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Abstract: Mammarenaviruses are enveloped and segmented negative-stranded RNA viruses that
comprise several pathogenic members associated with severe human hemorrhagic fevers. Tacaribe
virus (TCRV) is the prototype for the New World group of mammarenaviruses and is not only naturally
attenuated but also phylogenetically and antigenically related to all South American pathogenic
mammarenaviruses, particularly the Junín virus (JUNV), which is the etiological agent of Argentinian
hemorrhagic fever (AHF). Moreover, since TCRV protects guinea pigs and non-human primates
from lethal challenges with pathogenic strains of JUNV, it has already been considered as a potential
live-attenuated virus vaccine candidate against AHF. Here, we report the development of a reverse
genetic system that relies on T7 polymerase-driven intracellular expression of the complementary
copy (antigenome) of both viral S and L RNA segments. Using this approach, we successfully
recovered recombinant TCRV (rTCRV) that displayed growth properties resembling those of
authentic TCRV. We also generated a chimeric recombinant TCRV expressing the JUNV glycoproteins,
which propagated similarly to wild-type rTCRV. Moreover, a controlled modification within the
S RNA 5′ non-coding terminal sequence diminished rTCRV propagation in a cell-type dependent
manner, giving rise to new perspectives where the incorporation of additional attenuation markers
could contribute to develop safe rTCRV-based vaccines against pathogenic mammarenaviruses.

Keywords: Tacaribe virus; infectious clone; chimeric virus; Junín virus; non-coding region;
viral attenuation

1. Introduction

Arenaviridae family members are enveloped viruses classified into four genera: Hartmanivirus and
Reptarenavirus (reptilian), Antennavirus (discovered in fish), and Mammarenavirus, including viruses
associated with rodent hosts, with the unique exception of Tacaribe virus (TCRV) [1]. TCRV was first

Pathogens 2020, 9, 948; doi:10.3390/pathogens9110948 www.mdpi.com/journal/pathogens

http://www.mdpi.com/journal/pathogens
http://www.mdpi.com
https://orcid.org/0000-0002-3502-0859
https://orcid.org/0000-0001-7965-0177
https://orcid.org/0000-0002-3368-0538
https://orcid.org/0000-0003-1932-1843
http://www.mdpi.com/2076-0817/9/11/948?type=check_update&version=1
http://dx.doi.org/10.3390/pathogens9110948
http://www.mdpi.com/journal/pathogens


Pathogens 2020, 9, 948 2 of 15

isolated from bats (Artibeus jamaicensis and Artibeus lituratus) [2] and more recently from lone star ticks
(Amblyomma americanum) [3]. However, the role of A. americanum in the ecology of the virus is unknown
and experimental evidence obtained with the only remaining strain of TCRV (TRVL-11573) suggests
that A. jamaicensis bats may not be a reservoir host for TCRV [4]. Mammarenaviruses are divided into
New World (NW) and Old World (OW) complexes, according to phylogenetic and antigenic features
and geographical distribution. The OW group includes Lassa virus (LASV), the causative agent of
Lassa fever, a human hemorrhagic disease endemic to Western Africa. Within the NW group, viruses
are subdivided into four clades: A, B, C, and A/Rec (Clade D). The prototypic TCRV is classified
into Clade B along with all known human-pathogenic viruses that produce hemorrhagic disease in
South America: Junín (JUNV), the etiological agent of the Argentinian hemorrhagic fever (AHF),
and Machupo (MACV), Chapare, Guanarito, and Sabia viruses [5,6]. However, TCRV has not been
associated with human illness; the sole anecdotal report refers to a laboratory-acquired event in the
year 1976 associated with mild flu-like symptoms [7].

