregulated the expression of MMP-1/-3 at
the mRNA and protein levels relative to that in the ES extract treatment. Figure 7E,F shows that the
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secretion of MMP-1/-3 was increased by UVA irradiation, and that ES-GNPs reduced the secretion
levels of MMP-1/-3 in UVA irradiated HDFs. In brief, ES-GNP resisted UVA-irradiated HDF senescence,
and these effects are based on the downregulation of the expression and secretion of MMP-1/-3.Mar. Drugs 2020, 18, x FOR PEER REVIEW 9 of 15 
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Figure 7. ES-GNPs downregulate the transcriptional, translational expression and secretion of MMP-1
and MMP-3 in UVA-irradiated human dermal fibroblasts. Real time PCR was carried out to evaluate
the mRNA expression of MMP-1 (A) and MMP-3 (B). Flow cytometry was carried out to evaluate
the protein expression of MMP-1 (C) and MMP-3 (D). The content of MMP-1 (E) and MMP-3 (F)
in cell culture supernatants was measured using ELISA kit. Three independent experiments are
expressed as mean ± SEM. * p < 0.05 and ** p < 0.01 compared to the UVA-irradiated group. Control:
untreated and unirradiated cells. ES extracts: ES extracts treated cells. ES-GNPs: ES-GNPs treated
cells. UVA: UVA irradiated cells. ES extracts + UVA: ES extracts treated and then UVA irradiated cells.
ES-GNPs + UVA: ES-GNPs treated and then UVA irradiated cells.

3. Discussion

UV irradiation-induced skin aging is a heavy extrinsic form of aging resulting in the formation
of winkles and a reduction in the levels of collagen and elastin in human skin. UVA irradiation
causes DNA damage, degradation of collagen fibers, lipid oxidation and skin aging by generating
intracellular ROS [2]. Presently used antiphotoaging candidates suffer from several shortcomings
such as poor water solubility, biodegradability and bioavailability [13,14]. Nanomaterial therapy
is one of the promising approaches to combat the aforementioned limitations associated with most
antiphotoaging candidates. Photo-aging is prevented or treated effectively by nanomaterial therapy,
whereby brown alga extracts are employed. Ecklonia stolonifera has several biological actions including
antioxidant, anti-inflammatory and antidermal-aging activities. Due to the potential of brown alga
and GNPs, our study focused on the design of Ecklonia stolonifera-based GNPs. The particle size
analysis of ES-GNPs using DLS showed average particle diameters of 49.5 ± 1.0 nm, while the PDI and
zeta potential were 0.287 ± 0.001 and −25.23 ± 1.1 mV, respectively, demonstrating good dispersion.
A particle size analysis of the ES-GNPs showed dimensions of 27.9 ± 4.3 nm with spherical shape
morphologies, as confirmed by HR-TEM. The physicochemical properties of the ES-GNPs were
successfully studied by DLS, HR-TEM, EDS, XRD and FT-IR. The EDS, XRD and FT-IR spectra exhibited
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expected functional groups, confirming the successful reduction, stabilization and capsulation of
Ecklonia stolonifera extracts onto GNPs.

UVA is skin photoaging inducer causing significant cellular senescence and ECM damage [9].
Hence, there is a need to develop interventions to protect against its effects. We conducted the present
study using ES-GNPs to examine cell viability, SA-β-galactosidase activity, ROS production, lysosome
content, the expression of senescence related proteins, expression and secretion of MMP-1/-3 UVA
irradiated HDFs. The HDF cytotoxicity of the ES extract and ES-GNPs was first evaluated using
a CCK-8 assay; ES extract and ES-GNPs demonstrated cytotoxicity in a concentration-dependent
way. The most common cellular senescence was characterized by SA-β-galactosidase activation.
A hypothetical hydrolase, e.g., SA-β-galactosidase, is commonly used as an indirect essential maker of
senescent cells. There is evidence showing that the HDF senescence caused by UVA irradiation could
cause the increase of SA-β-galactosidase activity [4]. In our study, UVA irradiation caused an increase
in SA-β-galactosidase activity in HDF, while intervention with ES-GNPs noticeably diminished the
impact thereof.

