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Abstract

Motivation: The vast expansion of sequence data generated from single organisms and microbiomes has precipi-
tated the need for faster and more sensitive methods to assess evolutionary and functional relationships between
proteins. Representing proteins as sets of short peptide sequences (kmers) has been used for rapid, accurate classifi-
cation of proteins into functional categories; however, this approach employs an exact-match methodology and
thus may be limited in terms of sensitivity and coverage. We have previously used similarity groupings, based on
the chemical properties of amino acids, to form reduced character sets and recode proteins. This amino acid recod-
ing (AAR) approach simplifies the construction of protein representations in the form of kmer vectors, which can link
sequences with distant sequence similarity and provide accurate classification of problematic protein families.
Results: : Here, we describe Snekmer, a software tool for recoding proteins into AAR kmer vectors and performing
either (i) construction of supervised classification models trained on input protein families or (ii) clustering for de
novo determination of protein families. We provide examples of the operation of the tool against a set of nitrogen
cycling families originally collected using both standard hidden Markov models and a larger set of proteins from
Uniprot and demonstrate that our method accurately differentiates these sequences in both operation modes.
Availability and implementation: Snekmer is written in Python using Snakemake. Code and data used in this article,
along with tutorial notebooks, are available at http://github.com/PNNL-CompBio/Snekmer under an open-source
BSD-3 license.

Contact: jason.mcdermott@pnnl.gov

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

The ability to rapidly and inexpensively sequence diverse biological
samples has driven a sharp increase in the amount of sequence infor-
mation available. However, analysis of functional annotation as-
signment has revealed that, on average, only ~50-60% of genes are
assigned any functional annotation using current standard annota-
tion techniques, and only about half of those receive specific func-
tional assignment (Lobb et al., 2020; Salzberg, 2019). Development
of new methods providing improved and expanded functional anno-
tations, including user-driven exploration of sequence space and
automated construction of functional prediction models, have sig-
nificantly trailed the huge increases in sequence information becom-
ing available. Sequence similarity (e.g. via BLAST) is commonly
used to assign functional annotations, and hidden Markov models
(HMMs) provide a probabilistic approach to modeling protein
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families and motifs. However, traditional sequence similarity meth-
ods are unable to accurately capture distantly related sequences in
many cases, and HMM:s can be time consuming to build, in part due
to the requirement for building multiple sequence alignments from
families (Bateman et al., 2000; Eddy, 1998).

Previously, for machine learning and rapid comparison, proteins
have been represented as vectors of short peptide sequences (kmers).
At least one major annotation resource [Rapid Annotation using
Subsystem Technology (RAST)] uses the kmer approach for protein
annotation (Edwards et al., 2012; Overbeek et al., 2014) and mul-
tiple newer tools, such as MMseqs2 (Mirdita ez al., 2019; Steinegger
and Soding, 2017) and DIAMOND (Buchfink et al., 2021) use
kmers to increase the speed and sensitivity of searches in various
ways. We previously extended the protein kmer approach via amino
acid recoding (AAR), which uses chemical similarities between
amino acids to simplify the sequence space (McDermott et al.,
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2019). We found that a simple AAR grouping of amino acids by
hydrophobicity or hydrophilicity performed well in classifying dis-
parate families of ubiquitin ligase effector mimics from viral and
bacterial pathogens (McDermott et al., 2019). This work demon-
strated that the kmer AAR approach can be used as the basis for ma-
chine learning models capable of classifying sets of functionally
related proteins with little sequence similarity. We concluded that
the AAR allows greater flexibility in sequence representation and
captures similarity between sequences that would not be detected
via conventional methods, and these observations have been borne
out in other studies as well (Hauswedell ez al., 2014; Liang et al.,
2022). Thus, AAR creates simplified representations of proteins in
the form of flexible feature vectors, which can then be used to con-
struct machine learning models for functional prediction, explore se-
quence similarities in newly sequenced datasets (e.g. from
metagenomes), and identify similarities between sets of sequences
that may be undetected using other methods.

