
E
n
d
o
cr
in
e
C
o
n
n
e
ct
io
n
s

Research

Open Access

N J Olsen et al. AR CAG repeat and
autoimmunity

1–11 3 :99
Variation in the androgen

receptor gene exon 1 CAG repeat

correlates with manifestations of

autoimmunity in womenwith lupus
Nancy J Olsen1, Ann L Benko2 and William J Kovacs2

1Division of Rheumatology and 2Division of Endocrinology, Diabetes, and Metabolism, College of Medicine,

Milton S Hershey Medical Center, The Pennsylvania State University, Mail Code H044, 500 University Drive,

Hershey, Pennsylvania 17033-0850, USA
http://www.endocrineconnections.org
DOI: 10.1530/EC-14-0039

� 2014 The authors
Published by Bioscientifica Ltd

This work is l
Attribution 3
Correspondence

should be addressed

to W J Kovacs

Email

wkovacs@hmc.psu.edu
Abstract
Clinical and experimental evidence support a role for gonadal steroids in modulating

the expression and course of autoimmune diseases such as lupus. Whether or not

inherited variation in sensitivity to circulating androgenic hormones could influence the

manifestations of such disease is, however, unknown. We sought to determine whether

differences in androgen sensitivity conferred by variation in the exon 1 CAG repeat region

of the androgen receptor (AR) gene were associated with differences in the clinical or

humoral immune manifestations of lupus in a cohort of female subjects. We found that

shorter AR CAG repeat lengths in lupus subjects correlated with a higher Systemic Lupus

Erythematosus Disease Activity Index score, higher ANA levels, and expression of a broader

array of IgG autoantibodies. Our findings of more severe clinical manifestations and more

exuberant humoral autoimmunity in women with a shorter AR exon 1 CAG repeat length

suggest a role for genetically determined sensitivity to androgens as a modulator of

autoimmune processes.
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Introduction
Androgenic gonadal steroid hormones exert effects on

both human autoimmune disease and the correspon-

ding animal models. In an experimental mouse model

of human systemic lupus erythematosus, females acquire

fatal renal disease while males are generally spared;

treatment of females with androgens prevents the pro-

gression of nephritis while castration of males results

in disease progression and mortality (1, 2, 3). Clinical evi-

dence in human disease also suggests that androgens can

modulate autoimmunity. An association of Klinefelter’s

syndrome with lupus has been reported in several studies,

and in isolated case reports, reversal of hypogonadism in
such patients with Klinefelter’s syndrome by testosterone

replacement has been accompanied by evidence of

remission of the autoimmune process (4, 5, 6, 7, 8). We

have recently sought to investigate whether inherited

differences in hormonal sensitivity might influence the

expression of autoimmune processes in persons with no

evidence of hormonal excess or deficiency states.

Inherited variation in the androgen receptor (AR) gene

affects androgen action. Deleterious mutations in AR

can result in syndromes ranging from mild abnormalities

to total failure of normal male phenotypic development

(9, 10). AR is a ligand-activated transcription factor with a
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domain structure that includes ligand-binding, DNA-

binding, and transcriptional activation domains – all of

which are required for the full activity of the protein.

Exon 1 of the normal AR gene also includes a CAG repeat

region of variable length (usually between 15 and 30

repeats) that encodes a polyglutamate tract in the

N-terminal region of the protein (11). Kennedy’s disease,

a form of spinal and bulbar muscular atrophy accom-

panied by insensitivity to androgen signaling, results from

massive expansion of the number of CAG repeats in this

region (12). However, even within the range of variation

observed among normal individuals, the length of this

repeat region (and the encoded Glun sequence in the

protein) is inversely related to the capacity of the receptor

to activate a target gene in vitro (13, 14, 15, 16). AR

signaling capacity in vitro diminishes by an average of

1.7% for each additional CAG repeat within the range

from 16 to 35 (17). In humans, such variation in AR CAG

repeat lengths has been found to be associated with

phenotypic features of men with Klinefelter’s syndrome

(18), as well as with normal variation in facial and body

hair (19), in body composition (20), in HDL levels (21),

and in response to treatment with exogenous androgens

(22). In a previous study, we found that longer AR CAG

repeats were associated with more exuberant expression of

IgG autoantibodies in males with lupus (23), while two

recent reports have now identified inverse correlations

between AR CAG repeat length and disease activity in

women with rheumatoid arthritis (24) and lupus (25).

