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Abstract: Heavy metal toxicity is one of the most devastating abiotic stresses. Heavy metals cause
serious damage to plant growth and productivity, which is a major problem for sustainable agri-
culture. It adversely affects plant molecular physiology and biochemistry by generating osmotic
stress, ionic imbalance, oxidative stress, membrane disorganization, cellular toxicity, and metabolic
homeostasis. To improve and stimulate plant tolerance to heavy metal stress, the application of
biostimulants can be an effective approach without threatening the ecosystem. Melatonin (N-acetyl-
5-methoxytryptamine), a biostimulator, plant growth regulator, and antioxidant, promotes plant
tolerance to heavy metal stress by improving redox and nutrient homeostasis, osmotic balance, and
primary and secondary metabolism. It is important to perceive the complete and detailed regulatory
mechanisms of exogenous and endogenous melatonin-mediated heavy metal-toxicity mitigation
in plants to identify potential research gaps that should be addressed in the future. This review
provides a novel insight to understand the multifunctional role of melatonin in reducing heavy metal
stress and the underlying molecular mechanisms.

Keywords: abiotic stress; heavy metal; plant growth; phytomelatonin; oxidative stress

1. Introduction

Plant stresses can be classified into two categories, i.e., biotic and abiotic stress, both of
which have a negative impact on plant growth, development, and yield. Living organisms,
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including viruses, bacteria, fungi, nematodes, insects, arachnids, and weeds, cause biotic
stress [1,2]. On the other hand, abiotic stress is enforced by non-living or environmental
factors [1] such as water, temperature, ultraviolet light, salt, and heavy metals (HMs) [3,4].
Abiotic stresses are associated and manifested as osmotic stress, oxidative stress, ionic
imbalance, and cell metabolism dyshomeostasis, all of which influence plant growth and
productivity [3,4].

Some HMs (e.g., iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), molybdenum (Mo),
nickel (Ni), and cobalt (Co)) are required by plants at certain concentrations, whereas when
present in excessive concentrations, these elements become toxic to plants [5]. In contrast,
lead (Pb), cadmium (Cd), mercury (Hg), and arsenic (As) are not required by plants,
and these are highly harmful to plants [6]. The foremost feedback mechanism of plants
upon exposure to elevated amounts of HMs is the production of reactive oxygen species
(ROS). Most HMs cause continuous ROS production in the chloroplast, mitochondria,
and peroxisomes, which can cause oxidative stress in plants and result in the unexpected
consequence of HM toxicity [7,8]. HM stress frequently favors stomatal closure, increases
the activity of the photorespiratory pathway, triggers the production of ROS, interrupts
the antioxidant system [9], and inhibits the electron transport chain [10] as well as the
plant metabolism [11]. Lipid peroxidation is a detrimental phenomenon that is triggered
by HM-induced ROS, which subsequently deteriorates the cell membrane integrity and
function [12–14].

Melatonin (N-acetyl-5-methoxytrytamine, MT) is a familiar pleiotropic signaling
molecule that plays a role as an antioxidant by fostering plant tolerance to various biotic
and abiotic stresses [15,16]. MT stimulates various physiological, morphological, and
biochemical features starting from seed germination to biological yield [17,18] by the
upregulation of stress-related genes [17,19] that scavenge ROS and improve the antioxidant
capacity of plants against abiotic stress [16,20]. However, despite numerous research
studies, the protective effect of MT against HM stress has not been thoroughly reviewed.
Therefore, mitigation of HM stress by exogenous application of MT in plants is reviewed in
this study, and in addition to this, we will explore the in-depth mechanisms of melatonin-
mediated HM stress tolerance in plants.

2. Mechanism of Heavy-Metal-Induced Growth Inhibition

Heavy metals in the growth medium have toxic effects on plants [21,22] because
they cause the disruption of many key physiological processes such as photosynthesis,
respiration, ROS metabolism, and hormonal regulation [23,24]. These metal elements
negatively affect the life cycle of plants, from germination to final production [25]. Overall,
higher concentration of HMs in plants hinders the absorption and transport mechanisms
of essential nutrients, and also interrupts other metabolic processes, which affects growth,
development, and yield [26,27]. The roots are the first component of a plant that detect a
stress condition. As a consequence, root length and viability are reduced, which eventually
disrupt the absorption of essential nutrients [28]. Because of the disruption in nutrient ab-
sorption and transport, the total chlorophyll (Chl) content of the leaves decreases, resulting
in a noticeable decrease in CO2 assimilation rate (Figure 1) [28]. HMs also interfere with
CO2 assimilation in plants by disrupting chloroplast ultrastructure, inhibiting absorption
of light energy, disrupting the electron transport chain, and reducing stomatal conductance
and activities of enzymes involved in Calvin cycle [29,30]. Under HM toxicity, photosystem
II (PS II) is more affected than photosystem I (PS I) among the thylakoid components
(Figure 1) [31,32]. Furthermore, as the rate of photosynthetic pigments declines, so does the
productivity of the photosynthetic apparatus, leading to the photoinhibition of photosys-
tems (Figure 1) [33]. At sub-millimolar concentrations, HMs induced stomatal closure by
blocking water channels (Hg2+, Pb2+, and Zn2+) or ion channels (La3+) or downregulating
tonoplast anion channels in an ABA-independent pathway. Moreover, HMs stimulate
ABA accumulation in cells and ABA-induced signals might play a role in stomatal move-
ment [34,35]. Water channels are specialized proteins that form highly selective aqueous
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pores across cell membranes, that are associated with water flux control and thus play a
vital function in stomatal movements [36]. As a result of water channel blockage, water
fluxes in guard cells are restricted, affecting stomatal movements [37].
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An excessive level of HM ions in the cytosol disrupts cellular redox homeostasis and
triggers oxidative stress by producing ROS [38,39], reactive nitrogen species (RNS) [40,41],
and reactive carbonyl species (RCS) (Figure 1) [42,43]. Overproduction of ROS causes
membrane lipid peroxidation and that leads to the formation of RCS, both of which are
toxic to plant cells [42,43]. At higher endogenous levels, these ROS, RNS, and RCS are toxic
and harmful to cells; cause significant damage to cellular biomolecules such as nucleic acids,
proteins, and membrane lipids; and also damage the structure of chloroplasts, resulting in
cell death [38,44].
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Environmental stresses, including HM stress, disrupt the balance between ROS gen-
eration and detoxification by the antioxidative protection system in plants, thereby pro-
moting oxidative stress [44]. As a result, in order to combat the overproduction of ROS,
plants activate their robust antioxidant defense mechanisms [45]. Plants resist stress-
induced ROS production and related adversities by directly neutralizing and removing
them or indirectly by controlling the uptake, transport, translocation, and sequestration
of HMs [46,47]. Enzymatic antioxidants, such as superoxide dismutase (SOD), catalase
(CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX), and glutathione reduc-
tase (GR), and non-enzymatic antioxidants, such as glutathione (GSH), proline, ascorbic
acid (AsA), carotenoids, and non-protein compounds rich in -SH groups, are found in
plant cells [47–49]. Plants produce more antioxidative enzymes as a defense against ox-
idative damage under HM stress [49,50]. Thus, increasing the amount of antioxidants
and the function of the plants’ radical scavenging systems to make them more resistant to
HM stress.