Our previous study included code implementing the kmer AAR
approach for the specific application, but this code was neither eas-
ily applied to new protein families nor compatible with high-
performance computing to build models for large numbers of
sequences. Here we describe Snekmer (Fig. 1), an open-source
Python tool that expands the AAR approach into a flexible, modular
pipeline incorporating multiple recoding schemes, model training
and automatic evaluation. Snekmer generates AAR features from in-
put proteins, trains models automatically from input sets of proteins
and clusters proteins based on kmer similarity assessment. Snekmer
can also be used as a general tool to cluster moderately sized sets of
proteins (10-100k) to determine protein sequence and function simi-
larity using unsupervised clustering. Users can alternatively supply
their own sets of proteins to build kmer-based models, assess those
models for performance and apply the models to novel sets of
sequences.

To evaluate Snekmer and the AAR approach, we applied
Snekmer to a set of protein families associated with the nitrogen
cycle and to a larger set of disparate proteins from Uniprot. Our
results demonstrate excellent fidelity with the HMMs that were
used to identify these families, across a range of AAR and kmer
lengths, and good agreement with MMSeqs2 for clustering perform-
ance. We anticipate Snekmer will empower users to rapidly develop
their own prediction models based on sets of input sequences, ena-
bling computationally efficient exploration of the sequence

landscape in large collections of sequence information from
microbiomes.

2 Results

2.1. Implementation and availability

2.1.1. Software stack

Snekmer is written in Python (version 3.6+) and uses the
Snakemake [version 6.0+, (Koster and Rahmann, 2018)] workflow
management system. Key dependencies include the Scikit-Learn li-
brary [sklearn; (Pedregosa et al., 2011)] for building machine learn-
ing models, Bioconda (Gruning et al., 2018), NumPy for matrix
operations (Harris et al., 2020), Pandas for general data manipula-
tions (McKinney, 2010), HDBSCAN (Mclnnes et al., 2017) and
UMAP (Mclnnes et al., 2018). Optionally, the Blazing Signature
Filter (Lee et al., 2018) can be installed to facilitate clustering on
larger datasets. The implementation of Snekmer via Snakemake pro-
vides several advantages, including scalability, reproducibility and
Python compatibility. Because Snakemake determines dependencies
between steps in a workflow and queues each step sequentially,
Snekmer easily scales to high-performance computing (HPC) envi-
ronments, e.g. supercomputer and cloud computing clusters, and
executes each step as its own job script. As a result, multiple input
files can be processed simultaneously, in parallel.

2.1.2. Execution modes

Snekmer can be operated in three distinct modes: model (supervised)
or cluster (unsupervised) and search to apply trained models to new
sequences. In the supervised mode, users supply a series of FASTA
files, each containing sequences from a single family, to construct
models. For each family, Snekmer generates features from all the
proteins, constructs feature vectors and calculates a probability
score for each kmer feature based on its representation in that family
versus other families and, optionally, in user-defined background
sequences. Snekmer then builds a logistic regression classification
model based on each sequence’s scores for in-family versus out-of-
family assignment for each family (see Section 2.1.4 below for
details). Classification performance is evaluated using K-fold cross-
validation. The resulting models can further be applied to new
sequences that have been processed via Snekmer with matching
AAR parameters.
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Fig. 1. Workflow for the Snekmer pipeline. Steps are implemented as individual Snakemake rules. This figure provides an overview of the main Snekmer capabilities the super-
vised model mode, and the unsupervised cluster mode. For both modes preliminary steps include preprocessing to filter out duplicates and clean input data, generation of kmers
from input sequences and vectorization of kmer signatures to build frequency vectors. The model mode then applies a scoring algorithm to the kmers and builds a predictive
model for each family. The cluster mode generates clusters based on user input parameters. A third mode, search mode, is used to apply trained models to new input sequences
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In the unsupervised mode, Snekmer uses clustering to identify
similarities between protein sequences in a given FASTA file or files.
Snekmer generates features from all protein sequences, constructs
feature vectors, and calculates the similarity between the vectors
based on standard metrics (see Section 2.2.2 below for details) and
can apply multiple clustering methods to produce related sets of pro-
teins. Optionally, the similarity matrix can be output if a more
granular inspection of sequence similarity is desired.

