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Background: Darunavir is a second-generation protease inhibitor
and is registered for the treatment of HIV-1 infection. The aim of this
study was to develop and validate a darunavir population pharma-
cokinetic model based on data from daily practice.

Methods: Data sets were obtained from 2 hospitals: ASST
Fatebenefratelli Sacco University Hospital, Italy (hospital A), and
University Medical Center Groningen, the Netherlands (hospital B).
A pharmacokinetic model was developed using data from the largest
data set using the iterative two-stage Bayesian procedure within the
MWPharm software package. External validation was conducted
using data from the smaller data set with Passing–Bablok regression
and Bland–Altman analyses.

Results: In total, data from 198 patients from hospital A and 170
patients from hospital B were eligible for inclusion. A 1-
compartment model with first-order absorption and elimination
resulted in the best model. The Passing–Bablok analysis demon-
strated a linear correlation between measured concentration and

predicted concentration with r2 = 0.97 (P , 0.05). The predicted
values correlated well with the measured values as determined by
a Bland–Altman analysis and were overestimated by a mean value of
0.12 mg/L (range 0.23–0.94 mg/L). A total of 98.2% of the predicted
values were within the limits of agreement.

Conclusions: A robust population pharmacokinetic model was
developed, which can support therapeutic drug monitoring of
darunavir in daily outpatient settings.
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BACKGROUND
Darunavir is a second-generation protease inhibitor and

is registered for the treatment of HIV-1 infection in therapy-
naïve and therapy-experienced adults and pediatric patients
aged 6 years and older.1,2 Once-daily dosage of 800-mg dar-
unavir is approved for use in treatment-naive patients, and
a twice-daily dosage of 600 mg darunavir is approved for
use in treatment-experienced patients.3 Darunavir is coadmi-
nistered with 100-mg ritonavir or with 150-mg cobicistat to
improve its exposure, as darunavir is almost exclusively
metabolized by cytochrome P450 3A4.4–6 In healthy volun-
teers, darunavir exposure increased by 30% when ingested
with food, irrespective of the type of food.7

For darunavir, a wide interpatient pharmacokinetic
variability has been observed.2,8,9 This pharmacokinetic var-
iability can be attributed to treatment nonadherence, comedi-
cation interactions, variability of cytochrome P450 3A4
isoenzyme activity, and patient demographics.2,5,8,10 Pharma-
cokinetic variability may have detrimental effects by causing
suboptimal darunavir concentrations and drug resistance re-
sulting from the propagation of HIV-1 pseudospecies with
protease mutations.11 Therapeutic drug monitoring (TDM)
potentially is a powerful tool to optimize treatment and to
prevent drug resistance if a correlation exists between drug
concentrations and (adverse) effects, if a drug has large inter-
individual pharmacokinetic variability, or if a drug has a nar-
row therapeutic index.12 For darunavir, a correlation exists
between drug concentrations and effects,1,5 and therefore,
TDM has the potential to optimize efficacy in standard care.
In Dutch daily practice, the trough concentration of darunavir
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is often used to help physicians determining the follow-up treat-
ment with darunavir.13 In settings with adequate resources,
TDM is commonly used in the cases of: drug–drug interactions,
renal or hepatic morbidity, pregnancy administration of drug
doses not commonly used, virologic failure, suspicion of non-
adherence, and adverse events.14

Collection of multiple plasma samples during one
dosing interval to measure total drug exposure is time-
consuming, expensive, and burdensome to patients and to
the health care system in a routine care setting. Furthermore,
trough concentrations, the most frequently used pharmacoki-
netic parameter in TDM, is not always captured because of
varying dosing schedules of patients in daily practice. A
population pharmacokinetic model can provide a solution, as
it can be used to predict the (trough) plasma concentration
profile of darunavir with a limited number of samples.2,8 Two
population pharmacokinetic models with different results
were developed: one based on a 1-compartment model2 and
the other suggesting a 2-compartment model.8 The aim of this
study was to investigate which kind of model best describes
the data from our outpatient setting by using the 2 previously
published models before our own modeling experiment and to
subsequently develop and validate a population pharmacoki-
netic model with data from daily practice, to predict darunavir
trough levels in an HIV outpatient setting using user-friendly
software.