We reasoned that, as women have much lower

circulating levels of endogenous androgens, inherited

variation in sensitivity to these hormones might play

an even more significant role in modulation of immune

reactivity when compared with men. We genotyped a

cohort of women with lupus for variation at the AR exon

1 CAG repeat and correlated the genotypes with clinical

manifestations of disease activity, levels of disease-specific

humoral autoimmunity (antinuclear antibodies (ANAs)),

and assessments of the overall breadth of humoral

autoimmune reactions by autoantigen microarrays.
Subjects and methods

Experimental subjects, samples, and clinical data

Study samples and de-identified clinical data are obtained

from normal female volunteers and from female patients

seen in clinics at the Penn State Milton S Hershey Medical

Center. The study was approved by the Institutional

Review Board of the Penn State College of Medicine and
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the M S Hershey Medical Center, and all subjects gave

informed consent. De-identified subject samples included

serum for autoantibody analyses and DNA for genotyping.

Clinical data on individuals with lupus included age,

number and type of lupus diagnostic criteria (26), scores

for disease activity (Systemic Lupus Erythematosus Disease

Activity Index (SLEDAI)) (27, 28), and medications at the

time of entry into the study.
Androgen receptor CAG repeat genotyping, AR gene

methylation analysis, and calculation of weighted

AR CAG repeat length

Genomic DNA was isolated from peripheral whole blood

or from buffy coat cells using the QIAamp DNA Mini Kit

(Qiagen) following the manufacturer’s protocol. DNA was

quantitated using a Nanodrop 2000c spectrophotometer.

The AR exon 1 CAG repeat length was measured for

both alleles in each subject using a PCR-based technique

as described previously (23). DNA (30 ng) was used as a

template for amplification of part of the first exon of

the androgen receptor gene using a FAM-labeled forward

primer (5 0-FAM GCT GTG AAG GTT GCT GTT CCT

CAT-3 0), an unlabeled reverse primer (5 0-TCC AGA ATC

TGT TCC AGA GCG TGC-3 0), Titanium Taq DNA

polymerase (Clontech), and 200 mM dNTPs. PCR was

performed in an Applied Biosystems 2720 Thermal Cycler

using the following cycling parameters: 94 8C for 3 min,

then 35 cycles of 94 8C for 30 s, 63 8C for 20 s, and 72 8C for

30 s, and a final extension step at 72 8C for 3 min.

Amplification of PCR products was confirmed by agarose

gel electrophoresis. In preparation for analysis of the sizes

of the PCR products from each DNA template by capillary

electrophoresis, 0.5 ml of each PCR product diluted in

water, 0.5 ml GeneScan 600 LIZ Size Standards v2.0

(Applied Biosystems), and 9.0 ml Hi-Di Formamide

(Applied Biosystems) were mixed together in separate

wells of a 96-well plate. The plate was covered with film,

heated at 95 8C for 3 min, and then placed on ice. The

plate was loaded and run on an Applied Biosystems 3130xl

Genetic Analyzer in the Penn State College of Medicine

Molecular Genetics Core Facility. Determination of the

sizes of the PCR products was performed using the

GeneMapper Software (Applied Biosystems).

Methylation analysis was carried out to detect the

degree of inactivation of each AR allele using the CpG

methylation-sensitive restriction endonucleases HpaII

and HhaI (18, 29). Restriction sites for these enzymes

(two for each enzyme) are within the DNA fragment

(w280 bps) amplified by the primers described above and
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immediately 5 0 of the CAG repeat, so that methylated

DNA would be uncut by either enzyme and would

subsequently be amplified in the PCR described above.

DNA samples of 300 ng were incubated in a 30 ml volume

at 37 8C for 12 h with or without enzyme (with buffer and

100 mg/ml BSA only) for a mock digestion to produce

uncut DNA. Digestion of DNA was confirmed by electro-

phoresis of half of each sample on a 0.8% agarose gel in

TBE buffer. Aliquots of the undigested or digested DNA

samples were amplified and analyzed by capillary electro-

phoresis as described above. Peak areas of each amplified

allele were determined using the GeneMapper Software

(Applied Biosystems).

The percentage of each allele that was unmethylated

(active) was determined by calculating the ratio of the

respective peak areas in the enzyme-digested samples.

As individual alleles usually do not amplify with equal

efficiency, we used a correction based on the amplification

of each allele in the undigested samples (18, 30).