An example is included in the software (demo_example) which
can be used to run each of the different modes on a small set of ni-
trogen cycle families. Additionally, a Jupyter notebook outlining
each step of each Snekmer mode is included.

Once a Snekmer analysis has been applied, the results are sum-
marized in a report (in HTML format) which is produced in the top-
level output directory. Each report provides a short description of
the results, diagnostic plots from the run if appropriate and links to
the relevant output files.

2.1.3. Feature generation

Following the Snakemake framework, Snekmer accepts sequence files
as input and performs a predetermined set of processing steps—
known as rules in Snakemake—on each input file until the desired
output file has successfully been generated. Input parameters and
pipeline steps are defined by the user in a configuration (YAML) file;
an example configuration file is provided in the code repository. By
default, Snekmer handles a number of FASTA-type input file formats
(FASTA, FAA, FNA and FA), but the user can specify acceptable file
extensions in the configuration file. Snekmer also automatically
decompresses files compressed with gzip. Once input files are read,
Snekmer can optionally screen for duplicate sequences.

The standard Snekmer pipeline first processes the input file to gen-
erate kmer features. The desired recoding scheme (alphabet) and kmer
length (k) are specified by the user. Six recoding alphabets are
included (Table 1) (Arnold et al., 2009; Bacardit et al., 2009;
McDermott et al., 2019; Yamada and Tomii, 2014), or the user may
specify no recoding at all. Snekmer uses the specified alphabet and
kmer length to calculate the potential kmer space of all possible kmer
combinations. Then, Snekmer recodes all sequences in the input file

according to the desired alphabet recoding and generates a vector
counting all kmers that occur in the sequence. Features that are not
observed in at least one input sequence are removed from the final fea-
ture space, though this threshold can be adjusted by the user.

The ‘min_filter’ parameter allows users to specify a threshold for
inclusion of kmers in models or the clustering process to reduce the
complexity of the kmer matrix. This threshold can be either (i) an in-
teger number of observations of a kmer, or (ii) a percentage of the
sequences the kmer must be observed in. Setting a higher threshold
will reduce the memory footprint of the operation and increase exe-
cution speed, but may degrade model or cluster quality if the filter is
set too stringently.

2.1.4. Scoring

If supervised mode is selected, a probability score is calculated for
each input protein family group. The family probability of a kmer,
Fimer, 1s the ratio of the number of family members containing the
kmer to the total number of family members:

Mkmer

kaer - N

Here, #mer is the number of family members containing the
kmer and N is the total number of family members. If sequences for
additional families are provided, a modified family probability score
is generated by subtracting the summed fractional family probabil-
ities for the other G families:

1 Mimer,i
X —ment

F/kmer = Fumer — E N,

Mo

i=1

For many applications, the ability to compare sequences against
a background set of sequences representative of a larger sequence
space is useful. User-supplied background sequences are processed
using a similar method as described above in Section 2.1.3; however,
to minimize computational requirements, Snekmer only evaluates
the background sequences for the kmer feature space defined by the
input target families. Snekmer then accounts for the prevalence of

Table 1. AAR schemes showing the groups of amino acids used for each scheme included in Snekmer

Recoding scheme States
No recoding 20
MIQS observed substitution 11

Chemical properties 7 AG |

Solvent accessibility 3

Hydrophobicity/charge 3

Hydrophobicity/structure-breaker 3

Hydrophobicity 2

Groupings

‘AGI’ (CDEFHKN
PQRSTWY
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kmers in the background set in calculating the overall kmer prob-
ability scores.

The overall score Sy combines the modified family probability
and the probability of the kmer appearing in general protein space.
The background set is provided by the user and should be chosen
carefully to minimize bias and maximize both sequence diversity
and protein family representation.

Skmcr _ Flkmer/ « (1 _ Pkmer )7
max(F') max(P)
where Py, is the fraction of sequences in the background data set
that contain the kmer.