MATERIALS AND METHODS

Data Collection
This study was conducted using 2 data sets from 2

hospitals: ASST Fatebenefratelli Sacco University Hospital,
Milano, Italy (ASST), and the University Medical Center
Groningen, the Netherlands (UMCG). All measured daruna-
vir plasma concentrations were extracted from the ASST
electronic patient database (April 2015—August 2017) and
from the UMCG electronic patient database (January 2010–
May 2017). Based on the size, the ASST data set was named
“hospital A,” and the UMCG data set was named “hospital
B.” Approval by the ethics committee was deemed unneces-
sary for ASST because, under Italian law, such an approval is
required only for prospective clinical trials investigating med-
ical products for clinical use. The ethical review board of the
UMCG evaluated the study and waived the need for written
informed consent because of the retrospective nature of the
study (METc 2015.010). This was a retrospective data record
review; the data were collected for clinical purposes and were
anonymized for the study.

Data of patients aged 18 years and older and treated
with darunavir were eligible for inclusion in this study. Both
data sets comprised retrospectively collected data from HIV-
infected patients using darunavir/ritonavir 600/100 mg twice-
daily or 800/100 mg once-daily. The following data were
extracted from the medical records of the participants: sex,
age, weight, height, serum creatinine concentration, darunavir
dosage, time of darunavir intake, time of blood sampling, and
darunavir plasma concentration. The weight obtained during
the outpatient visit of drug level measurement was

documented in the research database; for serum creatinine
concentration, the corresponding value during the visit of
drug level measurement or within a period of 615 days was
documented. Darunavir plasma concentrations were excluded
if the time of drug intake or time of blood sampling was
unknown and if the measured darunavir concentration was
below the lower limit of quantification (,0.2 mg/L for both
hospitals). In cases where the height or weight of the patient
was not documented, the average height (male: 1.80 m;
female: 1.70 m) and weight (male: 80 kg; female 70 kg)
according to the Dutch Central Bureau of Statistics (CBS)
or average height (male: 1.75 m; female: 1.65 m) and weight
(male: 75 kg; female: 65 kg) according to the Italian National
Institute of Statistics (ISTAT) was inserted.15,16 The addition
of mean weight and height values for missing data was
accepted up to 10% per data set. In cases where the number
of missing values exceeded 10%, the corresponding patients
were excluded. Darunavir plasma concentrations were ana-
lyzed by a validated liquid chromatography–tandem mass
spectrometry method.17

Population Pharmacokinetic Model
Development

All pharmacokinetic calculations and modeling were
performed using the MWPharm software package (version
3.82; Mediware, Zuidhorn, the Netherlands).18 The data set
with the largest population in terms of highest number of
unique patients (hospital A) was chosen for pharmacokinetic
model development, and the data set with the lower number
of unique patients (hospital B) was used as the external val-
idator set. The development data set was imported in
MWPharm to develop a population pharmacokinetic model
using an iterative two-stage Bayesian (ITSB) procedure (the
KinPop model of the MWPharm software package).19 The
modeling was performed with the following estimated phar-
macokinetic parameters: total body clearance (CL), volume of
distribution (V), and oral absorption rate constant (Ka). CL
was calculated using the equation:

CL ¼ CLm ·
�

BW
70

�
þ f r ·CLcr, where CLm is metabolic

clearance (in liters per hour per 70 kg body weight), BW is
body weight (kilograms), fr is the ratio of the renal clearance
of darunavir and the creatinine clearance, and CLcr is the
creatinine clearance calculated with the Chronic Kidney Dis-
ease Epidemiology collaboration (CKD-EPI) formula (con-
verted to unit L/h).20 V was calculated using the equation:
V = V1 · LBMc where V1 is the volume of distribution (in
liters per 70 kg LBMc) and LBMc is the lean body mass
corrected, calculated with LBMc = LBM + (BW 2 LBM)
· fd, where LBM is calculated from 50.0 + 0.9 · (Height 2
152) for male patients and 45.5 + 0.9 · (height 2 152) for
female patients.21 Height is body height in cm, and fd is
a dimensionless parameter describing the degree of distribu-
tion into fatty tissue.22 For the 2-compartment model, addi-
tional estimated pharmacokinetic parameters were as follows:
intercompartmental clearance (CL12, in liter per hour per 70
kg body weight) and volume of distribution of the peripheral
compartment (V2, in liters per kg LBMc). Pharmacokinetic
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parameters were assumed to be log-normally distributed, and
the residual error was assumed to be normally distributed and
equal to the SD of the assay, which was estimated as 0.2 + 0.05
· C, where C is the observed darunavir plasma concentration.