The mammarenaviruses genome is comprised of two negative-sense RNA segments named S
(small) and L (large), each containing two open reading frames (ORF) in an ambisense orientation
and separated by a non-coding intergenic region (IGR) [8]. The S segment encodes the nucleocapsid
protein (NP) and the glycoprotein precursor (GPC), which is cleaved by cellular proteases to generate
three subunits: the receptor-binding protein (GP1), the transmembrane fusion subunit (GP2), and a
stable signal peptide (SSP). The three subunits remain noncovalently associated, forming the mature
glycoprotein complex (GP) embedded in the viral envelope [9,10]. The L segment encodes the
RNA-dependent RNA polymerase (L) and a RING matrix protein (Z) that is essential for viral
morphogenesis. Multiple copies of NP associate with the L and S RNAs to form ribonucleocomplexes
termed nucleocapsids, which in concert with the L polymerase function as transcription-replication
units. Thus, NP and L are the minimal trans-acting viral factors required for viral RNA synthesis [11,12].
Genomic RNA segments contain non-coding regions (NCR) at their 5′ and 3′ termini, adjacent to
the respective ORFs, which in the TCRV genome are 69 and 30 (L) and 68 and 76 (S) residues long,
respectively. At the 3′ end, both the L and S segments contain a 19-nucleotide (nt) sequence highly
conserved across arenaviruses and almost fully complementary to the corresponding 5′ terminal end,
allowing for the formation of a panhandle structure [8,13,14]. For both genomic segments, the 5′- and
3′ terminal 19-nt sequences have been proven to promote genome transcription and replication [15–17].
The role of the terminal non-coding regions that separate these promoter sequences from viral ORFs
has not been completely elucidated.

Current available evidence supports that NP and L mRNAs are first transcribed from the S and L
genomic viral RNAs (vRNA). Transcription of GPC and Z mRNAs and vRNA replication requires
synthesis and encapsidation of the S and L antigenomic RNAs (viral complementary, vcRNA) [18–20].
Genome replication by the L protein is thought to initiate de novo via a prime-and-realign mechanism,
yielding a non-templated 5′ terminal G residue at both S and L genomes and antigenomes [21,22].

At the moment, there are no licensed vaccines to prevent disease caused by arenaviruses, except for
the live attenuated JUNV vaccine (Candid#1), administered to adults (15 to 65 years old) at risk within
AHF endemic areas in Argentina [23]. Candid#1 was developed using a conventional attenuation
strategy starting from a human isolate [24]. Studies aimed at characterizing the Candid#1 strain in
a murine model showed heterogeneity of the viral population in terms of virulence [25]. Genomic
analysis revealed 13 amino acid changes scattered over NP, L, and GPC genes that differentiate
Candid#1 from its parental strain XJ13 [26,27]. Studies employing recombinant Candid#1/XJ13 chimera
viruses showed that a single amino acid mutation at the transmembrane domain of GP2 is decisive
for the attenuated phenotype in a murine model [26], raising concerns on the risks of reversion of
Candid#1 to virulence.

TCRV displays a close phylogenetic and antigenic relationship with JUNV. TCRV is apathogenic
for guinea pigs and marmosets, in which JUNV infection reproduces human illness, and protects guinea
pigs and non-human primates from lethal challenge with pathogenic strains of JUNV. Additionally,
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extensive attempts to induce TCRV-persistent infection in mice failed to induce chronic infections
as those observed with JUNV [7,24]. Thus, based on these evidences and because the attenuated
phenotype of TCRV is considered to be the result of a long evolutionary process, TCRV stands as a
possible naturally live-attenuated virus vaccine candidate against AHF, with estimated low risks of
changing into a pathogenic phenotype. Additionally, TCRV has been largely employed as a suitable
model to study the biology of pathogenic NW mammarenaviruses in BSL2 laboratories [7,13,22].

Recombinant DNA technology enables engineering viral vectors that can be exploited as a
platform to design new vaccines. Here, we report the development of a reverse genetic system to
rescue recombinant TCRV (rTCRV). This system allowed us to generate chimeric recombinant TCRV
expressing JUNV GPC, thus providing a valuable tool for recombinant vaccine design. Moreover,
sequence substitution within the S RNA 5′ non-coding terminal region reduced rTCRV growth ability in
BHK21 cells, while having little impact on viral growth in Vero cells. Our results suggest that controlled
modification within the terminal non-coding sequences might be exploited to further improve the
safety profile of rTCRV. Additionally, this reverse genetic system will deepen our knowledge of the
molecular basis of viral attenuation.