The resulting method assigns a score between (—1, 1), where a
maximum score of 1 indicates that the kmer is found in all sequences
within a given group and in no sequences outside of the group,
whereas a minimum score of —1 indicates that the kmer is found in
none of sequences within the group but found in all sequences out-
side of the group. A score of zero indicates the kmer is perfectly ag-
nostic toward in-group or out-of-group assignment.

Because kmers with scores near zero contribute little to in-family
assignment scores, these kmers are relatively unimportant to final
in-group assignment. Thus, users can reduce the number of kmers
used in scoring. For instance, kmers can be restricted to the top N,
or top 7%, of kmers by absolute score. Thus, a final score can be
tailored to selectively include kmers with the strongest positive or
negative association with a group assignment.

2.1.5. Model building
In supervised mode, models for input protein groups are automatically
trained and evaluated. Snekmer employs the method described above
to score each pre-labeled sequence based on its substituent kmers. The
in-group scores are then used to train an in-group versus out-of-group
classification model using logistic regression. In the process, a model
is built and evaluated for each input protein family using the other in-
put family sequences and an optional background set of sequences as
the negative examples for the model. This means that model results
may vary based on the number of input families modeled, as well as
the relative numbers and types of sequences in those families.
Currently, trained models are stored in the Python-standard
pickle binary format. Installation for Snekmer using conda will en-
sure that these are forward compatible with libraries used, but in fu-
ture versions of Snekmer, we plan to explore alternatives to pickle
for file storage.

2.1.6. Clustering

To evaluate Snekmer’s ability to identify useful clusters of function-
ally related sequences, we clustered a 10-genome set of sequences
(46 908 proteins) from Uniprot using Snekmer and the Many-
against-Many sequence searching (MMseqs2) suite (Mirdita et al.,
2019) easy-clust mode with default parameters.

2.1.7. Evaluation

Model performance was evaluated via K-fold cross-validation and
calculation of accuracy, specificity, sensitivity, area under the
receiver-operator characteristic curve (AUROC or AUC ROC) and
area under the precision-recall curve (AUPR or PRAUC). For each
fold, kmers were rescored using the same methodology as described
in Section 2.1.4, but with family probabilities calculated separately
for each fold using each training set. Thus, a separate scoring basis
and model were developed, trained and evaluated for a given fold.
Results from each cross-validation split are stored in tabular form
and summarized graphically (Fig. 2). Descriptions of each evalu-
ation metric are given in Table 2.

The AUROC (also known as AUC ROC or ROC AUC) is com-
monly used to evaluate binary classifiers. However, for imbalanced
datasets, the AUROC alone may be insufficient in summarizing clas-
sifier performance in instances where the number of negative exam-
ples far outweighs the number of positive examples (Davis and
Goadrich, 2006). The nitrogen cycling family dataset presents such

a case, since the number of positive examples (i.e. members of one
family) is much smaller than the number of negative examples (i.e.
members of all the remaining families) used to evaluate each model.
Thus, we compared both AUROC and AUPR for all classifiers
trained from the nitrogen cycling family dataset.

To evaluate results from the Snekmer and MMseqs2 clustering
runs, we used available Uniprot annotations from EggNog (COG),
Pfam, Interpro, GO and TIGRFams and evaluated clusters using
homogeneity, completeness and the V score metrics from Scikit-
Learn. Briefly, given an existing set of annotations for clustered pro-
teins, completeness assesses the likelihood that an annotation label
can be found in only one cluster and homogeneity assesses how like-
ly a cluster is to have just one annotation label assigned to its mem-
bers. The V score is the harmonic mean between homogeneity and
completeness. We report average metrics across all clusters.

2.1.8. Availability

Snekmer and associated example data and code are available at
http://github.com/PNNL-CompBio/Snekmer. Documentation for
Snekmer is available at https://snekmer.readthedocs.io.

2.2. Example applications

To illustrate the utility of Snekmer, we tested two distinct applica-
tions: (i) supervised mode, which involves automatically building
and evaluating models for nitrogen cycling families and (ii) unsuper-
vised mode, which involves de novo clustering of similar proteins.
For the unsupervised mode, we additionally clustered a larger data-
set of ~50 000 protein sequences comprising 10 complete genomes.