Transporters are ubiquitous proteins that mediate solute translocation across cell
membranes and HMs restrict the specificity of transporters in the uptake of essential
elements. HM ions penetrate the cell and alter cellular and molecular functions such as
metabolic pathways; starch, sucrose, and secondary metabolites biosynthesis; and ion
transporter function by replacing essential ions from various binding sites of biomolecules,
causing changes in the cell membrane as well as the transcriptional pattern of plants
(Figure 1) [51,52]. The inclusion of HM ions to the functional groups of enzymes, proteins,
and nucleic acids can disrupt metabolic processes [53]. Previous research has also shown
that HM toxicity affects phosphorus (P), sulfur (S), and nitrogen (N) metabolism in addition
to carbon (C) metabolism in mustard, soybean, and tomato plants [54–56].

Competition between HMs and nutrients occurs in various compartments of binding
sites such as cell membranes and cell walls, which can influence the membrane transport
system, resulting in nutrient leakage from the cell membrane [38,57]. The enzyme system
serves as an interface between the cell and its surroundings for the exchange of substances
and information. The stabilization of this enzyme mechanism is the foundation for the
cell’s physiological functions. HM toxicity harms the enzyme mechanism and increases
cell membrane penetration [58,59]. In addition to this, HMs enter into the leaves of the
plant and disturb the water status of plants, which ultimately leads to osmotic stress
in the plant [38]. This osmotic stress affects the growth of the plants and also causes
nutrient imbalance [60,61]. Osmotic adjustment in response to stress is considered an
important physiological mechanism. Plants produce and accumulate osmolytes such as
soluble sugars, trehalose, amino acids, and betaines to counteract stress-induced osmotic
imbalance. In addition, these osmolytes participate in cellular energy transfer, stabilize
membranes and proteins, scavenge ROS, chelate HMs, and minimize metal uptake to
cope with metal-induced osmotic, ionic, and oxidative stresses [62,63]. Plants with better
osmoprotectant biosynthesis are adaptable to stress [64].

3. Heavy Metals Induce Endogenous Melatonin Accumulation in Plants

We compiled some studies here that presented the effects of HMs on the accumulation
of endogenous MT in plants (Table 1). Researches showed that HMs induced endoge-
nous MT biosynthesis in the root tissue of Hordeum vulgare (barley), Solanum lycopersicum
(tomato), Glycine max (soybean), and Lupinus albus (lupin) [65–68]; leaves of Nicotiana
tabacum (tobacco), Arabidopsis thaliana, and tomato [69–71]; and the seedlings of Oryza sativa
(rice) [71]. Among the HMs, for example, Cd stress seriously interrupts the structural stabil-
ity of cellular organelles including chloroplasts, mitochondria, and endoplasmic reticulum,
resulting in the leakage of endogenous serotonin N-acetyltransferase (SNAT) enzymes into
the cytosol [72,73], where they can easily come into contact with serotonin, resulting in
N-acetylserotonin synthesis and subsequently MT formation [71].
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Table 1. Effects of HMs on the levels of endogenous melatonin accumulation in plants.

HMs Plant Species Exposed Organs Concentration
(µM) Exposure Duration MT Level Reference

Al Glycine max Root 50 24 h ↑ [74]
Al Nicotiana tabacum Leaves 100 15 days ↑ [71]
Al Oryza sativa Seedlings 500 72 h ↓ [71]
Cd Medicago sativa Root 50, 100, and 200 15 h ↑ [67]
Cd Solanum lycopersicum Root 100 15 days ↑ [68]
Cd Solanum lycopersicum Leaves 100 15 days ↑ [70]
Cd Nicotiana tabacum Leaves 500 15 days ↑ [71]
Cd Arabidopsis thaliana Leaves 300 24 h ↑ [69]
Cd Oryza sativa Seedlings 500 72 h ↑ [71]
Zn Hordeum vulgare Root 100 15 h ↑ [65]
Zn Hordeum vulgare Root 100 72 h ↑ [65]
Zn Lupinus albus Root 100 24 h ↑ [66]

↑ (increase), ↓ (decrease), h (hour).

Moreover, exposure to 50 µM Al3+ induced MT accumulation in roots and enhanced
the expression of genes related to MT biosynthesis in soybean plant, which might be due
to the disruption of cell membrane, whereas, in rice plants, Al3+ stress was unable to
disrupt chloroplasts to synthesize MT even at 500 µM concentration. The concentration
and exposure duration of HMs, regardless of the plant species, could be the controlling
factors for endogenous MT synthesis. The content of endogenous MT increases under HM
stress condition; therefore, MT might help to confer HM stress tolerance in plants.