It is generally accepted that cellular senescence can accumulate intracellular ROS production.
Furthermore, a study demonstrated that a high lysosome content may play a significant role in the
process of the HDF senescence, which is stimulated by UVA irradiation [3]. Our results were in
accordance with previous studies, as we found essential mediators for the promotion of UVA-irradiated
HDF senescence, which was also evident by the ROS production and lysosome contents. This increase
was further attenuated significantly by ES-GNPs. Therefore, the inhibition of ROS production and
lysosome contents was due to the ability of ES-GNPs to reduce HDF senescence by stimulating UVA
irradiation. Senescence related proteins including p16, p21 and p-p53 have also been proposed to
play a critical role in UVA-irradiated HDF senescence [4]. In our study, we found that treatment with
ES-GNPs inhibited the expression level of p16, p21 and p-p53, indicating the dependence of p16,
p21 and p-p53 in ES-GNP-initiated anticellular senescence effects.

UVA irradiation not only affects the HDF functions, but also regulates the collagen
microenvironment which, in turn, promotes MMPs expression. Thus, this alteration is a prominent
feature of UVA-photoaged HDF. In particular, MMP-1/-3 is frequently expressed in HDF and plays
an important role in HDF senescence. MMP-1/-3 inhibitors have been shown to improve anticellular
senescence effects and decrease the SA-β-galactosidase activity and expression levels of senescence
related proteins [9,10]. Therefore, crosstalk between the UVA irradiated HDF senescence and MMP-1/-3
needs further investigation. In the present study, ES-GNPs were shown to hinder the expression and
secretion of MMP-1/-3 that perform vital roles in the development of UVA irradiated HDF senescence.

4. Materials and Methods

4.1. Reagents

In this study, 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 3-(4,5-dimethythiazol-
2-yl)-2,5 diphenyltetrazoliumbromide (MTT), chloroauric acid (HAuCl4·3H2O), dimethyl sulfoxide
(DMSO), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and other chemicals were obtained from Sigma-Aldrich
(St. Louis, MO, USA). All chemicals were of analytical grade.

4.2. Free Radical Scavenging Assay

The DPPH radical scavenging activity of ES extracts was determined by following a previously
published method [30], with slight modifications. ES extracts were mixed with DPPH solution (60 µM)
in 24 well microplates. The samples were shaken vigorously and then incubated at 25 ◦C for 2 h
in the dark; then, the optical density was measured at 510 nm on a FLUOstar Omega Plate Reader
(BMG Labtech, Ortenberg, Germany). The ABTS assay was performed to determine the radical
scavenging activity of ES extracts in accordance with a previously published method [31], with slight
modifications. ES extracts were mixed with ABTS solution (7 mM) and potassium persulfate (2.6 mM)
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and then incubated in the dark at 25 ◦C for 30 min. The absorbance was quantified at 734 nm on
a spectrophotometer (Evolution 300 UV-Vis Spectrophotometer, Thermo Fisher Scientific, Miami,
OK, USA).

4.3. Preparation of the Ecklonia stolonifera Extract

Ecklonia stolonifera samples were collected from Jeju Island, Jeju Province, Korea.
Botanical identification was made by Wook Jae Lee (Jeju Technopark, Jeju, Korea), and a sample
specimen was deposited at the herbarium of the Jeju Biodiversity Research Institute, Jeju, Korea.
The dried Ecklonia stolonifera samples were homogenized into a fine powder using an electric mixer
(HMF-3100S, Hanil Electric, Seoul, Korea). The Ecklonia stolonifera extract was prepared by dissolving
the powder in 80% ethanol at room temperature. This solution was then filtered and concentrated
using a rotary vacuum evaporator (Buchi Rotavapor R-144, Buchi Labortechnik, Flawil, Switzerland).

4.4. Synthesis and Physicochemical Characterization Of ES-GNPS

The synthesis and physicochemical characterization of ES-GNPs were determined following the
method described by [18]. In brief, to synthesize the ES-GNPs, an aqueous solution consisting of
1 mM gold (III) chloride solution (HAuCl4) was mixed with the ES extract (2 mg/mL). The mixture
was rigorously stirred and incubated at 25 ◦C for 15 min. The color change from yellow to violet after
15 min indicated the formation of ES-GNPs. ES-GNPs were detected using an Evolution 300 UV-Vis
spectrophotometer (Thermo Fisher Scientific, Miami, OK, USA) from 300 to 800 nm. The particle size,
zeta-potential, and polydispersity index (PDI) of ES-GNPs were determined at 25 °C by DLS technique
using Zetasizer Nano ZS90 (Malvern Instruments, Malvern, UK). The ES-GNPs were placed in a
disposable zeta cell at 25 °C. X-ray diffraction (XRD) was performed using an X’Pert3 Powder X-ray
Diffractometer (Malvern Panalytical, Malvern, UK) operating at a scanning range of 30 to 80; voltage,
40 kV; and current, 30 mA. Fourier-transform infrared spectroscopy (FT-IR) was carried out using
KBr pellets on a Perkin Elmer Spectrum GX FT-IR spectrophotometer operating in the range of 4000
and 400 cm−1. The surface morphology, crystallinity, and chemical composition of the ES-GNPs were
examined using high resolution transmission electron microscopy (HR-TEM), selected area electron
diffraction (SAED), fast Fourier transform (FFT), and high-angle annular dark field (HAADF) analysis.
Energy dispersive spectroscopy (EDS) was performed on Thermo Scientific (FEI) Talos F200X G2 TEM.