2. Results

2.1. Generation of Infectious Recombinant TCRV

To establish a reverse genetic system to generate rTCRV, full-length antigenomic S and L RNA
sequences were cloned under control of the bacteriophage T7 RNA polymerase (T7pol) promoter,
obtaining plasmids pSag and pLag, respectively (see: Materials and Methods). Plasmid-driven
intracellular synthesis of functional S and L antigenomes (Sag and Lag) in cells expressing T7pol was
expected to be sufficient to trigger viral RNA transcription and replication, as documented for other
segmented negative-sense RNA virus reverse genetic systems [28–30].

Plasmids pLag and pSag were assembled on the basis of cDNA clones previously obtained,
with sequences early reported under GenBank entries NC_004293 (S) and NC_004292 (L) [18,31,32].
Constructs were fully sequenced and given some discrepancies found within the S IGR as compared to
the NC_004293 reference (Figure 1A), the TCRV S IGR was re-sequenced. We found 100% sequence
identity between Sag IGR and all (eleven) individual cDNA clones obtained from TCRV-infected cell
RNA using reverse transcription-polymerase chain reaction (RT-PCR) (data not shown). Furthermore,
Sag and Lag shared over 99.7% overall sequence identity, including 100% identity in the S IGR
(Figure 1A), with recently reported TCRV sequences [3,33,34]. Therefore, we concluded that differences
found with the reference NC_004293 (obtained in the 1980s) can be explained by sequencing errors in
that very early entry.

Next, to assess whether the S and L antigenome-expressing plasmids would be able to sustain
viral RNA replication, we created a version of pSag that carried the green fluorescent protein (GFP)
reporter gene in replacement of the GPC ORF (pSagGFP), as well as a version of pSag carrying the red
fluorescent protein mCherry ORF in the NP locus (pSagCherry) (Figure 1B). Plasmids pSagCherry,
pSagGFP, and pLag were co-transfected into BHK/T7-9, which constitutively expressed T7pol. As a
control, parallel cultures were transfected with pSagCherry, pSagGFP, and pLag-pol(−), which coded
for a catalytically inactive L polymerase (Materials and Methods). Expression of GFP and mCherry was
monitored by fluorescence microscopy two days later. Both green and red fluorescence was detected
in cells co-expressing the functional L polymerase and, as expected, no signal was visualized in cells
transfected with pLag-pol(−) (Figure 1C). These results indicated that primary transcription of the
reporter GFP gene from input SagGFP had taken place and, in addition, sufficient functional L and NP
proteins were synthesized from input Lag and SagGFP RNAs, respectively, to support synthesis of the
full-length genomic sense SgCherry RNA and subsequent transcription of Cherry mRNA. Therefore,
we concluded that the system is fully functional and could support rTCRV rescue, without the need
of additional helper plasmids to provide essential NP and L proteins that start viral RNA synthesis.
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Nevertheless, during various attempts to further increase GFP expression by transfecting BHK/T7-9
cells with variable amounts of pSagGFP and pLag, the addition of accessory NP or L-expressing
plasmids was assayed. Thus, we found that inclusion of pL in the transfection mix resulted in three to
four-fold increase of the number of fluorescent cells (Figure 1D).
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marked in blue. (B). Schematic representation of S and L antigenomes (Sag and Lag, respectively), 
and T7pol-driven transcripts synthesized from pSagGFP (SagGFP) and pSagCherry (SagCherry). (C). 
Primary and secondary RNA transcription from S antigenome variants. BHK/T7-9 cells were 
transfected to express SagCherry, SagGFP and Lag or Lag-pol(−) as control, as indicated. The cells 
were observed under fluorescence microscope 48 h later. (D). Setting of transfection conditions by 
monitoring GFP expression. A representative experiment is shown. BHK/T7-9 cells were transfected 
with pSagGFP and pLag with (+L) or without (−L) the L-expressing plasmid pL. As control, parallel 
cultures were transfected with pSagGFP and pLag-pol(−). Samples were analyzed using fluorescence 
microscopy 48 h later. 
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Figure 1. Generation of a reverse genetics system for rTCRV rescue. (A). T-Coffee alignment of the
intergenic region (IGR) sequence (genomic sense) from the rTCRV S cDNA clone (rTCRV) and the
indicated TCRV entries available from GenBank (Jalview Version: 2.11.1.2 [35]). Identical residues are
marked in blue. (B). Schematic representation of S and L antigenomes (Sag and Lag, respectively),
and T7pol-driven transcripts synthesized from pSagGFP (SagGFP) and pSagCherry (SagCherry).
(C). Primary and secondary RNA transcription from S antigenome variants. BHK/T7-9 cells were
transfected to express SagCherry, SagGFP and Lag or Lag-pol(−) as control, as indicated. The cells
were observed under fluorescence microscope 48 h later. (D). Setting of transfection conditions by
monitoring GFP expression. A representative experiment is shown. BHK/T7-9 cells were transfected
with pSagGFP and pLag with (+L) or without (−L) the L-expressing plasmid pL. As control, parallel
cultures were transfected with pSagGFP and pLag-pol(−). Samples were analyzed using fluorescence
microscopy 48 h later.