4. Role of Exogenous Melatonin on Heavy Metal Stress Tolerance

Exogenous application of MT enhances plant growth attributes, such as shoot and root
biomass, by alleviating the detrimental effects of HM stress. In several research articles, it
has been demonstrated that the negative effects of different HMs, such as Cd, aluminum
(Al), Cu, Zn, As, chromium (Cr), Cu, Fe, Pb, and Ni could be mitigated through exogenous
MT applications (Table 2).
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Table 2. Role of exogenous melatonin in plants exposed to various HM stress.

Plant Species HM (conc.) MT Doses
Observed Effects of MT on Plant Systems

Reference
Increase Decrease

Brassica rapa

Al (50 µM)

50, 100, 200, and 400 µmol L−1
SOD, POD, and CAT activity;

SP and Chl content; RWC; plant growth
and biomass.

MDA content. [75]

Glycine max 0.1, 1, 10, 100,
and 200 mM

CAT, SOD, and POD activity; exudation
of malate and citrate; gene encoding

acetyltransferase NSI-like (nuclear
shuttle protein-interacting); root

growth.

H2O2 content. [74]

Oryza sativa As (25 µM) 250 mM GSH, PCs content; dry matter
production.

Oxidative stress; H2O2 and MDA
content. [76]

Rosmarinus officinalis As (75 mg kg−1 soil) 25, 50, 100, and 200 µM

SOD, POD, and CAT secondary
metabolites (AsA, phenols, flavanoids);
chloroplast ultrastructure; Chl pigment,
essential ions, essential oil, stability, the

cell membrane integrity; growth.

H2O2 and MDA content. [77]

Oryza sativa Cd (10 and 50 µM) 10 and 50 µM
SOD and POD activity; plant biomass

including both underground and
above-ground areas.

Accumulation of Cd;
transcription of Cd uptake and

transport-related genes.
[78]

Medicago sativa Cd (50, 100, and 200 µM) 10, 50, and 200 µM Cd tolerance; microRNA-mediated
redox homeostasis.

Accumulation of Cd and ROS;
oxidative damage. [67]

Nicotiana tabacum Cd (10, 50, 100, and 200 µM) 25, 50, 100, and 250 µM
APX, CAT, and POD content;

promotion of cell wall or vacuolar
sequestration of Cd; plant growth.

Expression of Cd uptake-related
genes (IRT1, Nramp1, HMA2,

HMA4, and HMA3);
photoinhibition.

[79]

Malus micromalus Cd (30 µM) 0 and 100 µM

Photosynthesis, photosynthetic
pigments; transcriptionally regulated
key genes involved in detoxification;

plant biomass.

Cd-induced reductions in
growth; ROS and MDA. [80]

Cucumis sativus

Cd (100 µM)

150 µmol L−1
LA; photosynthetic rate; Chl content;
stomatal conductance; transpiration

rate.

Growth inhibition; excess Cd
poisoning. [81]

Solanum lycopersicum 100 µM

APX, POD, and CAT activity; redox
homeostasis; S metabolism, and
biosynthesis of downstream S

metabolites; H+-ATPase activity; GSH
and PCs; plant growth.

Oxidative stress. [68]



Int. J. Mol. Sci. 2021, 22, 11445 7 of 24

Table 2. Cont.

Plant Species HM (conc.) MT Doses
Observed Effects of MT on Plant Systems

Reference
Increase Decrease

Cyphomandra betacea Cd (10 mg L−1) 50 µM

SOD, POD, and CAT activity; biomass
of C. betacea seedlings; Cd contents in

the stems, leaves, and shoots of C.
betacea seedlings.

Seedlings growth inhibition [82]

Spinacia oleracea Cd-As (25, 75, and 125 ppm) 100 µM SOD, POD, and CAT activity; fresh and
dry weight. Chl damage; lipid peroxidation. [83]

Melissa officinalis and Valeriana
officinalis Zn-Cd (3 g L−1 and 15 mg L−1) 1 µM POD and CAT activity; SP content. MDA content; oxidative stress. [84]

Brassica napus Cr (50 and 100 µM) 0, 1, 5, and 10 µM

SOD, POD, APX, and CAT activity;
photosynthesis rate; photosystem II

efficiency;
cellular redox potential; plant growth

and development.

Cr accumulation; ROS
accumulation. [85]

Cucumis melo Cu (300 µM) 10, 50, 100, 300, 500, and 800
µmol L−1

SOD, POD, and CAT activity; GSH
which chelates excess Cu2+;

redox-related gene expression;
cell-wall-related gene expression.

ROS production. [86]

Cucumis sativus Cu (80 µM) 10 nmol L−1

SOD, APX, POD, and GR activity; GSH
and PC content; Cu2+ sequestration;

carbon metabolism (glycolysis and the
pentose phosphate pathway); cell wall

trapping; plant fresh weight.

Cu2+ toxicity and ROS
production.

[87]

Brassica napus Cu (10–100 µM) 0.1–100 µM
Plant biomass; photosynthetic

pigments; efficiency of photosynthetic
apparatus; proline content.

Oxidative stress. [88]

Capsicum annum Fe (0.1 mM) 100 µM

POD, SOD, and CAT activity; Chl
content; active Fe2+ and K+ content;

endogenous NO and H2S; total
biomass; fruit yield of plants.

H2O2 and MDA content. [89]

Cucumis sativus Fe (3 and 90 mg L−1) 100 µM

Endogenous MT content; SOD, POD,
and CAT activity; phenols and

flavonoids contents; phenylalanine
ammonia lyase, polyphenol oxidase
activity; photosynthetic pigment and

rate; plant growth and biomass.

ROS production and Fe
acquisition. [90]
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Table 2. Cont.

Plant Species HM (conc.) MT Doses
Observed Effects of MT on Plant Systems

Reference
Increase Decrease

Solanum lycopersicum Ni (50 µM) 100 µM

APX, CAT, SOD, POD and GR activity;
redox balance; Chl-synthesis-related
genes; photosynthesis rate; phenols,
flavonoids, and anthocyanin content;

nutrient homeostasis; biomass
production.

ROS accumulation. [91]

Zea mays Pb (0.1 mM) 0.05 and 0.10 mM SOD, POD, and CAT activity; nutrient
element content; plant growth.