ITSB needed initial estimates for each population
parameter (mean and SD) to start the iterative process.19 To
perform the ITSB procedure for the development of a 1-
compartment model with first-order elimination, initial pop-
ulation pharmacokinetic parameters from Arab-Alameddine
et al and darunavir summary of product characteristics were
used2,23 (see supplement 1, Supplemental Digital Content 1,
http://links.lww.com/TDM/A279). Subsequently, the devel-
opment of a 2-compartment model for darunavir was also
explored based on initial pharmacokinetic data from Molto
et al and darunavir summary of product characteristics8,23 (see
supplement 1, Supplemental Digital Content 1, http://links.
lww.com/TDM/A279).

A stepwise approach was used to find a model that
fitted the darunavir data best, comparing 1- and 2-
compartment models. The goodness-of-fit of the newly
designed population pharmacokinetic models were evaluated
using the Akaike Information criterion (AIC).19 Selection of
a 1- or 2-compartment model was based on (1) the lowest
value of the AIC and (2) the plausibility of the pharmacoki-
netic parameters. A drop in the AIC of 2 or more was con-
sidered to be the threshold for a better fitting model.24

Furthermore, different values for fd and fr were inserted to
observe the best fit based on AIC.

The KinPop module of the MWPharm software package
has 3 settings for the inclusion of pharmacokinetic parameters
in a model: by ITSB analysis (“Bayesian”), estimated with
a predefined fixed population value (fixed population Bayes-
ian), or set to a fixed value (“fixed”). In the modeling pro-
cedure of the 1-compartment model, the population
pharmacokinetic parameters CLm, V1, and Ka were first set
on fixed values. The same pharmacokinetic parameters were
also set on fixed values for the modeling procedure of the 2-
compartment model in addition to CL12 and V2. The first step
in developing the model was to set all parameters fixed to the
literature values in Supplemental Digital Content 1 (see
supplement 1, http://links.lww.com/TDM/A279) and change
one parameter at a time to either Bayesian or to the fixed
value. The parameter with the lowest AIC was chosen for
the next step. In step 2, the parameter with the lowest AIC
was set to Bayesian, and all other parameters were changed
one by one to Bayesian. These steps were repeated in the next
cycle using previous population parameters until the set with
population parameters best fitting the data was found.

For the final parameter set, the nonparametric 95%
confidence intervals of the population parameters and their
interindividual SDs were estimated by bootstrap analysis (n =
1000), which could be considered as a resampling technique
for internal validation.

Population Pharmacokinetic Model
Validation

External validation was performed by Bayesian fitting
of the pharmacokinetic model to each individual in the

validator data set, using the previously developed model, as
this provides the strongest evidence for model validation. The
Kinpop module in MW\Pharm was used with 1 cycle set as
a maximum. In this setting, the algorithm implemented in the
MW\Pharm software determines the predictive power of
a population pharmacokinetic model (a model’s ability to
predict serum levels of an individual patient), as opposed to
the iterative procedure for the fitting of a new population
pharmacokinetic model to population data. Passing–Bablok
regression and Bland–Altman analyses were used to assess
the agreement between the measured concentration and the
predicted concentration.

For the bootstrap analysis and external validation, the
final model was used, and if this model appeared to be
inappropriate, the second-best logical model was also used for
the bootstrap analysis and external validation.

P values of #0.05 were considered statistically signif-
icant. All statistical analyses were either performed as part of
the MWPharm population analysis or computed using SPSS
version 23 (IBM, Armonk, NY).

RESULTS

Data set
One hundred ninety-eight unique patients with a total of

198 samples for hospital A and 170 unique patients with
a total of 170 samples for hospital B were eligible for
inclusion (see supplement 2, Supplemental Digital Content
2, http://links.lww.com/TDM/A280). The demographic char-
acteristics of both patient populations were comparable (table
1). The percentage of missing values did not reach the thresh-
old of 10% in both databases. No data were missing in the
data set of hospital A. In the data set of hospital B, the weight
of 14 participants (8.2%) and the height of 1 participant
(0.6%) were not documented, and therefore, the average
height and weight according to the CBS were used in these
cases.

Population Pharmacokinetic Model
The settings and results of the different 1- and 2-

compartment submodels developed to find the model with the
best goodness-of-fit are shown in Supplemental Digital Con-
tent 3 (see supplement 3, http://links.lww.com/TDM/A281).
Because of the absence of data on drug concentrations after
parenteral darunavir administration as a comparison for oral
administration to measure bioavailability, bioavailability was
fixed in all parameterizations at the literature value of 0.82.23

A 1-compartment model with a first-order absorption and
elimination, a distribution to fatty tissue factor (fd) of 5, and
a fr value of zero resulted in the best model. The addition of
a second compartment did not significantly improve the fit
based on AIC. In our data set, the second compartment was
estimated as 0.051 L/kg, which is negligible as a significant
peripheral compartment.