Based on these results, subsequent rescue of infectious rTCRV was assayed by transfecting
BHK/T7-9 cells with optimal amounts of plasmids pLag, pSag, and pL. Transfected cell supernatants
(P0), analyzed after 3 or 6 day-incubation, presented titers of recovered rTCRV that consistently raised
up to 103 to 105 plaque forming units (PFU) per milliliter. As expected, no virus could be detected
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in P0 when pLag and pL were omitted, and pLag-pol(−) was included instead in the transfection
mix (data not shown). Moreover, rTCRV exhibited similar plaque morphology to that shown by
authentic TCRV (Figure 2A), and TCRV NP was detected in cells infected with rTCRV, as determined
by immunofluorescence (Figure 2B). Furthermore, in Vero cells, although rTCRV exhibited a moderate
decreased growth at 48 h p.i., it still registered maximum viral titers at 96 h p.i. and reached final titers
at 5 days p.i. similarly to authentic TCRV (Figure 2C).
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2.2. rTCRV as a Tool for Recombinant Chimeric Virus Generation 

Figure 2. Rescue of rTCRV. (A). Recombinant and authentic TCRV plaque morphology. Vero cells were
infected with working stocks of rTCRV or authentic TCRV, as indicated. At day 11 p.i., cells were
fixed and viral plaques were visualized after standard staining of cell monolayers. (B). Detection of
NP in Vero cells infected with the indicated virus was carried out by immunofluorescence, using an
anti-TCRV NP polyclonal antibody. Mock, control uninfected cells. (C). Growth kinetics. Vero cells
were infected by triplicate with rTCRV or authentic TCRV at MOI 0.005, as indicated in the Materials
and Methods section. Aliquots of cell supernatants were collected at the indicated time points and the
virus was titrated by standard plaque assay on Vero cells. Data correspond to the mean +/− standard
deviation (SD).
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2.2. rTCRV as a Tool for Recombinant Chimeric Virus Generation