2.2.1. Data description

For both applications delineated above, we applied Snekmer to an
example dataset of sequences belonging to 33 nitrogen cycling fami-
lies. Each family contains between 13 and 390 sequences for a total
of 5530 sequences (Supplementary Table S1). We used 33 previously
described HMMs (Haft et al., 2013; Mistry et al., 2021; Nelson
et al., 2020) and the hmmer package (Eddy, 2011) to identify pro-
teins involved in nitrogen transport or transformation from a set of
1835 representative and reference complete genomes from the NCBI
RefSeq database (generated in 2018) (O’Leary et al., 2016)
(Supplementary Table S1). To determine nitrogen cycle family
genes, we searched the NCBI using HMMer (version 3.3.2) (Eddy,
2011) with trusted cut-off scores from Pfam (Mistry et al., 2021).
All protein sequences used for modeling are included with the code
as an example application.

We also analyzed a dataset comprised of 10 complete genomes
from the SwissProt/UniProt database (Duvaud et al., 2021). The list
of genomes can be found in Supplementary Table S2. The dataset
contains 46 908 protein sequences. Uniprot annotations (GO, Pfam,
Interpro, TIGRFams, COG and OrthoDB) were obtained for each
genome to evaluate clustering results.

2.2.2. Example Application 1: Automated training and evaluation
of models for nitrogen cycling protein families

We evaluated Snekmer’s supervised operation mode in automatical-
ly generating kmer-based classification models for protein families
in the nitrogen cycling protein set. The supervised mode is useful
when available sets of sequences are known to be functionally and/
or evolutionarily related. The nitrogen cycling families used for these
examples were identified using traditional sequence similarity meth-
ods and thus represent a useful example set. Our previous work has
shown that AAR can be used to develop models for families which
are functionally related, but where members lack significant se-
quence similarity with each other (McDermott et al., 2019).
Resulting models can then be applied to sequence collections (e.g.
genomes or metagenomes) to provide predictions for the models
generated in the training phase.
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Fig. 2. AUROC (left) and AUPR (right) curves, with 5-fold cross-validation, for a NapB protein family classification model using AAR with the standard alphabet and kmer

length of 8

Table 2. Description of metrics describing the performance of bin-
ary classification models

Metric Method
Accuracy %
Sensitivity (true positive rate or recall) %
Specificity (true negative rate) %

False positive rate %
Precision %

Area under receiver-operator Plot: true positive rate
versus false positive rate

Plot: precision versus recall

characteristic curve
Area under precision-recall curve

Note: Note that P indicates positive examples and N indicates negative
examples. T and F represent true and false assignments, respectively. Thus,
TP indicates true positives assigned by the model.

2.2.2.1 Model construction. We used Snekmer to evaluate all
included recoding alphabets (Table 1) for kmers of lengths between
4 and 16. Probability scores were then used to train logistic regres-
sion binary classification models for in-family versus out-of-family
assignment for each of the 31 protein families.

2.2.2.2. Model evaluation. We evaluated the performance of
Snekmer for automatically constructing classifiers for the 33 protein
families using 5-fold cross-validation. The results of this analysis are
shown for a range of AAR schemes and lengths of k in Figure 3. The
corresponding overall AUC PR plots and plots showing the
performance in individual families are included as Supplementary
Figure S1.

For most of the protein families, the models developed via
Snekmer perform well, but performance of individual families varied
(Supplementary Fig. S1). The AAR alphabets with higher complex-
ity (i.e. greater number of encodings)—Standard, MIQS and no
encoding—performed best overall, showing consistently high PR
AUC and AUC ROC across multiple k values (Fig. 3). We note that
overall, the classifiers perform well with most alphabet and k£ combi-
nations, speaking to the highly specific and differentiated nature of
the original dataset.