4.5. Photocatalytic Activities of ES-GNPS

The photocatalytic activity of ES-GNPs was evaluated by observing the degradation of methylene
blue and rhodamine B [30]. In brief, ES-GNPs were added to a solution containing methylene blue
(0.8 mM) and rhodamine B (0.05 mM); then, ice cold sodium borohydride (0.06 M) solution was added.
The degradation of the dye was monitored on an Evolution 300 UV-Vis spectrophotometer (Thermo
Fisher Scientific, Miami, OK, USA) in the range of 300–800 nm at regular intervals (1 min).

4.6. Cell Culture and Establishment of a Cellular Model of UVA Irradiation-Induced Ssenescence

Human dermal fibroblasts were obtained from Lonza (Walkersville, MD, USA). They were
maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) (GIBCO, Grand Island, NY, USA),
supplemented with 10% heat-inactivated fetal bovine serum (FBS) and 1% penicillin/streptomycin
(Invitrogen, Carlsbad, USA), under a humidified atmosphere (95% air, 5% CO2) at 37 ◦C. All experiments
were performed with HDFs from passage 4–6. First, HDFs were cultured in 6-well plates at a density
of 3 × 104 cells per well for 24 h. Afterward, HDFs were treated with ES-GNPs (100 µg/mL) for
24 h; then, HDFs were exposed to UVA irradiation (Bio-Link BLX-365; Villber-Lourmat, Eberhardzell,
Germany) with 5 × 8 W tubes (365 nm) serving as the UVA source. HDFs were washed twice with
phosphate-buffered saline (PBS) and were then irradiated with UVA at 10 J/cm2. Then, PBS was
removed, and HDFs were retreated with ES-GNPs (100 µg/mL) for 24 h. The control comprised
untreated and unirradiated cells.
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4.7. Cell Counting Kit-8 Assay

The viability of HDFs was assessed using the CCK-8 assay (Sigma, USA) in accordance with the
manufacturer’s instructions. The optical density value was determined using a FLUOstar Omega Plate
Reader (BMG Labtech, Ortenberg, Germany) at 450 nm.

4.8. Senescence-Associated β-Galactosidase (SA-β-gal) Assay

SA-β-gal activity was determined using the senescence β-galactosidase staining kit (Cell Signaling
Technology; Beverly, MA, USA), and a fluorogenic substrate based Quantitative Cellular Senescence
Assay Kit (Cell Biolabs, Inc.; San Diego, CA, USA), according to the manufacturer’s instructions.
The proportions of SA-β-gal staining in the HDFs were represented as a percentage of the total number
of HDFs counted in the optical field. SA-β-gal-stained HDFs were identified based on the fluorescent
intensity that was recorded on a Flow Cytometer (Beckman Coulter FC500, Pasadena, CA, USA).

4.9. Measurement of Intracellular ROS Production and Lysosome Content

Intracellular ROS levels and lysosome content in the treated HDFs were evaluated using the ROS
assay kit (CM-H2DCFDA, Thermo Fisher Scientific, Inc., Miami, OK, USA) and Lysotracker Green
DND-26 (Cell signaling Technology, Beverly, MA, USA), according to manufacturer’s instructions.
In brief, after UVA irradiation, the HDFs were rinsed with PBS and incubated with CM-H2DCFDA or
Lysotracker Green DND-26 for 30 min in the dark. The fluorescent intensity was proportional to the
intracellular ROS levels and lysosome content. Thereafter, intracellular ROS levels were determined
based on the fluorescent intensity that was recorded on a Flow Cytometer (Beckman Coulter FC500,
Pasadena, CA, USA).