The 1-compartment model with only CLm set on Bayes-
ian (model 1) had the lowest AIC value (945.31). This model
implies that the volume of distribution (in L/kgLBMc) is the
same for each patient, which does not seem logical. For that
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reason, the model with the second-best AIC value (model 2)
was also externally validated. This model had an AIC =
1584.89 with both CLm and Vd set on Bayesian. The popu-
lation pharmacokinetic model parameters of both models are
shown in table 2. The modeling process of the different values
for fat distribution (fd) and the inclusion and exclusion of the
fr are shown in Supplemental Digital Content 4 (see sup-
plement 4, http://links.lww.com/TDM/A282).

External Validation
For both models 1 and 2, an external validation was

performed with the data set from hospital B. The agreement
between the measured concentration (Cmeasured) and the pre-
dicted concentration (Cpredicted) was assessed in a Passing–
Bablok analysis, shown in Figure 1. The Passing–Bablok
analysis demonstrated a positive linear correlation between
Cmeasured and Cpredicted with r2 = 0.85 (P , 0.05) for model 1
and r2 = 0.97 (P , 0.05) for model 2. Predicted values cor-
related well with measured values for both models as

determined by Bland–Altman analysis (Fig. 2). For model 1,
predicted values were overestimated by a mean value of 0.07
mg/L (range 1.08–1.89 mg/L), of which 92.3% of the total
predicted values were within the limits of agreement. For
model 2, the predicted values were overestimated by a mean
value of 0.12 mg/L (range 0.23–0.94 mg/L), of which 98.2%
of the total predicted values were within the limits of agree-
ment. Based on plausibility of the computed pharmacokinetic
data as well as the better agreement between measured and
predicted concentrations, model 2 was chosen as final model.

DISCUSSION
In this study, we evaluated 2 published population

pharmacokinetic models and subsequently developed a new
population pharmacokinetic model for darunavir that better
described our population and provided us the opportunity to
estimate darunavir trough concentration and that, therefore,
was considered preferable for routine use. We showed that

TABLE 1. Patient Demographics Hospitals A and B

Characteristics Hospital A (n = 198) Hospital B (n = 170)

No. (%) of patients by Sex

Male 141 (71) 142 (84)

Female 57 (29) 28 (16)

Age (yrs)* 54 (24–74) 52 (28–73)

Weight (kg)* 72.0 (40–123) 74.5 (41–120)

Height (cm)* 173.0 (150–193) 179.5 (151–202)

Body mass index (kg/m2)* 24.6 (16.9–35.3) 24.0 (15.0–40.2)

Serum creatinine conc. (mmol/L)*† 83.5 (44.2–230.7) 85.5 (36.0–329.0)

Dosage 800/100 once-daily 162 (82) 144 (85)

Dosage 600/100 twice-daily 36 (18) 26 (15)

Dose/mean wt (once-daily) (mg/kg)* 11.0 (6.5–20.0) 10.6 (6.6–19.5)

Dose/mean wt (twice-daily) (mg/kg)* 8.3 (4.9–15.0) 7.9 (5.0–14.6)

Tot. No. of samples 198 170

*Median (range).
†During visit of drug level measurement 615 days.
n, number of participants; wt, weight.

TABLE 2. Final Population Pharmacokinetic Parameters

Parameter

Model 1
AIC = 945.31

Model 2
AIC = 1584.89*

Mean (95% CI) SD (95% CI) Mean (95% CI) SD (95% CI)

CLm (L/h/70kgBW) 11.22 (9.54–13.38) 12.11 (8.39–16.59) 9.47 (8.24–10.65) 6.19 (4.85–7.76)

Vd (L/kgLBMc) 1.42 — 2.13 (1.39–3.26) 2.60 (1.43–4.66)

Ka (h21)†‡ 1.04 — 1.04 —

F§ 0.82 — 0.82 —

fr 0 — 0 —

Fat distribution 5 — 5 —

*Chosen as final population pharmacokinetic model.
†Literature value.2

§Literature value from SPC.17

‡Set on fixed value.
95% CI, 95% confidence interval; CLm, metabolic clearance; F, bioavailability; Ka, first-order absorption constant; SPC, summary of product characteristics; Vd, volume of

distribution.
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darunavir concentrations from the validation set can be
predicted with this population pharmacokinetic model with
a mean overestimation of 0.12 mg/L (range 0.23–0.94 mg/L).
The observed range could potentially be further narrowed by
using more sophisticated pharmacokinetic software allowing
for the addition of other covariates. However, the developed
model is sufficient for daily outpatient setting because 98.2%
of the total predicted values were within the limits of agree-
ment. The robustness of the developed population pharmaco-
kinetic model was demonstrated with the data set of hospital
B using Passing–Bablok regression (r2 = 0.97; P , 0.05).