However, while the per-alphabet differences in AUC are pro-
nounced at low k values, as k increases the AUCs are similar be-
tween simple (Hydro, Hydrocharge and Hydrostruct) and complex
alphabets (Standard, MIQS and no encoding). This indicates a
tradeoff in specificity, with the simpler alphabets requiring longer
kmers to attain specificity for the families, whereas the more com-
plex alphabets display peak performance at short kmer lengths. In
other words, higher-complexity alphabets paired with longer kmer
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Fig. 3. Overall performance of automatically generated supervised models from
Snekmer. Models were generated by Snekmer as described and 5-fold cross vali-
dated. The mean AUC ROC across all 33 families for each alphabet/k combination
is shown

lengths are more prone to overfitting, and conversely lower-
complexity alphabets paired with shorter kmer lengths result in an
overabundance of detected kmers with little diagnostic value.

The best-performing combination across all protein families
that we examined was k of 4 with MIQS AAR or a k of 8 for the
standard chemistry encoding, for which the majority of the models
had an ROC AUC of 1.0 (perfect classification). However, we note
that many encoding/k combinations performed in the range of
0.98-1.0 over the families, indicating many possible options for
encoding that may work well across different families
(Supplementary Fig. S2). We include the complete results of our
analysis as Supplementary Table S1. Our results indicate that while
for the studied protein families, a shorter k with a more complex
alphabet may be the optimal choice, other alphabet combinations
can achieve similar classification performance. Overall, as
observed previously (McDermott et al., 2019), certain families pre-
sent challenges to this simple approach and may necessitate more
flexible AARs for classification.

One significant difference between parameters, however, is the
computational requirement. For instance, models built from MIQS
recoded 4-mers exhibit comparable performance as the unencoded
4-mers, but the feature generation step for the MIQS recoded se-
quence is nearly 4 times faster (Supplementary Table S2). The differ-
ences in calculation time scale with k-mer length, presenting a
significant obstacle for large datasets.

2.2.3. Example Application 2: Unsupervised clustering of nitrogen
cycling protein families

For the second example application, we used Snekmer to cluster pro-
tein sequences in an unsupervised manner based on AAR kmer pro-
file similarity. This application can enable exploration of the protein
space for largely uncharacterized sequences, such as metagenome
sequences. Resulting protein clusters should represent similar func-
tional groups for further evaluation.

2.2.3.1. Unsupervised operation. We first generated kmer features
from input protein sequences belonging to the nitrogen cycle fami-
lies used in Example 1 and created feature vectors for each protein
encompassing all kmers occurring more than once in the dataset.
We then calculated Pearson correlation coefficients between all pairs
of feature vectors.

2.2.3.2. Unsupervised operation evaluation. To evaluate Snekmer’s
capacity to identify clusters that match functional families, we used
the original nitrogen cycle family designations to calculate the ROC
AUC for each family using the correlation values between proteins

Fig. 4. Overall performance of de novo determined relationships between nitrogen
cycling family members from Snekmer. Feature vectors generated by Snekmer were
used to determine similarity between proteins. The AUC ROC was calculated by
considering each similarity relationship as positive if it links two members of the
same family and negative if it links members of different families. The mean AUC
ROC over all 33 families is shown

in the same family (‘positive’ predictions) compared to correlation
values between a protein in the family and one not in the family
(‘negative’ predictions). Since, the original labels used were gener-
ated using HMM models, the average AUC values here represent
agreement with those models. As can be seen in Figure 4, with
results from individual families shown as Supplementary Figure S3,
the Snekmer unsupervised mode performs quite well, with average
AUC scores of >0.9 in more than half of the examined alphabet and
kmer length combinations. Thus Snekmer-generated clusters match
the performance of the original HMMs, and roughly mirror results
from the Snekmer-generated models in Example 1 in terms of AUCs
for this controlled clustering example.