4.10. Cell Cycle Assay

Flow cytometric analysis was conducted to investigate the cell cycle distribution of the
UVA-irradiated HDFs. Briefly, HDFs were collected by trypsinization and washed three times
with PBS. Subsequently, HDFs were stained with Propidium Iodide ReadyProbes Reagent (Thermo
Fisher Scientific, Milpitas, CA, USA), according to the manufacturer’s protocol. Finally, cell cycle
analysis was performed on a Flow Cytometer Cytomics FC 500 (Beckman Coulter, Pasadena, CA, USA).

4.11. Total RNA Extraction and Quantitative Real Time PCR Analysis

The Total RNA Extraction and Quantitative Real Time PCR was used with some alterations to
determine the mRNA levels [18]. Total RNA was isolated from HDFs using RNeasy Mini kit (QIAGEN,
Hilden, Germany), and cDNA was synthesized by reverse transcription using high-capacity cDNA
reverse transcription kit (Thermo Fisher Scientific, Miami, OK, USA). Quantitative Real Time PCR
(qRT-PCR) was performed using SYBR Green qPCR master mixes (Thermo Fisher Scientific, Miami, OK,
USA). Real time PCR assays were performed according to the manufacturer’s instructions. The relative
amount of target mRNA was determined using the Ct method by normalizing target mRNA Ct values
to those for GAPDH (∆Ct). The real-time PCR cycling conditions were 95 ◦C for 5 min, 40 cycles for
30 s at 95 ◦C, 30 s at 55 ◦C, and 30 s at 72 ◦C, followed by fluorescence measurement. The primer
sequences used were as follows: MMP-1-sense (5′- tctgacgttgatcccagagagcag-3′), MMP-1-anti-sense
(5′- cagggtgacaccagtgactgcac-3′), MMP-3-sense (5′-gagagcagaagaccgaaagga-3′), MMP-3-anti-sense
(5′- cacaacaccacgttatcggg-3′), GAPDH-sense (5′-aggtggtctcctctgacttc-3′), and GAPDH-anti-sense
(5′-taccaggaaatgagcttgac-3′).

4.12. MMP-1 and MMP-3 Flow Cytometry

Antibodies against MMP-1 (IC9011P) and MMP-3 (IC513P) were procured from R & D Systems
Technology, Inc. (Beverly, MA, USA). The expression of MMP-1 and MMP-3 proteins was determined
by means of flow cytometry using the PE-conjugated anit-MMP-1 and MMP-3. Isotype control is Mouse
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IgG1 PE-conjugated Antibody (IC002P, 5 µL/105 cells). Briefly, HDFs were fixed and permeabilized
using the FIX & PERM Cell Permeabilization Kit (Thermo Fisher Scientific, Miami, OK, USA). Thereafter,
HDFs were incubated with the anti-MMP-1 (5 µL/105 cells) and MMP-3 antibody (5 µL/105 cells).
Finally, the HDFs were analyzed for MMP-1 and MMP-3 protein expression using the Flow Cytometer
Cytomics FC 500 (Beckman Coulter, Pasadena, CA, USA).

4.13. Western Blotting Analysis

HDFs were harvested and split with M-PER Mammalian Protein Extraction Reagent (Thermo
Fisher Scientific, Miami, OK, USA) according to manufacturer’s instructions. The protein concentration
was determined using Bio-Rad protein assay kits (Bio-rad, Hercules, CA, USA). Cell lysates were
separated using 7–12% SDS-PAGE. Proteins were then electrotransferred onto a PVDF membrane
(Amersham Biosciences, Piscataway, NJ, USA). After blocking with 5% BSA for 1 h at room temperature,
the PVDF membranes were incubated with the following primary antibodies: Anti-p16 (1:500, #92803),
anti-p21 (1:500, #2947), anti-p-p53 (1:500, #9286), anti-p53 (1:500, #2524) and anti-β-tubulin (1:1000,
#2144) (Cell Signaling, Waltham, MA, USA). After washing three times for 10 min with Tris-buffered
saline and Tween 20 (TBST), the membranes were incubated with horseradish peroxidase-conjugated
secondary antibodies (antirabbit IgG (1:1000, #7074), antimouse IgG (1:1000, #7076), Cell Signaling,
Waltham, MA, USA) for 1 h at room temperature. The protein bands were detected using an enhanced
Pierce ECL Western Blotting Substrate (Thermo Fisher Scientific, Miami, OK, USA) and quantified
as the ratio of the intensity of the band to the intensity of the α-tubulin band. Quantification was
performed using an ImageQuant 350 analyzer (Amersham Biosciences, Piscataway, NJ, USA).