Oxidative stress; H2O2 and MDA
content; electrolyte leakage. [92]

Carthamus tinctorius Pb (50 µM) 0–300 µM

APX, CAT, SOD, and POD activity;
glyoxalase (Gly I and Gly II); Chl and

PC content; biomass production of
roots, stems and leaves.

Pb stress. [93]

Nicotiana tabacum Pb (15 µM) 200 nM Pb stress tolerance. Programmed cell death; ROS
content; DNA fragmentation. [94]

Cynodon dactylon Pb (1000 and 2000 mg kg−1 soil) 0, 5, 20, and 100 µM

SOD, CAT, POD, APX, and GR activity;
non-enzymatic antioxidant (AsA and

GSH) content; water status;
photosynthetic pigments; biomass

production.

ROS content; membrane lipid
peroxidation and permeability. [95]

SOD, superoxide dismutase; CAT, catalase; POD, peroxidase; APX, ascorbate peroxidase, GR, glutathione reductase; GSH, glutathione; GSSG, oxidized glutathione; SP, soluble protein; RWC, relative water
content; LA, leaf area; PC, phytochelatin, AsA, ascorbic acid; LOX, lipoxygenase; TPC, total phenolic compounds; NPT, non-protein thiols; MDA, malondialdehyde; TSS, total soluble sugars.
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Our literature search revealed that exogenous MT improves the stress tolerance to
HMs such as Al, As, Cd, Cr, Cu, Fe, Ni, and Pb of different plant species via a direct
pathway, scavenging ROS directly, and via an indirect pathway by increasing antioxidant
enzymes activities, photosynthetic efficiency, and metabolite content (Table 2). MT pro-
moted the growth of Brassica rapa ssp. pekinensis (Chinese cabbage) under Al stress through
improving osmotic regulation, alleviating cell membrane destruction, and protecting pho-
tosynthetic system [75]. Optimal concentrations of MT also reduce Al-induced toxic effects
in soybean plants. In soybean roots, MT treatment reduced Al-induced H2O2 content by
the higher activity of antioxidant enzymes such as CAT, SOD, and POD and increased
citrate and malate exudation [74]. Under As stress, in rosemary herbs, exogenous foliar
MT increased the contents of non-protein thiols and phytochelatins (PCs) and enhanced
the accumulation of osmoregulatory substances that improved water status leading to
enhanced plant growth and As stress tolerance [77]. The application of MT to rice seedlings
resulted in increased plant biomass in both underground and above-ground areas. Under
Cd stress, foliar MT application increased SOD and POD, while it decreased MDA in
rice plant [78]. MT reversed the growth of Medicago sativa (alfalfa) seedlings under Cd
stress by lowering Cd accumulation and restoring ROS homeostasis [67]. By lowering
Cd accumulation and alleviating growth inhibition and photoinhibition, foliar applica-
tion of MT improved Cd tolerance in tobacco plants [79]. MT also reduced Cd-induced
oxidative damage on tobacco plants by direct scavenging of ROS by the antioxidative
enzymes such as APX, CAT, and POD [79]. When apple rootstalks were treated with MT,
Cd-induced decreases in development, photosynthesis, and enzyme activity were reduced,
and the levels of ROS and MDA accumulation in Cd-stressed plants were reduced by MT
application. Exogenous MT also regulated the mRNA levels of HA7 (PM H+-ATPases
7), NRAMP1 (natural-resistance-associated macrophage protein 1), NRAMP3, HMA4 (P-
type HM ATPase 4), PCR2 (plant Cd resistance protein 2), NAS1 (nicotianamine synthase
1), MT2 (metallothionein 2), ABCC1 (ATP-binding cassette transporter C1), and MHX
(magnesium proton exchanger protein) genes involved in Cd uptake and translocation
in apple plants [80]. These results suggest that MT can directly regulate the uptake and
translocation of Cd in plants. External MT treatment expanded Cucumis sativus (cucum-
ber) seedlings’ leaf area, ameliorated growth suppression and excessive Cd toxicity and
increased photosynthetic-related parameters [81]. MT improved Cd stress tolerance in
tomato plants by improving the antioxidative mechanism, increasing H+-ATPase activ-
ity, and sequestering Cd [68]. MT application increased fresh and dry weight while also
preventing Chl content damage. It also increased the activities of antioxidant enzymes in
Spinacia oleracea against Cd stress [83]. Cu stress reduced Cucumis melo (melon) growth, but
when MT was applied exogenously, it improved Cu stress tolerance by enhancing redox-
related gene expression and the jasmonic acid biosynthesis process [86]. Similarly, MT
enhanced the tolerance of cucumber seedlings to Cu toxicity by encouraging Cu chelation
and cell wall binding, controlling genes associated with ROS formation and scavenging
processes, and activating enzymatic activity [87]. MT promoted new root formation in
melon seedlings [86] and established essential nutrient equilibrium and triggered carbon
metabolism in cucumber [87] under Cu stress. Cu stress tolerance in canola plants is con-
ferred by MT-mediated higher levels of biomass accumulation, photosynthetic pigments,
and functional efficacy of the photosynthetic apparatus, as well as lower levels of ROS,
oxidative damage and Cu-induced proline accumulation [88].