A weighted mean AR CAG repeat length was calcu-

lated (31) from the following variables:

(a) peak area of allele 1 in digested samples

(b) peak area of allele 2 in digested samples

(c) peak area of allele 1 in undigested samples

(d) peak area of allele 2 in undigested samples

(e) number of CAG repeats in allele 1

(f) number of CAG repeats in allele 2

These variables were used in the following equations:

Fractional inactivation of allele 1:

ða=cÞ

ðða=cÞC ðb=dÞÞ

Fractional inactivation of allele 2:

ðb=dÞ

ðða=cÞC ðb=dÞÞ

Weighted mean AR CAG repeat length:

Allele 1 length ðeÞ!ð1Kfractional inactivationÞ

CAllele 2 length ðfÞ!ð1Kfractional inactivationÞ

Samples were analyzed in this fashion with both HpaII

and HhaI (Promega). The results were uniformly con-

cordant and the final weighted mean AR CAG repeat

length was the average of these two determinations.
Antinuclear antibody assay

Levels of ANAs were measured in serum samples using the

ELISA technique (Inova Diagnostics, San Diego, CA, USA).
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A positive result in this assay is defined as O20 ELISA units.

ANA results using this technique correlate with those

obtained by immunofluorescence assays (32).
Autoantigen microarray

Individual serum samples (5 ml) were analyzed for IgG and

IgM autoantibodies directed against the components of

an 84-component autoantigen array described previously

(23, 33). Arrays were prepared and run in the University

of Texas Southwestern Medical Center Microarray Core

Facility. Data were normalized for total IgG or IgM levels

in each sample. Analysis of the normalized fluorescence

intensities was carried out using the open-source software

program Cluster 3.0 (M Eisen, Stanford University, with

manual updated by M de Hoon, University of Tokyo) and

the results were visualized using the open-source software

program Treeview 1.6. In addition, the normalized fluor-

escence intensities observed for each specific antigen in the

24 normal subjects were used to define a cutoff for a posi-

tive test based on the meanC3 S.D. of the values observed.

For the lupus subjects, values above this level were scored

as positive tests for each respective autoantibody.
Statistical analysis

Differences in mean AR CAG repeat lengths for alleles and

for weighted mean AR CAG repeat values based on

methylation analysis were determined in the study

populations by a t-test. The Gaussian curve fitting for the

frequency distribution of AR CAG repeat lengths was done

using the GraphPad Prism 6 Software (La Jolla, CA, USA).

The same software was used to determine linear corre-

lations between individual AR CAG repeat lengths and

measures of disease activity. Hierarchical cluster analysis

of normalized microarray data was carried out using

Cluster 3.0 and the results were prepared for visual

presentation as heat maps using Tree View 1.6. Fisher’s

exact test was used to analyze autoantigen microarray data

as discrete variables (positive tests vs negative tests, as

described above) in individuals with short (%19) AR CAG

repeats compared with those with long (O19) AR CAG

repeats.
Results

To assess whether AR CAG repeat lengths differed between

healthy individuals and subjects with lupus, we genotyped

25 healthy female volunteers and 39 women with a

diagnosis of lupus who are subjects in a registry at the
This work is licensed under a Creative Commons
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Figure 1

AR CAG repeat length does not differ between lupus subjects and healthy

controls. The length of each AR allele CAG repeat was determined in 25

healthy female control volunteers and 39 women with lupus. Top panel:

mean AR CAG repeat length of all alleles in each group. Middle panel:

distribution of AR CAG repeat lengths for all alleles in healthy controls and

lupus subjects. Bottom panel: meanCS.E.M. of the weighted mean AR CAG

repeat length determined by AR gene methylation analysis for both

populations.
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Milton S Hershey Medical Center. No difference was

observed in the average length of the AR exon 1 CAG

repeat in all alleles between the healthy control group and

the lupus subjects (mean CAG repeat length of 19.03G

0.28 for lupus subjects vs 19.69G0.47 for healthy controls;

Fig. 1, top panel). AR CAG repeat length in both the

healthy and the lupus populations appeared to be

normally distributed (the Gaussian curve fit r2Z0.83 for

lupus subjects and r2 Z0.86 for healthy controls; Fig. 1,

middle panel).

X chromosomal inactivation could conceivably

alter effective AR CAG repeat length and thus modulate

androgen action in any given androgen target cell.

We therefore analyzed allele-specific methylation in peri-

pheral blood white cells from these healthy controls and

lupus subjects. Weighted mean AR CAG repeat lengths

were determined for each individual using methylation-

sensitive restriction digests to identify inactivated alleles.