Consistent with the findings of Arab-Alameddine et al,2

a 1-compartment model with first-order absorption and elim-
ination resulted in the best fit when using our patient data.
The selection of the final population pharmacokinetic model
was not merely based on AIC but was also selected based on
plausibility of the computed pharmacokinetic data as well as
on the agreement between measured and predicted concen-
trations in the external validation. For the model with the best
AIC (model 1), both Vd and Ka were set on a fixed value,
making that submodel less dependent on patient factors such
as body weight and more on literature values,2 which did not
seem logical. Therefore, the model with both CLm and Vd set
on Bayesian (model 2), based on AIC in combination with the
plausibility of the computed data, was chosen for external
validation. In addition, the agreement between measured
and predicted concentrations in the external validation (Figs.
1 and 2) was markedly better for model 2 than for model 1,
and therefore, model 2 was chosen as the final model.

The submodel with also Ka set on Bayesian resulted in
a poorer fit, which could be due to the low number of dar-
unavir samples drawn in the absorption phase; 0–4 hours after
drug intake.5 Furthermore, a ratio of fat distribution (fd) of 5
and the omission of fr (fixed at a value of zero) provided
better AIC scores. A possible explanation of a better fit with
a fat distribution ratio of 5 might again be the relatively high
lipophilicity of darunavir.25 The improvement of the model
with the omission of fr is not a remarkable finding because

darunavir is mainly eliminated by the liver (80%) and the
renal elimination is negligible;23 therefore, fr appears not to
be a significant covariate.

Because of the relative high lipophilicity of darunavir,25

a 2-compartment population pharmacokinetic model would
be expected to demonstrate a better fit. However, the addition
of a second compartment did not improve the fit. This sug-
gests that there is insufficient information in the used data set
to parameterize a 2-compartment model. This could be a result
of suboptimal blood sampling time points after administra-
tion, which is required for the estimation of parameters for
a 2-compartment model. Furthermore, the estimation of pa-
rameters for a 2-compartment model after extravascular
administration with first-order absorption is difficult because
the rate constants of distribution and absorption usually have
the same order of magnitude and are, therefore, difficult to
distinguish. In a real-life outpatient setting, biased sampling
may occur because of practical convenience. For the devel-
opment of a 2-compartment pharmacokinetic model, richer
data are more convenient in contrast to the currently used
scarce real-life outpatient data.

For the development and validation of this population
pharmacokinetic model, observational data sets retrieved
from standard care settings were used. The use of observa-
tional data sets has advantages compared with experimental
data sets because of economic and ethical reasons; although it
can often include larger number of patients and minimize
risks and discomfort for the patients, it also has drawbacks.
The major disadvantages of observational data sets are
missing data and inaccurate data because of documentation
errors.26 Despite these drawbacks, the use of observational
data sets was preferred in relation to the aim of this study.
The population pharmacokinetic model was developed for
utilization in a real-life HIV outpatient setting. Data retrieved
from an experimental setting would lack the high interpatient
variability, which is apparent in standard care. Furthermore,
a study showed that relatively small errors (eg, up to 25% of
the being data erroneous) in data registration have negligible

FIGURE 1. Passing–Bablok regression. The plot shows the agreement between Cmeasured and Cpredicted, predicted with the
population pharmacokinetic model [dashed lines, 95% confidence interval (CI)]. A, Model 1 and (B) model 2.
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influence on population pharmacokinetic modeling,26 which
also justifies the use of observational data sets from 2 hospi-
tals for the development of a population pharmacokinetic
model and its validation. Larger errors could still have a sig-
nificant effect on the population pharmacokinetic modeling
process;26 therefore, patients with undetectable darunavir
concentrations (#0.2 mg/L), or unknown weight, height,
unknown time of drug intake, or time of sample collection
above the 10% cutoff were excluded. Regarding the modeling
approach used for this study, while nonlinear mixed-effects
modeling is a more standard approach for sparse PK data,
ITSB was chosen for this study because it allows for using
body weight and serum creatinine level as continuously
changing covariates. Furthermore, this approach was success-
fully applied in earlier studies.27,28