We have previously reported the generation of infectious chimeric TCRV/JUNV viral-like particles
from plasmid-transfected cells [36]. Moreover, rescue of recombinant viruses expressing heterologous
GP has already been documented for arenaviruses [37–39]. Therefore, we anticipated that the TCRV
reverse genetic system could be conveniently exploited to generate chimeric viruses, as a starting
point towards the development of a recombinant TCRV-based vaccine platform. To this aim, we first
constructed a suitable pSag vector by site-directed mutagenesis to introduce a PvuII site downstream
of the GPC stop codon. Next, pSagPVUII was used as backbone to create a chimeric pSag in which
the GPC coding sequence from JUNV strain XJCl3 was placed in the TCRV GPC locus (pSagGPXJcl3,
Figure 3A). Strain XJCl3 has been derived from the XJ prototype strain and it is highly attenuated in
guinea pigs, being used early as an experimental human vaccine [23].
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Figure 3. Rescue of a chimeric rTCRV expressing the JUNV glycoproteins. (A). Schematic representation
of the chimeric TCRV/JUNV S antigenome SagGPXJcl3. (B). Chart showing viral titers determined for
the indicated recombinant virus passages. BHK/T7-9 cells were transfected with pL, pLag, and either
pSagGPXJcl3, pSagPVUII or pSag. Three days later, cell supernatants were collected (P0) and used to
infect BHK21 cells. Culture supernatants collected at 3 days p.i., (P1) were employed to carry out
two sequential passages (P2, P3) following the same methodology. All culture supernatants were
collected at 3 days p.i. and mean viral titers (+/−SD) were determined by standard plaque assay
on Vero cells. rTCRVWT, wild-type rTCRV. ND, not determined. (C). Detection of viral antigens by
immunofluorescence. Vero cells were mock-infected or infected (MOI 1-3) with the indicated virus for
48 h. JUNV GP and TCRV NP were detected by immunofluorescence, using monoclonal anti-JUNV
GP1 and polyclonal anti-TCRV NP, respectively, as a primary antibody (Materials and Methods). Nuclei
were stained with DAPI.
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Using the experimental conditions set for rTCRV rescue, the chimeric rTCRV/JUNV was
successfully recovered from BHK/T7-9 cells transfected with pL, pLag, and pSagGPXJcl3. As control,
wild-type rTCRV and rTCRVPVUII were rescued from culture monolayers transfected in parallel. Viruses
present in transfected-cell supernatants (P0) were amplified by consecutive passages in BHK21 cells.
Viral titers determined for each passage at 3 days p.i. demonstrated that the chimeric rTCRVGPXJcl3

grew at similar or even higher levels than those exhibited by either wild-type rTCRV or rTCRVPVUII

(Figure 3B).
To further characterize the chimeric virus, Vero cells were infected with rTCRVGPXJcl3 passage 3

(P3), or with either TCRV or JUNV Candid#1 as a control. Infected monolayers were analyzed using
immunofluorescence with an anti-JUNV GP1 specific Mab (BF-11) that did not cross-react against
TCRV GP [40]. As a control, cells were probed with a monospecific polyclonal antiserum against TCRV
NP. Expression of JUNV GP was clearly detected in cells infected with either rTCRVGPXJcl3 or JUNV,
while no signal was observed in TCRV infected cells, as anticipated. Additionally, detection of TCRV
NP in cell monolayers confirmed the infection with the chimeric virus and also validated the control
infection with TCRV (Figure 3C). These results demonstrated that rTCRVGPXJcl3 readily expressed
JUNV GPC and confirmed the feasibility of using our TCRV reverse genetic system as a platform for
generating a TCRV/JUNV chimeric recombinant virus.

Studies employing a reverse genetic approach for the OW LASV have shown that recombinant
viruses carrying deletion of the NCR sequence beyond the S RNA terminal 19-nt promoter presented an
attenuated phenotype. Moreover, deletions in the S genome 5′NCR were documented to have a stronger
impact on virus growth efficiency than comparable deletions on the 3′ NCR [41]. Based on sequence
comparison of Clade B mammarenavirus S RNA 5′ NCRs, two subregions stand out beyond the
19-nt terminal 5′ vRNA promoter. A proximal subregion displaying high identity, which corresponds
to positions 20 to 35 from the 5′ end in TCRV S RNA, and a less conserved promoter-distal moiety
comprising positions 36 to 68 (Supplementary Figure S1).