MT increased tolerance to Fe-deficiency stress in Capsicum annum (pepper) plants by
increasing active Fe content and improving K homeostasis, intracellular NO content, H2S
content, and antioxidative enzyme activities (POD, SOD, and CAT) and decreasing H2O2
and MDA contents [89]. In cucumber, MT enhanced the internal MT level, Chl content, and
CO2 assimilation rate, alleviated Fe-stress-induced oxidative damage, activated antioxi-
dant enzymes, promoted secondary metabolite contents such as phenols and flavonoids,
upregulated enzymes (phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO))
involved in secondary metabolism, and altered Fe acquisition to mitigate Fe stress [90]. MT
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enhanced growth efficiency under Ni stress by altering the expression of MT-biosynthesis-
related genes such as TDC (tryptophan decarboxylase), T5H (tryptamine 5-hydroxylase),
ASMT (N-acetylserotonin methyltransferase), and SNAT (serotonin N-acetyltransferase),
as well as Chl-biosynthesis-related genes such as CHL G (chlorophyll synthase), POR (cy-
tochrome P450 Oxidoreductase), and CAO (chlorophyll a oxygenase), and thus mitigated
the negative effects of Ni on photosynthetic pigments in tomato seedlings [91]. In tomato
plants subjected to Ni stress, MT improved mineral nutrition, regulated proline, RWC,
root function, and increased secondary metabolite contents such as anthocyanins, phenols,
and flavonoids, as well as the antioxidant protection system [91]. MT improved Chl syn-
thesis and plant nutrient element composition, as well as increased antioxidant defense,
suppressing ROS and MDA accumulation and lowering electrolyte leakage in Pb-stressed
maize and safflower plants [92,93]. Pretreatment of tobacco suspension cells with MT
reduced cell death, increased cell proliferation, decreased H2O2 level, and prevented DNA
fragmentation under Pb stress [94]. Moreover, MT treatment increased Bermuda grass’
resistance to Pb stress [95]. External MT treatment to Brassica napus (canola) enhanced
growth traits under Cr stress through higher PS II efficiency and photosynthetic quotient
(PQ) redox rate [85]. Application of MT in Cr-stressed Origanum majorana plants preserved
higher levels of photosynthetic pigments and less ROS by stimulating the antioxidant
machinery and osmotic balance, decreased lipid peroxidation, and improved cellular mem-
brane integrity [77]. These results indicate that exogenous MT-mediated improvement of
photosynthesis and oxidant scavenging systems enable plants to fight against Cr stress.

Therefore, research on exogenous MT revealed that it acts as an antagonist for HM
toxicity, with major benefits for sustainable crop production. Exogenously applied MT
helps to improve the tolerance to HM stress, but to better understand the roles of this
molecule and make full use of it, many more investigations must be conducted. All these
given data describe the roles of MT in plant HM stress resistance and will help to encourage
plant scientists to further investigate the mechanism of MT-mediated stress tolerance.

5. Mechanisms of Melatonin-Mediated Heavy Metal Stress Tolerance

MT improves plants’ defense systems by modulating the antioxidant system, maintain-
ing nutrient and metabolic homeostasis, modifying osmotic balance, stimulating secondary
metabolism, increasing photosynthetic ability and controlling the expression of stress-
resistant genes [96,97]. We explain the mechanistic insights of MT-mediated HM stress
tolerance in plants in this section.

5.1. Melatonin Modulates Reactive Species Detoxification and Antioxidant Upregulation

Reactive species such as ROS, RNS, and RCS function as signaling molecules at lower
concentrations. An excessive amount of free radicals such as- H2O2, O2

•−, and •NO is
produced in plants when subjected to HM stress [98,99]. These HM-induced free radicals
control lipid peroxidation and increase RCS such as MDA and cause biological membranes’
disruption [100,101]. However, oxidative stress can be alleviated by using MT, which
has been extensively reported in the last few years. HM toxicity in plants can be miti-
gated with MT by regulating the activity of antioxidants and related gene expression such
as Cu/Zn-SOD, POX, GPX, and MDHAR and by scavenging excessive reactive species
(Figure 2) [102–106]. According to Jahan et al. [91], MT-treated tomato seedlings subjected
to Ni stress upregulated the transcript levels of PAL, CHS, upregulated chlorophyll synthe-
sis genes such as POR, CAO, and CHL and MT-biosynthesis-related genes such as SNAT,
TDC, T5H, and ASMT (Figure 2). Positive regulation of the chlorophyll-biosynthesis-related
genes and the MT-biosynthesis-related genes resulted in higher amount of endogenous
MT production, which is primarily associated with scavenging excessive ROS through the
enhancement of antioxidative enzyme activities (Figure 2) [105,107,108]. MT-triggered ROS
scavenging and antioxidative activity upregulation were also reported in wheat, mustard,
tomato, watermelon, and cucumber plants, which were observed under Cd, Pb, Fe, Zn, Cu,
V, and Al stress [68,86,87,90,105,109–111].
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Figure 2. Diagram showing mechanism of MT-mediated (A) reactive species detoxification, (B) protection against metabolic
imbalance, and (C) maintenance of osmotic balance under HM stress conditions. (A) ROS: reactive oxygen species, RNS:
reactive nitrogen species, O2

•–: superoxide anion, H2O2: hydrogen peroxide, 1O2: singlet oxygen, •OH: hydroxyl radical,
•NO: nitric oxide, ONOO−: peroxynitrite, •NO2: nitrogen dioxide, SOD: superoxide dismutase, CAT: catalase, APX:
ascorbate peroxidase, GPX: glutathione peroxidase, PRX: peroxiredoxin, GR: glutathione reductase, AsA: ascorbic acid, GSH:
reduced glutathione, TDC: tryptophan decarboxylase, T5H: tryptamine 5-hydroxylase, SNAT: serotonin N-acetyltransferase,
ASMT: acetylserotonin methyltransferase, COMT: caffeoyl-O-methyltransferase, NR: nitrate reductase, NOS-like enzyme:
NO synthase. (B) CWI: cell wall invertase, TSC: total soluble carbohydrate, GS: glutamine synthetase. (C) GOx: glycolate
oxidase, MDA: malondialdehyde, RWC: relative water content, WSS: water-soluble sugar, P5CS: ∆1-pyrroline-5-carboxylate
synthetase, PDH: proline dehydrogenase, POD: peroxidase.