We found no significant difference in the weighted mean

AR exon 1 CAG repeat length between lupus subjects

and healthy controls (19.24G0.33 for lupus subjects vs

19.86G0.47 for healthy controls; Fig. 1, bottom panel).

These data are all consistent with the formulation that

inherited differences in AR CAG repeat length (and, con-

sequently, androgen sensitivity) do not play any primary

role in the predisposition to the development of auto-

immunity in individuals with lupus.

Nonrandom patterns of X chromosomal inactivation

(‘skewing’) have been reported to occur more frequently in

individuals with autoimmune disease (34). We analyzed

each individual subject’s X chromosomal methylation at

CpG islands in close proximity to exon 1 of the androgen

receptor gene to assess whether preferential expression

of AR alleles of greater or lesser length might be more

prevalent in the lupus subjects. Skewed X inactivation can

be defined by a variety of criteria – usually ranging from

O70 to O90% inactivation (methylation) of one allele.

We noted such skewed methylation in 7.8–32.8% of

individuals (Table 1) based on the different defining

criterion used. In none of these instances was a difference

in X inactivation pattern demonstrable between lupus

subjects and the healthy controls.

While there was little reason to expect that the genetic

determinants of androgen insensitivity could influence

overall susceptibility to autoimmune disease, we hypo-

thesized that inherited variation in sensitivity to hormone

action might affect aspects of the course, severity, or

breadth of autoimmune reactivity. We examined in detail

a subset of individuals (eight healthy controls and 23

lupus subjects for whom we had available clinical data
http://www.endocrineconnections.org
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Table 1 Skewing of X chromosomal methylation at AR locus in healthy controls and lupus subjects.

Criterion (% inactivation

of one allele)

Percentage of total

sample skewed

Percentage of healthy

controls skewed

Percentage of lupus

subjects skewed

Difference between

healthy and lupus subjects

(P value by Fisher’s test)

O70% 32.8 24 38.4 0.2823 (NS)
O75% 23.4 16 28.2 0.3676 (NS)
O80% 18.7 16 20.5 0.7512 (NS)
O90% 7.8 8 7.6 1.000 (NS)
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and serum samples) to test whether the AR CAG repeat

length might be related to differences in clinical features of

lupus or in the manifestations of humoral autoimmunity

that characterize the disorder. Of the 23 subjects with

lupus, 13 had been treated with hydroxychloroquine, nine

had received treatment with a pharmacological dose of

glucocorticoids, and two had received mycophenolate

mofetil. There was no difference in the weighted mean AR

CAG repeat length among the groups who had received

different therapies, and none of them differed from the

mean for the total subject population.

The clinical criteria used to diagnose lupus and a

clinical phenotyping score (SLEDAI) used to assess disease

activity both showed evidence of an inverse correlation

with the weighted mean AR CAG repeat length in the

lupus subjects. The number of lupus diagnostic criteria

observed for each patient at the time of entry into the

registry failed to show a linear correlation with the

AR CAG repeat length when analyzed as a continuous

variable (r2 Z0.1205; PZ0.1046). The SLEDAI showed

a significant inverse correlation with the weighted mean

AR CAG repeat length (r2 Z0.2665; PZ0.0117; Fig. 2,

middle panel).

The characteristic immunological aberration in SLE

involves humoral autoimmunity, and autoreactivity

against nuclear components, including DNA, is a hallmark

of the disease. We found a significant inverse correlation

between the level of expression of antinuclear antibodies

and the weighted mean AR CAG repeat length in our

cohort of lupus subjects (r2 Z0.4730; PZ0.0003; Fig. 2,

bottom panel).

Humoral autoimmunity in lupus extends to loss of

tolerance for a wide variety of autoantigens, and we

investigated whether the AR CAG repeat length might be

related to differences in the breadth of the autoimmune

response as well. We used an established autoantigen

array technique to correlate patterns of autoantibody

expression with the length of the weighted mean AR CAG

repeats in female subjects with lupus. Cluster analysis of

the specific patterns of IgG autoantibody reactivity
http://www.endocrineconnections.org
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revealed qualitative evidence of more exuberant auto-

reactivity in individuals with a shorter AR CAG repeat

length (Fig. 3). Individual lupus patients with shorter AR

CAG repeat lengths showed more intense IgG reactivities

(red color) against individual antigens and showed more

numerous autoantibody specificities than did the lupus

subjects with longer AR CAG repeat lengths. A similar

(although less pronounced) qualitative trend appeared

for IgM autoantibodies (Fig. 4). To assess these parameters

more quantitatively, we analyzed the microarray data by

examining each individual’s autoantibody reactivities in

comparisonto the average signalobserved from the serum of

the healthy controls. Using such positive/negative criteria,

we found 385 IgG tests to be positive out of 1909 (20.1%)