Considering these observations, we asked whether the 5′ vRNA promoter-proximal non-coding
subregion could play a role in viral multiplication. Thus, to start evaluating the role of terminal NCR
in TCRV growth properties, we selected the sequence spanning positions 20 to 47 from the S 5′ end as
target for mutagenesis and changed it by transversion in pSag, to generate mutant plasmid pSagsNCR.
Using our reverse genetic approach, the mutant virus (rTCRVsNCR) was recovered in the supernatants
of transfected BHK/T7-9 cells with titers about 104 PFU/mL at day 6 post-transfection. Moreover,
mutant rTCRVsNCR formed plaques on Vero cells that were similar in size and morphology to those
formed by wild-type rTCRV (Figure 4A).

In order to corroborate the genetic identity of the recovered viruses, total RNA was purified
from Vero cells infected at MOI 4 with working stocks of mutant rTCRVsNCR or rTCRV wild-type,
and the S genome 5′ NCR (corresponding to 3′ NCR in S antigenome) was amplified and sequenced
(Materials and Methods). As an additional control, parallel cultures were infected with authentic
TCRV and processed in the same way. No sequence reversion was detected in rTCRVsNCR in two
independent experiments, indicating that the change introduced within the S genome 5′ non-coding
region remained stable in the viral progeny up to passage 2 (Figure 4B).

Next, we assessed the effect of the mutation within S 5′ NCR on viral growth using two different
cell lines. In Vero cells, mutant rTCRVsNCR displayed a slightly higher growth capacity as compared to
wild-type rTCRV. Differences observed in viral titers at 72 and 96 h p.i. were statistically significant
(p < 0.001), with both mutant and wild-type viruses reaching similar levels at 120 h p.i. (Figure 4C).
In contrast, evaluation of viral growth properties in BHK21 cells revealed statistically significant lower
titers of mutant rTCRVsNCR than those of wild-type rTCRV at all-time points evaluated (p < 0.001).
In addition, rTCRVsNCR reached final titers at 5 days p.i that were 10 times lower than those observed
for wild-type rTCRV (Figure 4C).

Overall, these results suggested that modification of the non-coding sequence neighboring the S
5′ vRNA promoter impacted on viral fitness in a cell type-dependent manner.
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Figure 4. Rescue and characterization of mutant rTCRVsNCR. (A). Plaque morphology of mutant and
wild-type recombinant viruses on Vero cell monolayers was determined as in Figure 2A. (B). Analysis
of rTCRV S antigenome 3′ NCR sequence. Vero cells were infected with working stocks of mutant
rTCRVsNCR or, as control, with wild-type rTCRV or authentic TCRV. Total RNA purified from infected
cells at 48 h p.i. was used to amplify the complete S vRNA 5′ NCR by RT-PCR, followed by sequencing.
A section of the chromatograms including the 5′ vRNA promoter (19-nt Pr) and the 28-nt sequence
changed in rTCRVsNCR, is shown. (C). Viral growth kinetics. Vero or BHK21 cells were infected by
triplicate with mutant rTCRVsNCR or wild-type rTCRV at MOI 0.005, as indicated in the Materials and
Methods section. Aliquots of cell supernatants were collected daily and virus was titrated by standard
plaque assay. Data correspond to the mean +/− SD.

3. Discussion

We documented here the development of a reverse genetic system that relies on the synthesis
of full-length S and L antigenomic RNAs from T7 pol-driven plasmids, allowing us to successfully
rescue infectious recombinant TCRV. As with a very recently reported system that depends on
PolI/PolI-directed plasmids for rTCRV rescue [33], the T7 polymerase-based system presented here
directs recovery of rTCRV, exhibiting in vitro phenotypical features close to those of authentic TCRV.