Though the example clusters perform well, we highlight that the
well-annotated test dataset are not representative of a typical dataset
necessitating the unsupervised mode, which would likely contain
little-to-no previous understanding of the protein family structure.
Therefore, we used the correlation matrix to generate edges with a
minimum correlation value threshold and visualized the resulting
network, coloring nodes by their respective families (Fig. 5). The
network is clearly organized into clusters that faithfully represent
the original nitrogen cycle families and could be easily separated by
applying a community detection algorithm to the network. We var-
ied the correlation threshold and show that at a more conservative
correlation value of 0.5 the families are distinct, unconnected sub-
networks (Supplementary Fig. S4). We also performed the same
clustering using the solvent accessibility alphabet and a k of 12,
which performed well in the correlation analysis (Fig. 4) and show
the resulting network with a correlation threshold of 0.1 as
Supplementary Figure S5. These results show that the AARs produce
similar clustering results as the unencoded kmers, but at a signifi-
cantly reduced computational cost.

2.2.4. Example Application 3: Unsupervised clustering of multiple
genomes

Though Snekmer performed well for the nitrogen cycle families ex-
ample, we were interested in evaluating Snekmer’s clustering per-
formance on larger datasets that more closely mirror datasets of
interest to potential users, and benchmarking our method versus
state-of-the art sequence clustering methods. Accordingly, we gath-
ered 46 908 protein sequences from 10 randomly selected genomes
from the SwissProt/UniProt database (Duvaud et al., 2021). We
compared the performance of different parameter selections by
assessing the homogeneity and completeness of the resulting clusters
when evaluated against annotations available from Uniprot,
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Fig. 5. Network representation of the de novo similarity relationships determined by Snekmer (k =4, no encoding) showing the nitrogen cycling families as different colors (le-
gend). Nodes represent proteins and edges represent similarity relationships with a correlation of 0.1 or greater as determined by comparing kmer vectors for both proteins

including Gene Ontology (GO), Pfam, Interpro and Clusters of
Orthogolous Genes (COG).

Using parameter combinations derived from the best-performing
clusters from our second example (Fig. 4), we chose k=4 and the
MIQS alphabet, k=8 with the solvent accessibility alphabet, and
k=14 with the hydrophobicity alphabet. We applied Snekmer in
cluster mode to the sequences using Jaccard similarity to determine
the distance matrix and Scikit-Learn’s agglomerative clustering
using complete linkage. After some parameter exploration, we set-
tled on a distance threshold for the agglomerative clustering of 95.
To compare our results with an existing clustering method, we also
applied MMSeqs2 to the same protein set using the ‘easy cluster’
mode with the default sensitivity (Mirdita ez al., 2019). The average
V score across all clusters shows that Snekmer clustering has the
best performance when k=14 with a hydrophobic AAR. These
results are somewhat lower than those with MMseqs2 (Table 3),
though still show Snekmer can perform reasonably well for annota-
tion purposes.

To further investigate the differences between Snekmer
clustering and MMseqs2, we examined the overlap between proteins
assigned to a cluster containing at least two sequences as determined
by each method. Surprisingly, we found that although each
method clustered approximately 50-60% of the proteins, roughly
60% of the proteins clustered were not shared between the two
(Fig. 6). Integrating Snekmer and MMSeqs2 clustering results
increases the fraction of total proteins assigned to clusters from
~50% to 60% by either method alone, to 85% using both methods
together.

The results we present are compared with MMSeqs2 clustering
run with default parameters but see little difference when we alter

Table 3. V-score performance of clustering on 46 908 proteins

Snekmer
Annotation k4, MIQS k8, SolvAcc  k14,Hydro = MMSegs2
GO 0.599 0.671 0.702 0.783
Pfam 0.759 0.820 0.854 0.919
InterPro 0.729 0.790 0.824 0.883
TIGRFAMs 0.807 0.899 0.921 0.966
COG 0.816 0.874 0.853 0.922
OrthoDB 0.850 0.900 0.894 0.943

sensitivity of MMSeqs2. MMSeqs2 clustering using sensitivities in
the range of 1 (least) to 7.5 (most) sensitive show that the results
vary little either in terms of protein coverage, from a minimum of
20 240 to a maximum of 28 977, or clustering performance, with a
Pfam V score minimum of 0.90 and a maximum of 0.92.