and 87 IgM tests to be positive out of 1909 (4.5%). Analysis

using the weighted AR CAG length as a dichotomous

variable (%19 vs O19) revealed a statistically significant

increase in the number of autoreactive IgG antibodies in

individuals with a shorter AR CAG length (P!0.0001 for

IgG; Fig. 5, top panel). The frequency of positive IgM

autoantibody tests was not significantly different between

individuals with shorter and longer weighted mean AR

CAG repeat lengths (Fig. 5, bottom panel).
Discussion

Since the time of Talal’s seminal experiments in the

NZB/W mouse, the preponderance of evidence has been

that androgenic signaling in the immune system was

generally suppressive (1, 2, 3). Our prior studies in men

with lupus supported the formulation that attenuated

androgen signaling through long AR CAG repeats resulted

in increased manifestations of autoimmune phenomena

(23). The studies described here revealed an opposite

result – that, in women with lupus, such genetic variants

of the androgen receptor gene (long AR exon 1 CAG repeat

lengths) that are generally believed to result in diminished

efficiency of hormonal signaling are associated with

decreased severity of clinical and serological parameters

of autoimmunity. Conversely, females with lupus who
This work is licensed under a Creative Commons
Attribution 3.0 Unported License.
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Weighted mean AR CAG repeat length is inversely correlated with clinical

and humoral immune manifestations of lupus at the time of entry into the

study. Top Panel: number of lupus diagnostic criteria identified in patients

as a function of the weighted mean AR CAG repeat length. Middle panel:

Systemic Lupus Erythematosus Disease Activity Index as a function of the

weighted mean AR CAG repeat length for 23 lupus subjects. Bottom panel:

levels of anti-nuclear antibodies (ANAs) determined by immunoassay are

shown as a function of the weighted mean AR CAG repeat length.
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had shorter AR exon 1 CAG repeats (which are associated

with relatively amplified hormonal action) were found to

have greater disease activity and more robust humoral

autoimmune responses. Our current data are also similar

to the observations in women with rheumatoid arthritis –

in whom a shorter AR CAG repeat length was noted to be

associated with earlier onset and more aggressive disease

course (24) – and to a recent study of women with SLE in

which the AR CAG repeat length was inversely correlated

with the SLICC/ACR index of disease damage (25).

Differences in androgen sensitivity conferred by AR CAG

repeat variation in women do not appear to be compen-

sated by alterations in circulating hormone levels. While

longer AR CAG repeats are associated with higher levels of

circulating androgens in men (35, 36), women with longer

AR CAG repeats have previously been found to have lower

testosterone levels (at least during the follicular phase of

the menstrual cycle) (37).

Some limitations of the present study might be noted.

First, a relatively small number of subjects have been

evaluated, and the possibility of some unrecognized

unique characteristics of our study population cannot be

excluded. Our subjects exhibited normal distribution of

their AR allele CAG repeat lengths and their enrollment in

the Hershey Medical Center lupus registry was not biased

for any particular manifestation of disease, for severity of

manifestations, or for specific therapy. The study is limited

by its cross-sectional design. Our clinical data (diagnostic

criteria and SLEDAI score) were based on disease mani-

festations present at the time of each subject’s enrollment

in the study and further longitudinal data on the

relationship of AR genotype to the course of disease

would certainly be of interest. Finally, our data are from

DNA samples derived from whole blood samples or buffy

coat cells. Obviously, while this would not affect the

genotyping of the individual AR alleles, the presence of

different patterns of X chromosomal inactivation in

different cell types could affect the calculation of the

weighted mean AR repeat length. It might be argued that

specific subsets of B cells at different points during the

lymphopoiesis pathway or even bone marrow stromal

cells (which have been found to mediate androgen signals

on B cell development in marrow) (38) would potentially

be more relevant cells for study.