The Bland–Altman analysis (Fig. 2) reveals that the
relatively small observed overestimation of the current model
primarily occurs in lower darunavir concentrations. One
explanation could be the relatively high assay error at lower
concentrations. Another explanation may be that over-
estimation at a lower concentration can be an indicator for
multiple-compartment pharmacokinetics because of satura-
tion of peripheral compartments. Unfortunately, our data were
not sufficiently informative for fitting to a 2-compartment
model as discussed before. A third explanation might be the
occurrence of underlying confounders, such as food intake
and pharmacogenomics, which are not included in the current
model. An additional explanation could be the saturation of
metabolism at higher concentrations resulting in a higher
clearance at low concentrations than predicted. However,
the overestimation is within the error of the assay and does
not significantly influence the analytical results. Furthermore,
98.2% of the total predicted values were estimated within the
limits of agreement, justifying the use of this model in daily
practice.

In standard care, darunavir concentrations are measured
when indicated14 and subsequently the time-adjusted

darunavir trough concentrations can be predicted using the
currently developed population pharmacokinetic model. The
time-adjusted darunavir trough concentrations are subse-
quently dichotomized as either “above” or “below” cutoff
values in accordance with the local treatment protocol.13

The used cutoff values do not represent the minimal effective
concentrations but are used in standard care as cutoff values
for follow-up. A darunavir trough concentration below 1.07
mg/L for the once-daily dosage or below 2.60 mg/L for the
twice-daily dosage is an indication for follow-up. This
follow-up could consist of repeating the plasma drug concen-
tration measurement on a new occasion, additional food
intake advice, and additional questions and guidance concern-
ing therapy adherence.13,14 In case, a darunavir trough con-
centration is collected adequately in terms of sampling time,
the measured concentrations can be used directly according to
the treatment protocol. However, outpatient setting blood col-
lection is not performed at optimal time points in most cases
because of practical reasons. In those cases, the population
pharmacokinetic model developed in this study could provide
the opportunity to translate the drug concentrations collected
at suboptimal time points into trough concentrations. To
investigate the pharmacokinetics of darunavir more in-depth
and to investigate the potential contribution of other con-
founders to darunavir pharmacokinetics, denser pharmacoki-
netic sampling in combination with sophisticated software
packages such as NONMEM (nonlinear mixed-effects mod-
eling) will be more suitable. However, that was not within the
scope of the current study. In our opinion, TDM can be a use-
ful tool for clinicians to optimize treatment especially when
used in conjunction with disease-related parameters such as
viral load, CD4+ cell count, and clinical judgment.

A strength of the current study is that we used a large
number of patient data from 2 different hospitals, one for the
development and the other for the validation of the darunavir
population pharmacokinetic model. Because the current aim
is the utilization of the model in an outpatient setting, another

FIGURE 2. Bland–Altman plot. The Bland–Altman plot shows the agreement between Cmeasured and Cpredicted estimated with the
final population pharmacokinetic model. Mean of all: the mean concentration of Cmeasured and Cpredicted. The dashed lines rep-
resent upper limit of agreement and lower limit of agreement (62 · SD). A, Model 1 and (B) model 2.
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strength is the use of data retrieved from the target population.
A limitation of this study is that potentially nonadherent
patient or patients with food intake problems were included,
which may have introduced selection bias and increased
variance. However, this was inevitable, as these patients in
particular are selected for TDM because nonadherence or
inadequate concomitant food intake are indications for TDM
(bias by indication).14 Another limitation is the low number
of blood samples in the absorption phase (0–4 hours).
Because of this gap of information, it was not possible to
parameterize the absorption constant in the population phar-
macokinetic model, leading to a fixed value based on litera-
ture.2 Furthermore, the binding of darunavir to alpha 1-acid
glycoprotein was not taken into account in our model. How-
ever, the aim of this study was not to investigate the pharma-
cokinetics of darunavir in depth, for which, as
aforementioned, a different approach and study design would
have been required. This pharmacokinetic model developed
and validated herein can pragmatically estimate darunavir
trough concentrations in daily practice and will suffice to
use in routine TDM.

CONCLUSIONS
A new 1-compartment population pharmacokinetic

model for darunavir was developed and externally validated.
This model is robust and is applicable for TDM of darunavir
in daily outpatient setting.
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