To evaluate Snekmer’s ability to predict annotations for unanno-
tated proteins, we evaluated the number of clusters containing at
least one annotated protein and at least one unannotated protein.
These clusters would be candidates for transitive annotation based
on the annotated protein association. Notably, though the overall
performance metrics for Snekmer and MMseqs2 are similar,
Snekmer identifies nearly twice as many clusters as MMseqs2, and
the proportion of mixed clusters is higher, indicating an increased
number of annotation predictions for Snekmer (Table 4).
Determining whether these predictions are true positives or false
positives is the subject of ongoing work.
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Fig. 6. Coverage of clustering methods on a multiple genome protein set. The entire
set (box) is indicated and the coverage of the Snekmer clustering (left circle),
MMSeqs2 (right circle) and shared (middle area) are shown with numbers indicat-
ing the number of proteins in the groups that are unique to each method or shared
between the two

Table 4. Summary of clusters with annotations

Snekmer MMSeqs2
Annotation Annotated Mixed Annotated Mixed
GO 9645 4235 4918 571
Pfam 10 327 4030 5406 362
InterPro 10 782 3500 5709 135
TIGRFAMs 3833 2574 1891 677
COG 1851 1579 1395 1243
OrthoDB 2265 2050 2109 2017

Note: Annotated indicates the number of clusters with at least one annota-
tion of that type. Mixed indicates the number of clusters with at least one an-
notation, and one unannotated protein in the same cluster.

3. Limitations and future directions

Snekmer is a tool designed to be modular and flexible in order to en-
able easy development of (i) predictive models for protein families
and (ii) clusters of moderate-sized protein sets. Its integration of
Snekmer further allows simple deployment of Snekmer on high-
performance computing platforms for the training of large sets of
models. However, Snekmer currently demonstrates some limitations
in speed and memory usage, particularly in clustering very large
datasets. In future development of Snekmer, we plan to optimize
clustering and model-building to improve Snekmer’s ability to
model and cluster large datasets. We also plan to provide more sup-
port for user-associated metadata for trained models.

4. Conclusions

We describe Snekmer, a Snakemake pipeline to perform AAR and
kmer representation for protein sequences. We have previously used
this approach to develop a machine-learning model for ubiquitin lig-
ase mimics from pathogens (McDermott et al., 2019), as well as
related machine-learning methods to predict type III secreted effectors
(McDermott et al., 2011; Samudrala et al., 2009), and multi-drug ef-
flux transporters (McDermott ef al., 2015) in bacteria. The current
work enables broader adoption of AAR-based workflows and high-
throughput kmer-based sequence analysis. The Snekmer pipeline is
available on GitHub (http://github.com/PNNL-CompBio/Snekmer).
Previously, we demonstrated that the simpler AAR schemes (e.g.
separating amino acids into hydrophobic and hydrophilic groups)
outperformed the native protein sequence kmers for classification of
the sequence-diverse ubiquitin ligase proteins (McDermott et al.,
2019). In the current work, using Snekmer to apply the AAR

approach to a variety of protein families in an automated fashion,
we found that many protein families are accurately classified using
the native protein sequence kmers. However, some of families are
classified more accurately using AAR, indicating its utility. Because
AAR captures greater flexibility in sequence space (McDermott
et al., 2019; Yamada and Tomii, 2014), the approach will likely be
more robust to introduction of new sequences into a family.

We describe two applications of Snekmer workflows: (i) super-
vised automatic construction of classification models for input pro-
tein families and (ii) unsupervised clustering of protein sequences
based on recoded kmers. In both cases, Snekmer produces high-
quality results, either in the form of automatically generated models
that can predict the function of protein families with high accuracy
or identified protein clusters that reproduce the known family struc-
ture of the underlying sequences. For clustering, Snekmer can gener-
ate clusters of comparable quality to MMseqs2, but that covers a
different subset of protein space, demonstrating the value of our ap-
proach as a supplement to the widely used MMseqs2. We note that
while the flexible architecture of Snekmer currently limits the size of
input protein files that can be reasonably executed on standard com-
puting environments, especially for the clustering mode, future de-
velopment will be aimed toward enabling faster clustering for larger
protein files. We believe researchers studying novel genomes and mi-
crobial communities will find Snekmer valuable in building predict-
ive models for functionally related proteins.
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