Redox balance is the balance between the formation and elimination of ROS in the cel-
lular components of plants, which is altered under stress conditions. Antioxidant systems
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play critical roles in reducing ROS overproduction and accumulation and the intensities
of oxidative damage in plants under stress conditions [100,112,113]. MT strengthens the
antioxidant activity in plants by detoxifying the excessive ROS either directly or indirectly,
resulting in improved stress tolerance [114,115]. For instance, under Fe starvation and
extreme conditions, application of MT can enhance the antioxidant enzymes’ activity for
example, SOD, POD, and CAT, as well as their biosynthetic genes such as Fe-SOD, POD,
and CAT exhibit increased transcription levels, indicating that MT can boost the antiox-
idant system in plants that functions in ROS scavenging and mitigating oxidative stress
in cucumber [90]. A similar increment of ROS scavenging by means of MT application
was also reported in the case of other HM stress, i.e., Cd stress in wheat [116] and straw-
berry [117]; and Cu stress in cucumber [87]. Furthermore, non-enzymatic antioxidants
including proline, phenolics, total thiols, GSH, anthocyanin, tocopherol, and AsA were
increased when plants were treated with exogenous MT [80,97,118,119]. Thus, in plants,
antioxidant system efficacy can be escalated through exogenous application of MT that
also vigorously scavenges ROS to improve plant tolerance to HM stress.

5.2. Melatonin Protects against Different Metabolic Imbalances

Synthesis of a variety of plant metabolites, especially protein, can be inhibited when
HMs enter into the plant [117]. Thus, the soluble protein content of plants may be an
indicator about their physiological status [120]. According to [117], under Cd stress, the
soluble protein content in strawberry was higher in MT-pretreated plants than that of
MT-untreated plants. This conclusion has been supported by studies on wheat and tomato
subjected to Cd stress [70,116].

Soluble sugars, such as glucose, sucrose, fructose, and trehalose, perform functions as
sensing and signaling molecules in plants and thereby activate or regulate several genes
that are involved in defense and metabolic activities [121,122]. For example, high exposure
of B (boron) on wheat seedlings had diminished the cell wall invertase (CWI) activity and
levels of total soluble carbohydrates (TSC), while seedlings treated with MT had higher
TSC content and CWI activity under B stress (Figure 2) [97]. The enzyme CWI is a key
player in controlling the carbohydrate pathway and sugar signaling, and it is involved
in a variety of metabolic roles and signaling processes in numerous plants in stressed
environments [123,124]. Thus, MT emerged as a noble agent in B stress for controlling
carbohydrate metabolism through enhancement of the levels of TSCs and activity of CWI
(Figure 2) [97].

Moreover, N metabolism has also been linked to HMs. HMs have been found to
increase protease activity and, thus, limit enzymatic activity associated with the assimi-
lation of nitrate (nitrate reductase (NR) and nitrite reductase (NiR)) and ammonia (glu-
tamine synthetase (GS), glutamine oxoglutarate aminotransferase (GOGAT), and gluta-
mate dehydrogenase (GDH)). For example, nitrogen metabolism was interrupted under
Cd stress as nitrate uptake and transport was inhibited through alteration of NR and GS
activity [125–127], which ultimately influenced the processes of primary N assimilation.
Exogenous MT has been reported to improve the function of NR and GS enzymes, thereby
stimulating N metabolism and assimilation in plants (Figure 2) [74,118,128,129].

5.3. Melatonin Adjusts Osmotic Imbalance in Plants

Excessive HMs in tissues can affect water absorption from the soil by altering root
morphology and anatomy, lowering the transpirational rate, blocking aquaporins, or rup-
turing the intercellular contacts (plasmodesmata), resulting in a decrease in water content
in plants. For example, the plant–water relation was hampered by Pb stress in Sesbania gran-
diflora plants [130]. Under Ni stress, the root activity of tomato was found to be significantly
reduced due to retention of water and absorption of nutrients, while pretreatment with
MT sustained suitable root functioning through root repair [91]. Osmolytes are compatible
solutes that increase the cell’s ability to retain water while not interfering with normal
metabolism. Proline, sucrose, polyols, trehalose, glycine betaine, and polyamines are
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among the major osmolytes [131] that play a role to protect plants from HM stress [132]
by maintaining a high water potential, turgor pressure, and water content [131]. As plant
roots are the first points of contact for HM ions, they usually accumulate considerably
more metal than above-ground plant parts (Figure 2) [133,134]. Proline can directly chelate
HMs and, thus, reduces the effects of metals on plants [135]. MT improves proline accu-
mulation by enhancing P5CS activity and reducing PDH activity (Figure 2) [16,136,137].
Proline accumulation also links to carbohydrate metabolism. It has been stated that proline
accumulation requires carbohydrate [138]. MT increases proline accumulation by upregu-
lating carbohydrate metabolism (Figure 2) [97]. According to [139], exogenous MT induces
polyamine biosynthesis in Arabidopsis plants under excess-Fe and Fe-deficit conditions.
Sugar accumulation is promoted by exogenous MT through protein deformation where
the sulfur in S-containing proteins (Cys and Met) is substituted by Se [140,141]. Excess
accumulation of free amino acids in response to MT application indicates the MT-mediated
hydrolysis of protein and changes at the osmotic level (Figure 2) [140].

5.4. Melatonin Maintains Homeostasis of Essential Nutrients

Minerals are important in a variety of metabolic events because they sustain both
water connections and plant development [128]. For plant survival, mineral absorption is
important during critical physiological processes, and any changes in mineral absorption
will negatively impact the plant’s metabolic activity [128]. Excessive HM accumulation in
roots can cause nutrient absorption to be disrupted by root architectural distortion [142].
Under Ni-stressed conditions, for example, macronutrient contents (N, P, Mg, Ca, S) and
micronutrient contents (Fe, Zn, Mn) are prominently decreased along with the reduction of
root activity [91]. Since, Cd and mineral nutrients share identical pathways for transport,
they have similar effects on the stability of the plasma membrane and balance at an ionic
level [143].