4.14. Enzyme-Linked Immunosorbent Assay (ELISA)

To examine whether ES-GNPs affected the secretion of MMP-1 and MMP-3, an ELISA was
performed. The levels of MMP-1 (# EHMMP1) and MMP-3 (# BMS2014-3) in the supernatant were
detected by commercial ELISA kits (Thermo Fisher Scientific, Miami, OK, USA) according to the
manufacturer’s recommendations, followed by absorbance detection at 450 nm using a full wavelength
microplate reader.

4.15. Statistical Analysis

All data are represented as means ± SEM of three independent replicates for each group.
Comparisons were conducted using the Statistical Package for the Social Sciences software, version 17.0
(SPSS Inc. Released 2008. SPSS Statistics for Windows, Version 17.0. Chicago: SPSS Inc). Student’s t-test
and one-way analysis of variance (ANOVA) were used to evaluate the differences among groups.
A p-value of <0.01 or <0.05 was considered to indicate a statistically significant difference.

5. Conclusions

The Ecklonia stolonifera extract can serve as a metal nanoparticle reducing agent due to the presence
of many phlorotannins, phenolic compounds, terpenoids, steroids, and vitamins that can be used
during the reduction, capsulation, and stabilization of ES-GNPs. This fact was confirmed in the case
of ES-GNPs by UV-vis spectra, DLS, HR-TEM, EDS, XRD, and FT-IR. ES-GNPs. ES-GNPs exhibit
effective photocatalysis by degrading methylene blue and rhodamine B. Our study demonstrated
that ES-GNPs protected HDFs from UVA irradiation-induced cellular senescence by inhibiting the
SA-β-galactosidase activity, reducing intracellular ROS production, lysosome content, and inhibiting
G1 arrest and senescence related proteins. Additionally, these anticellular senescence effects can
be mediated via the inhibition of MMP-1/-3 expression and secretion. Considering the biological
functions of ES-GNPs, we speculate that ES-GNPs could serve as potential candidates for the treatment
of skin-photoaging.



Mar. Drugs 2020, 18, 433 14 of 15

Author Contributions: Conceptualization, S.Y.P. and H.-H.K.; Data curation, E.-S.J. and Y.J.K.; methodology,
E.-S.J. and Y.J.K; formal analysis, E.-S.J., S.Y.P. and H.-H.K.; investigation, E.-S.J. and S.Y.P.; Validation, S.Y.P. and
H.-H.K.; Visualization, E.-S.J. and Y.J.K.; Writing—Original draft preparation, S.Y.P. and H.-H.K; Writing—Review
and editing, E.-S.J., S.Y.P. and H.-H.K. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by Biomedical Research Institute Grant (2019B019), Pusan National
University Hospital.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

References

1. Nakyai, W.; Saraphanchotiwitthaya, A.; Viennet, C.; Humbert, P.; Viyoch, J. An in Vitro Model for Fibroblast
Photoaging Comparing Single and Repeated UVA Irradiations. Photochem. Photobiol. 2017, 93, 1462–1471.
[CrossRef] [PubMed]

2. Min, W.; Liu, X.; Qian, Q.; Lin, B.; Wu, D.; Wang, M.; Ahmad, I.; Yusuf, N.; Luo, D. Effects of Baicalin against
UVA-Induced Photoaging in Skin Fibroblasts. Am. J. Chin. Med. 2014, 42, 709–727. [CrossRef] [PubMed]

3. Komatsu, T.; Sasaki, S.; Manabe, Y.; Hirata, T.; Sugawara, T. Preventive Effect of Dietary Astaxanthin on
UVA-Induced Skin Photoaging in Hairless Mice. Plos One 2017, 12, e0171178. [CrossRef] [PubMed]

4. Youn, H.J.; Kim, K.B.; Han, H.S.; An, I.S.; Ahn, K.J. 23-Hydroxytormentic Acid Protects Human Dermal
Fibroblasts by Attenuating UVA-Induced Oxidative Stress. Photodermatol. Photoimmunol. Photomed. 2017, 33,
92–100. [CrossRef]

5. Dunaway, S.; Odin, R.; Zhou, L.; Ji, L.; Zhang, Y.; Kadekaro, A.L. Natural Antioxidants: Multiple Mechanisms
to Protect Skin from Solar Radiation. Front. Pharmacol. 2018, 9, 392. [CrossRef]

6. Hseu, Y.C.; Korivi, M.; Lin, F.Y.; Li, M.L.; Lin, R.W.; Wu, J.J.; Yang, H.L. Trans-Cinnamic Acid Attenuates
UVA-Induced Photoaging through Inhibition of AP-1 Activation and Induction of Nrf2-Mediated Antioxidant
Genes in Human Skin Fibroblasts. J. Dermatol. Sci. 2018, 90, 123–134. [CrossRef]