Our current studies do not explain how attenuation of

androgen action could result in amelioration of features of

the autoimmune phenotype in women with lupus. It is

possible that X chromosomal genes in linkage disequili-

brium with AR are, in fact, responsible for the observed

effects, and several candidate genes on the X chromosome
This work is licensed under a Creative Commons
Attribution 3.0 Unported License.
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Figure 3

Expression of IgG autoantibodies is greater in female lupus subjects with a

short weighted mean AR CAG repeat length. Sera from eight healthy

control women and 23 women with lupus were analyzed for expression of

IgG autoantibodies using a protein microarray technique. Each column

represents an individual subject, grouped as healthy controls and lupus

subjects, and arranged in the order of decreasing weighted mean AR CAG

repeat length. Each row represents antibody reactivity against a single

autoantigen. Hierarchical clustering of normalized data was used to create

the heat map. More intense red indicates reactivity greater than the mean

of the group and more intense green indicates reactivity below the mean.
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Figure 4

Expression of IgM autoantibodies is greater in female lupus subjects with a

short weighted mean AR CAG repeat length. Sera from eight healthy

control women and 23 women with lupus were analyzed for expression of

IgM autoantibodies using a protein microarray technique. Each column

represents an individual subject, grouped as healthy controls and lupus

subjects, and arranged in the order of decreasing weighted mean AR CAG

repeat length. Each row represents antibody reactivity against a single

autoantigen. Hierarchical clustering of normalized data was used to create

the heat map. More intense red indicates reactivity greater than the mean

of the group and more intense green indicates reactivity below the mean.
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Figure 5

IgG but not IgM autoantibody expression is quantitatively greater in

female lupus subjects with a short weighted mean AR CAG repeat length.

The meanG3 S.D. of the mean fluorescence intensity of normal subjects for

each autoantigen specificity was calculated as the threshold for a positive

test. The number of positive tests for female lupus subjects with a weighted

mean AR CAG repeat length of %19 or O19 was determined for each

autoantibody specificity. Top panel, IgG autoantibodies. Bottom panel,

IgM autoantibodies. Data were analyzed by Fisher’s exact test.
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have been identified as susceptibility factors for the

development of lupus. Interleukin 1 receptor-associated

kinase 1 (IRAK1; located at Xq28) and toll-like receptor 7

(TLR7; located at Xp22.2) are both such X chromosomal

genes for which both human association studies and

mechanistic experiments in mice support roles in lupus

pathogenesis (39, 40), but their distance from the AR gene

(at Xq12) would certainly seem to preclude such linkage

disequilibrium. A number of other X chromosomal genes,

including that encoding CD40 ligand, have been found to

be overexpressed in T cells of women with lupus as a
http://www.endocrineconnections.org
DOI: 10.1530/EC-14-0039

� 2014 The authors
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consequence of gene demethylation on an otherwise

inactivated X chromosome (41). Some of these genes,

including CXCR3, OGT, and MIR421 (on X q13), are in

closer proximity to the AR gene.

A second possibility is that inherited differences in

androgen sensitivity might alter the steroid hormonal

milieu of an individual by altering feedback regulation

of gonadotropins or other mechanisms. In men with long

AR CAG repeats, both estrogen and androgen levels are

increased (36), and it has been argued that these parallel

increases in both hormones in the face of attenuated

androgen action result in a net increase in the estrogen:

androgen bioactivity (36). Women with longer AR CAG

repeat lengths have been reported to have lower circula-

ting androgen levels (37). Whether any other changes in

the steroid metabolome (such as reduction in effective

estradiol levels at immune cell targets) might occur in

females with diminishing androgen sensitivity and how

they might affect immune function are not known.

It is also possible that interactions between an

individual and the environment might account for the

relationship between inherited androgen sensitivity and

the manifestations of autoimmunity. The microbiotic

environment of the Nod1 mouse has now been shown

to interact with the animal’s hormonal milieu – with

consequent impact on the expression of autoimmunity

(42, 43, 44, 45). Whether inherited variation in androgen

sensitivity influences the establishment of the specific

composition of the human microbiome, and whether the

microbiome interacts with the hormonal milieu and with

genetically established levels of hormone sensitivity to

influence immune function are topics that are essentially

unexplored.

A variety of mechanisms have been proposed

to account for the remarkable sexual dimorphism of

most human autoimmune diseases (46). The effects

of X chromosomal genes (47, 48, 49), the effects of Y

chromosomal genes (50, 51, 52, 53), fetal microchimerism

in mothers (54), the action of gonadal steroid hormones

(55), and the influence of endogenous microbial popu-

lations that differ between males and females (42, 43) have

all been suspected to influence the expression of auto-

immune phenomena (56). Our findings described in this

work challenge our simple view that increased capacity

for the transmission of androgenic hormonal signals

would be relatively immunosuppressive. The complex

interactions of genes, hormones, hormone receptors, and

the environment need to be considered in examining the

influence of each of these parameters on the expression

of autoimmunity.
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