MT significantly affects the plant nutrient composition and alleviates HM stress by
maintaining the balance of nutrient elements probably by improving the root architec-
ture of plants (Figure 3). In tomato, MT might play a key role in nutrient homeostasis
maintenance [91]. MT application recovered the negative effects of Ni, which remarkably
increased N, P, Mn, and Mg concentrations in tomato leaves and roots [91]. MT treatment
improves the architecture of roots via inhibiting embryonic root growth, stimulating lateral
root formation and activating auxin-related genes synthesis and the exudation of organic
acid anion, which might prevent the translocation and accumulation of HMs [74,105,106].
The transmembrane electrochemical proton gradient is an important factor in the nutri-
ent uptake process where the activity of the plasma-membrane-based H+-ATPase can
be impaired by higher ROS generation from HM toxicity (Figure 3) [144]. MT can be
converted into 5-methoxytryptamine, and thus, it enhances H+-ATPase activity in plants
(Figure 3) [145]. MT can also increase the uptake of different nutrients by enhancing gene
expression. For instance, MT caused overexpression of the caffeoyl-O-methyltransferase
(COMT) gene that enhances sulfate transporter SUT1 and SUT2 genes, that improved
S-uptake and assimilation in tomato plants [146]. Likewise, in Arabidopsis plants, MT
increased Fe uptake by enhancing the expression of Fe acquisition genes, such as ferric
reductase-oxidase2 (FRO2) and iron-regulated transporter1 (IRT1) [139].
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Figure 3. Schematic diagram showing MT-mediated (A) maintenance of nutrient homeostasis, (B) improvement in sec-
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Figure 3. Schematic diagram showing MT-mediated (A) maintenance of nutrient homeostasis, (B) improvement in
secondary metabolism, (C) enhancement in photosynthesis in plants under different HM stresses. (A) ROS: reactive oxygen
species, H+-ATPase: proton pump ATPase. (B) PAL: phenylalanine ammonia-lyase, CHS: chalcone synthase. (C) GOx:
glycolate oxidase, CO2: carbon dioxide, Chl: chlorophyll, CA: carbonic anhydrase, δ-ALA: δ-aminolevulinic acid and
δ-ALAD: δ-aminolevulinic acid dehydratase, Pro: proline, P5CS: ∆1-pyrroline-5-carboxylate synthetase activity, PDH:
proline dehydrogenase, SOD: superoxide dismutase, CAT: catalase, APX: ascorbate peroxidase, GSH: reduced glutathione,
GR: glutathione reductase, AsA: ascorbic acid.
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5.5. Melatonin Regulates Secondary Metabolites

In plants, a large number of compounds are provided through secondary metabolism
that mainly function to enhance plant tolerance to diverse stressors [68,147]. Secondary
metabolites, for example, anthocyanins, phenols, and flavonoids, specifically participate
in combating HM stress by chelating metals (Fe2+ and Cd), restricting the synthesis of
free radicals and reducing the ROS level [96,148,149]. For instance, anthocyanins hinder
•OH formation via chelating Fe2+ [150]. HM concentration is considered as a crucial
parameter that affects the response of plants in secondary metabolism production. Lower
levels of HMs enhance the production of secondary metabolites; on the contrary, higher
concentrations inhibit the synthesis of secondary metabolites in plants [151]. Fe-toxicity
significantly affected the expression of genes such as chalcone isomerase in rice roots that are
associated with the biosynthesis of flavonoids and phenolics [152]. MT regulates secondary
metabolite production by enhancing the activity of enzymes phenylalanine ammonia-lyase,
(PAL), chalcone-synthase (CHS), and dihydroflavonol-reductase (DFR) responsible for
the biosynthesis of secondary metabolites (Figure 3). Numerous secondary metabolites
are produced from the phenylpropanoid pathway; a key biosynthetic route for secondary
metabolites synthesis, in which PAL acts as the premier line rate-limiting enzyme [90,153].
Ahammed et al. [90] reported that application of MT considerably increased the activity
of PAL together with increasing the concentrations of phenols and flavonoids under Fe
stress in cucumber plants. Jahan et al. [91] also found that the concentration of phenols
and flavonoids was enhanced by MT treatment in Ni-stressed tomato seedlings. Similar
findings were observed in pepper plants under B [154] and rosemary herb under As [77]
toxicity supported by the attributes of MT (Figure 3).

The MT-deficient Arabidopsis mutant accumulated low levels of anthocyanin [96,155].
However, the addition of MT improved the anthocyanin content in tomato plants under Ni
stress [91] and in rosemary herb under Cr stress. Under non-stress condition, MT treatment
significantly improved the levels of expression of different anthocyanin-biosynthesis-
related genes such as PAL, cinnamic acid 4-hydroxylase (C4H), chalcone synthase (CHS),
chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3′-hydroxylase (F3′H),
dihydroflavonol 4-reductase (DFR), and leucoanthocyanidin dioxygenase (LDOX) in cab-
bage plants [96]. The transcript level of CHS is enhanced in MT-treated pepper plants
that are exposed to Ni stress, demonstrating that MT might participate in regulating the
anthocyanin concentration and in mitigating Ni and As toxicity [77,154].

5.6. Melatonin Protects Photosynthetic Attributes

The plant photosynthesis system is interrupted due to HM toxicity by decreasing Chl
biosynthesis, carbonic anhydrase (CA) activity, weakened cell wall expansion, cell division
and accumulation of lignin and suberin in plants [156]. Jahan et al. [97] reported that
excessive mineral stress increased Chl degradation and the activity of Chl degrading en-
zyme (Chlase) and lessened the universal biosynthetic precursor compound (δ-ALA) of the
photosynthetic pigments and the activity of δ-ALAD in wheat seedlings (Figure 3). More-
over, excessive HM causes oxidative damage, and this may lead to the injury of reaction
centers, modify thylakoids structure, and induce irregular growth of soft parenchymatic
tissue [21,120].