7. Gendron, S.P.; Rochette, P.J. Modifications in Stromal Extracellular Matrix of Aged Corneas can be Induced
by Ultraviolet A Irradiation. Aging Cell 2015, 14, 433–442. [CrossRef]

8. Liu, Z.; Li, Y.; Song, H.; He, J.; Li, G.; Zheng, Y.; Li, B. Collagen Peptides Promote Photoaging Skin Cell Repair
by Activating the TGF-Beta/Smad Pathway and Depressing Collagen Degradation. Food Funct. 2019, 10,
6121–6134. [CrossRef]

9. Seo, S.W.; Park, S.K.; Oh, S.J.; Shin, O.S. TLR4-Mediated Activation of the ERK Pathway Following UVA
Irradiation Contributes to Increased Cytokine and MMP Expression in Senescent Human Dermal Fibroblasts.
PLoS ONE 2018, 13, e0202323. [CrossRef]

10. Philips, N.; Chalensouk-Khaosaat, J.; Gonzalez, S. Simulation of the Elastin and Fibrillin in Non-Irradiated
or UVA Radiated Fibroblasts, and Direct Inhibition of Elastase or Matrix Metalloptoteinases Activity by
Nicotinamide or its Derivatives. J. Cosmet. Sci. 2018, 69, 47–56.

11. Chen, X.; Han, W.; Zhao, X.; Tang, W.; Wang, F. Epirubicin-Loaded Marine Carrageenan Oligosaccharide
Capped Gold Nanoparticle System for pH-Triggered Anticancer Drug Release. Sci. Rep. 2019, 9, 1–10.
[CrossRef] [PubMed]

12. Chen, X.; Zhao, X.; Gao, Y.; Yin, J.; Bai, M.; Wang, F. Green Synthesis of Gold Nanoparticles using Carrageenan
Oligosaccharide and their in Vitro Antitumor Activity. Mar. Drugs 2018, 16, 277. [CrossRef] [PubMed]

13. Gonzalez-Ballesteros, N.; Prado-Lopez, S.; Rodriguez-Gonzalez, J.B.; Lastra, M.; Rodriguez-Arguelles, M.C.
Green Synthesis of Gold Nanoparticles using Brown Algae Cystoseira Baccata: Its Activity in Colon Cancer
Cells Colloids Surf. B Biointerfaces 2017, 153, 190–198. [CrossRef] [PubMed]

14. Nguyen, N.H.A.; Padil, V.V.T.; Slaveykova, V.I.; Cernik, M.; Sevcu, A. Green Synthesis of Metal and Metal Oxide
Nanoparticles and their Effect on the Unicellular Alga Chlamydomonas Reinhardtii. Nanoscale Res. Lett. 2018,
13, 1–13. [CrossRef]

15. Boldeiu, A.; Simion, M.; Mihalache, I.; Radoi, A.; Banu, M.; Varasteanu, P.; Nadejde, P.; Vasile, E.; Acasandrei, A.;
Popescu, R.C.; et al. Comparative Analysis of Honey and Citrate Stabilized Gold Nanoparticles: In Vitro
Interaction with Proteins and Toxicity Studies. J. Photochem. Photobiol. B 2019, 197, 111519. [CrossRef]

16. Chahardoli, A.; Karimi, N.; Sadeghi, F.; Fattahi, A. Green Approach for Synthesis of Gold Nanoparticles from
Nigella arvensis Leaf Extract and Evaluation of their Antibacterial, Antioxidant, Cytotoxicity and Catalytic
Activities. Artif. Cells Nanomed. Biotechnol. 2018, 46, 579–588. [CrossRef]

http://dx.doi.org/10.1111/php.12801
http://www.ncbi.nlm.nih.gov/pubmed/28599356
http://dx.doi.org/10.1142/S0192415X14500463
http://www.ncbi.nlm.nih.gov/pubmed/24871661
http://dx.doi.org/10.1371/journal.pone.0171178
http://www.ncbi.nlm.nih.gov/pubmed/28170435
http://dx.doi.org/10.1111/phpp.12294
http://dx.doi.org/10.3389/fphar.2018.00392
http://dx.doi.org/10.1016/j.jdermsci.2018.01.004
http://dx.doi.org/10.1111/acel.12324
http://dx.doi.org/10.1039/C9FO00610A
http://dx.doi.org/10.1371/journal.pone.0202323
http://dx.doi.org/10.1038/s41598-019-43106-9
http://www.ncbi.nlm.nih.gov/pubmed/31043709
http://dx.doi.org/10.3390/md16080277
http://www.ncbi.nlm.nih.gov/pubmed/30087223
http://dx.doi.org/10.1016/j.colsurfb.2017.02.020
http://www.ncbi.nlm.nih.gov/pubmed/28242372
http://dx.doi.org/10.1186/s11671-018-2575-5
http://dx.doi.org/10.1016/j.jphotobiol.2019.111519
http://dx.doi.org/10.1080/21691401.2017.1332634