Exogenous MT improves the photosynthesis rate under HM toxicity by stimulating
enzymes engaged in the photosynthetic pathway and pigment biosynthesis (Figure 3). As
for example, foliar application of MT amplified biosynthesis of photosynthetic pigments
by lessening Chl degradation by the downregulation of Chlase activity and increasing
the activity of δ- ALAD, CA, RuBisco, and the content of δ-ALA [97]. MT can lessen the
Chl degradation rate and upsurge Chl content to progress plant photosynthesis in Cd
stress [104,157]. These positive contributions of MT in the reestablishment of altered Chl
synthesis and enzyme activity might be traced based on its role in the biosynthesis of
porphyrins, glycine, and succinyl-CoA by regulating the activity of δ-aminolevulinate syn-
thase [158]. MT also increases ferredoxins that prevent Chl from degradation. Ferredoxins
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reduce the overproduction of high-energy electrons from the photosynthetic electron-
transport chain and raise the level of reduced AsA and diminish ROS levels that eventually
protect Chl from degradation [159]. Augmented activity of carbonic anhydrase (CA) and
RuBisco in MT-treated tomato seedlings under B toxicity may have enhanced carbon
fixation by conserving acid–base balance, ion exchange, and also continuous supply of
CO2 [16,160], which was reproduced in improving photosynthesis rate. MT treatment
robustly increases the photosynthesis efficiency in watermelon [105] and tomato [82] under
vanadium (V) stress by increasing the photosynthesis and antioxidant enzyme activities
and, finally, delaying leaf senescence. Furthermore, in tomato plants, the PS II (Fv/Fm)
smooth functioning has been observed by MT application under stress combinations [161].

5.7. Melatonin Upregulates Defensive Genes

HMs activate diverse signaling pathways in plants, for example, calcium-dependent
(CDPKs) signaling, mitogen-activated protein kinase signaling (MAPKs), ROS signaling,
and hormone signaling [162,163]. MT modifies the expression of genes that participate in
the signal transduction phases along the way.

MT is a signaling molecule that can upsurge gene expression or activities of antioxidant
enzymes in HM stress [74,118]. For instance, the relative expression of antioxidative genes
for SOD, APX, and GPX was upregulated in MT-treated watermelon seedlings exposed to
V stress [105]. Plant HM toxicity can also be repelled by stimulating the biosynthesis of
metal-binding peptides, such as phytochelatins (PCs) [164]. Application of MT and GSH
in safflower seedlings under Zn stress, increased the PC content, which could be partially
related to the enhancing role of MT in encouraging transcription of the genes engaged
in encoding the enzymes accountable for the biosynthesis PCs [165]. MT upregulated
several metal transporter genes, including ZIP12 (zinc-iron permease 12), HMA4 (heavy
metal ATPase 4), YSL2 (yellow stripe-like transporter 2), and YSL7 (yellow stripe-like
transporter 7) subjected to long-distance transport of Cd and stimulated the transport of Cd
beyond the radish root cell and CAX4 (vacuolar cation/proton exchanger 4), ATP-binding
cassette (ABC) transporters (ABCC14, ABCB21, ABCG39) responsible for sequestration of
Cd into the vacuole [166]. MT also increases photosynthetic efficiency via increasing Chl
biosynthesis gene expression. For example, the relative expression of Chl biosynthesis
genes, i.e., CHL G, POR, and CAO genes, were expressed in MT-treated seedlings under Ni
stress [91]. Similar experimental results were conveyed by [105], who specified that MT
increases the Chl content via modifying the transcript level of Chl biosynthetic gene in
watermelon under V stress. The introduction of these genes, which is crucial in HM stress
signaling in the presence of MT, indicates the composite cross-talk between MT and HM
stress response.

6. Endogenous MT in HM Stress Tolerance

Overexpression of the HsfA1a gene triggers synthesis of endogenous MT in tomato
plants through the increased expression of the MT biosynthetic gene COMT1 [70]. Eventu-
ally, HsfA1a overexpression confers Cd stress tolerance by triggering endogenous MT that
upsurges antioxidant capacity [70]. Moreover, overexpression of the AtASMT gene in rice
plants increases endogenous MT biosynthesis in the cytoplasm, which in turn enhances Cd
tolerance via antioxidant and metal chelate formation [69]. Another research’s findings in
rice plants concluded that rice mutants overexpressing ASMT, SNAT1, and SNAT2 genes
improve MT biosynthesis, which also conferred Cd tolerance [71]. Thus, several studies
demonstrated that higher endogenous MT accumulation can enhance HM stress tolerance
in plants. However, many researchers have focused on overexpressing MT for control-
ling other abiotic stresses, but so far very few studies have been reported on HM stress.
Therefore, further experiments should be conducted to reveal the putative mechanisms
of endogenous MT-mediated HM stress tolerance. Furthermore, we found no research
concentrating on the response of MT-deficient mutants to HM stress; consequently, further
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investigations into the detailed responses of MT-deficient mutants to HM stress condition
are required.

7. Conclusions and Future Prospective

The purpose of this review is to keep readers up to date on the role of MT in HM
stress mitigation and to encourage plant scientists to dig deeper into the mechanism of MT-
mediated tolerance. Exogenous MT acts as a potent plant growth regulator that improves
the overall growth and productivity of plants under HM stress.

• Exogenous MT significantly improves the concentration of photosynthetic pigments
by upregulating Chl synthesizing enzymes and downregulating genes responsible for
Chl degradation.

• Exogenous MT alleviates the harsh effects of HM stress on plant growth, photosynthe-
sis, and development.

• Exogenous MT mitigates HMs toxicity through upregulating a wide range of defen-
sive genes that are responsible for higher antioxidant activities and metal chelating
properties.

• The application of MT enhances HM tolerance in plants by the accumulation of os-
molytes, increased antioxidant enzyme activity, and osmotic adjustment, maintaining
membrane integrity and limiting the lipid peroxidation and ROS generation, improv-
ing the activity of antioxidant enzymes and non-enzymatic antioxidants.

• MT also improves different nutrient homeostasis.
• The exogenous application of MT induces plant secondary metabolites biosynthesis.

Despite the fact that MT has piqued the interest of plant biologists and some progress
was made in recent times, the complicated signaling pathways controlled by MT under HM
stress conditions are still relatively unexplored. There is indeed a lack of understanding
about the genes and main pathways that MT regulates precisely. Furthermore, a number
of basic problems must be addressed. The mechanism of MT-regulated HM uptake,
transportation, and sequestration is still not fully understood. Many further studies are
needed to better understand the functions of this molecule and to ensure sustainable use of
those mechanisms to ensure better crop production under HM stress conditions.
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