Mar. Drugs 2020, 18, 433 15 of 15

17. Dhayalan, M.; Denison, M.I.J.; Ayyar, M.; Gandhi, N.N.; Krishnan, K.; Abdulhadi, B. Biogenic Synthesis,
Characterization of Gold and Silver Nanoparticles from Coleus forskohlii and their Clinical Importance.
J. Photochem. Photobiol. B 2018, 183, 251–257. [CrossRef]

18. Park, S.Y.; Yi, E.H.; Kim, Y.; Park, G. Anti-Neuroinflammatory Effects of Ephedra Sinica Stapf Extract-Capped
Gold Nanoparticles in Microglia. Int. J. Nanomed. 2019, 14, 2861–2877. [CrossRef]

19. Chowdhury, M.T.; Bangoura, I.; Kang, J.Y.; Cho, J.Y.; Joo, J.; Choi, Y.S.; Hwang, D.S.; Hong, Y.K. Comparison of
Ecklonia cava, Ecklonia stolonifera and Eisenia bicyclis for Phlorotannin Extraction. J. Environ. Biol. 2014, 35,
713–719.

20. Manandhar, B.; Wagle, A.; Seong, S.H.; Paudel, P.; Kim, H.R.; Jung, H.A.; Choi, J.S. Phlorotannins with
Potential Anti-Tyrosinase and Antioxidant Activity Isolated from the Marine Seaweed Ecklonia stolonifera.
Antioxidants 2019, 8, 240. [CrossRef]

21. Oh, J.H.; Choi, J.S.; Nam, T.J. Fucosterol from an Edible Brown Alga Ecklonia stolonifera Prevents Soluble
Amyloid Beta-Induced Cognitive Dysfunction in Aging Rats. Mar. Drugs 2018, 16, 368. [CrossRef] [PubMed]

22. Byun, J.H.; Kim, J.; Choung, S.Y. Hepaprotective Effect of Standardized Ecklonia stolonifera Formulation on
CCl4-Induced Liver Injury in Sprague-Dawley Rats. Biomol. Ther. 2018, 26, 218–223. [CrossRef] [PubMed]

23. Vo, T.S.; Kim, S.K.; Ryu, B.; Ngo, D.H.; Yoon, N.Y.; Bach, L.G.; Hang, N.T.N.; Ngo, D.N. The Suppressive
Activity of Fucofuroeckol-A Derived from Brown Algal Ecklonia stolonifera Okamura on UVB-Induced Mast
Cell Degranulation. Mar. Drugs 2018, 16, 1. [CrossRef] [PubMed]

24. Lee, J.H.; Jung, H.A.; Kang, M.J.; Choi, J.S.; Kim, G.D. Fucosterol, Isolated from Ecklonia stolonifera, Inhibits
Adipogenesis through Modulation of FoxO1 Pathway in 3T3-L1 Adipocytes. J. Pharm. Pharmacol. 2017, 69,
325–333. [CrossRef] [PubMed]

25. Jung, H.A.; Ali, M.Y.; Choi, R.J.; Jeong, H.O.; Chung, H.Y.; Choi, J.S. Kinetics and Molecular Docking Studies
of Fucosterol and Fucoxanthin, BACE1 Inhibitors from Brown Algae Undaria pinnatifida and Ecklonia stolonifera.
Food Chem. Toxicol. 2016, 89, 104–111. [CrossRef]

26. Choi, J.S.; Han, Y.R.; Byeon, J.S.; Choung, S.Y.; Sohn, H.S.; Jung, H.A. Protective Effect of Fucosterol Isolated
from the Edible Brown Algae, Ecklonia stolonifera and Eisenia bicyclis, on Tert-Butyl Hydroperoxide- and
Tacrine-Induced HepG2 Cell Injury. J. Pharm. Pharmacol. 2015, 67, 1170–1178. [CrossRef]

27. Keijok, W.J.; Pereira, R.H.A.; Alvarez, L.A.C.; Prado, A.R.; da Silva, A.R.; Ribeiro, J.; de Oliveira, J.P.;
Guimaraes, M.C.C. Controlled Biosynthesis of Gold Nanoparticles with Coffea arabica using Factorial Design.
Sci. Rep. 2019, 9, 1–10. [CrossRef]

28. Qin, H.; Zhang, G.; Zhang, L. GSK126 (EZH2 Inhibitor) Interferes with Ultraviolet A Radiation-Induced
Photoaging of Human Skin Fibroblast Cells. Exp. Ther. Med. 2018, 15, 3439–3448. [CrossRef]

29. Kim, K.J.; Xuan, S.H.; Park, S.N. Licoricidin, an Isoflavonoid Isolated from Glycyrrhiza Uralensis Fisher,
Prevents UVA-Induced Photoaging of Human Dermal Fibroblasts. Int. J. Cosmet. Sci. 2017, 39, 133–140.
[CrossRef]

30. Vijayan, R.; Joseph, S.; Mathew, B. Anticancer, Antimicrobial, Antioxidant, and Catalytic Activities of
Green-Synthesized Silver and Gold Nanoparticles using Bauhinia purpurea Leaf Extract. Bioprocess. Biosyst. Eng.
2019, 42, 305–319. [CrossRef]

31. Young Park, S.; Jin Kim, Y.; Park, G.; Kim, H.H. Neuroprotective Effect of Dictyopteris Divaricata
Extract-Capped Gold Nanoparticles against Oxygen and Glucose Deprivation/Reoxygenation. Colloids Surf.
B Biointerfaces 2019, 179, 421–428. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jphotobiol.2018.04.042
http://dx.doi.org/10.2147/IJN.S195218
http://dx.doi.org/10.3390/antiox8080240
http://dx.doi.org/10.3390/md16100368
http://www.ncbi.nlm.nih.gov/pubmed/30301140
http://dx.doi.org/10.4062/biomolther.2017.199
http://www.ncbi.nlm.nih.gov/pubmed/29129047
http://dx.doi.org/10.3390/md16010001
http://www.ncbi.nlm.nih.gov/pubmed/29300311
http://dx.doi.org/10.1111/jphp.12684
http://www.ncbi.nlm.nih.gov/pubmed/28134973
http://dx.doi.org/10.1016/j.fct.2016.01.014
http://dx.doi.org/10.1111/jphp.12404
http://dx.doi.org/10.1038/s41598-019-52496-9
http://dx.doi.org/10.3892/etm.2018.5863
http://dx.doi.org/10.1111/ics.12357
http://dx.doi.org/10.1007/s00449-018-2035-8
http://dx.doi.org/10.1016/j.colsurfb.2019.03.066
http://www.ncbi.nlm.nih.gov/pubmed/31003168
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Optimization of ES-GNPs Using the ES Reductant 
	ES-GNPs Characterization by HR-TEM/EDS 
	Physicochemical Characterization of ES-GNPs 
	ES-GNPs Ameliorate SA–Galactosidase Activity in UVA-Irradiated Human Dermal Fibroblasts 
	ES-GNPs Inhibit ROS Production and Lysosome Content in UVA-Irradiated Human Dermal Fibroblasts 
	ES-GNPs Inhibit G1 Arrest and Senescence-Related Proteins in UVA-Irradiated Human Dermal Fibroblasts 
	ES-GNPs Downregulate MMP-1/-3 mRNA, Protein Expression and Secretion in UVA-Irradiated Human Dermal Fibroblasts 

	Discussion 
	Materials and Methods 
	Reagents 
	Free Radical Scavenging Assay 
	Preparation of the Ecklonia stolonifera Extract 
	Synthesis and Physicochemical Characterization Of ES-GNPS 
	Photocatalytic Activities of ES-GNPS 
	Cell Culture and Establishment of a Cellular Model of UVA Irradiation-Induced Ssenescence 
	Cell Counting Kit-8 Assay 
	Senescence-Associated -Galactosidase (SA–gal) Assay 
	Measurement of Intracellular ROS Production and Lysosome Content 
	Cell Cycle Assay 
	Total RNA Extraction and Quantitative Real Time PCR Analysis 
	MMP-1 and MMP-3 Flow Cytometry 
	Western Blotting Analysis 
	Enzyme-Linked Immunosorbent Assay (ELISA) 
	Statistical Analysis 

	Conclusions 
	References