Antibodies directed against envelope glycoproteins play an important role in protection against
infection with JUNV and other New World arenaviruses [42–46]. Besides some evidence on
cross-protection between MACV and Candid#1 in vivo, and studies on cross-neutralization of MACV
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with Candid#1 antibodies [24,47], there is no information supporting that the Candid#1 vaccine
can be cross-protective against infection with other pathogenic mammarenaviruses. We employed
the reverse genetic approach to generate a chimeric rTCRV that readily expresses GP from JUNV.
Notably, the chimeric virus propagates in cell culture at similar levels than wild-type rTCRV (Figure 3).
Considering our results and precedent studies reporting rescue of recombinant chimeric OW/NW
arenaviruses [37,38], it is conceivable that the TCRV reverse genetic system presented here provides a
useful alternative platform to generate chimeric viruses expressing GP from different NW, as well as
OW pathogenic mammarenaviruses, potentially applicable to vaccine development.

Using reverse genetic approaches, arenavirus genome non-coding sequences have been
manipulated to obtain attenuated viral variants carrying deletions in the L IGR or substitution
of the L IGR with the S IGR [33,48–50]. Regarding the 5′ and 3′ non-coding terminal sequences
that separate the 19-nt promoter from the viral protein ORFs, evidence has been documented that
although not being indispensable for propagation, the deletion of these regions impacts rLASV growth
efficiency [41]. Accordingly, we were able to rescue mutant rTCRVsNCR carrying substitution of a 28-nt
sequence neighboring the 5′ vRNA promoter that is conserved across Clade B mammarenaviruses.
Our observations suggest that the TCRV S 5′ NCR can tolerate changes without causing substantial
impairment of virus rescue, as shown for LASV. Interestingly, although the mutant virus displayed
similar plaque size in Vero cell cultures as compared with wild-type rTCRV, they exhibited dissimilar
growth properties when evaluated in BHK21 cells. Indeed, mutant rTCRVsNCR multiplicated at lower
titers than wild-type rTCRV at all-time points (Figure 4), suggesting that the effect of substitution
within the S 5′ NCR on viral fitness may depend on cell-type specific factor(s). These initial results
pose the question of whether the S 5′ vRNA promoter-proximal non-coding sequence could harbor
signal(s) involved in binding of cellular factors that may assist in viral RNA replication or encapsidation
by NP. Additionally, in cell lines from phylogenetically distant host species (rodent and primate),
pro-viral factors required to mediate viral life cycle could be expressed at different levels and/or
display different affinities to viral RNA, therefore impacting on virus propagation. Indeed, several
reports show evidence of distinct cell factors involved in arenavirus RNA synthesis [51]. Further
work is required to explore whether genome NCRs could be evaluated as suitable targets for NW
mammarenavirus attenuation in vivo. The reverse genetic system reported here will be useful to define
additional attenuation markers that may contribute for the future design of safe mammarenavirus
vaccine platforms. Likewise, it will also facilitate studies to precisely identify molecular determinants
of NW arenaviruses pathogenesis, to explore on the molecular basis of viral replication dynamics and
to further elucidate host factors implicated in virus multiplication.

4. Materials and Methods

4.1. Cells and Viruses

African green monkey kidney cells (VERO 76, ATCC® CRL-1587™) were maintained in Dulbecco’s
modified Eagle’s medium-DMEM (Thermo Fisher, Waltham, MA, USA). Baby hamster kidney cells
(BHK21 [C-13], ATCC® CCL-10) and BHK/T7-9, stably expressing the T7 RNA polymerase [52],
were grown in Glasgow minimum essential medium-GMEM (Thermo Fisher, Waltham, MA, USA).
The growth medium was supplemented with 10% fetal bovine serum (FBS; Thermo Fisher, Waltham,
MA, USA) and penicillin (100 U/mL)-streptomycin (100 µg/mL) (Thermo Fisher, Waltham, MA, USA).
Hygromicin B (InvivoGen, San Diego, CA, USA) was added to a BHK/T7-9 culture medium in each of
the 10 passages at a final concentration of 600 µg/mL, to select T7 polymerase expressing cells.

JUNV Candid#1 was provided by Ricardo Gómez (Instituto de Biotecnología y Biología Molecular,
CONICET-Universidad Nacional de La Plata, La Plata, Argentina). JUNV Candid#1 and TCRV (strain
TRVL-11573) stocks were amplified in BHK21 cells. Viral titers were determined by plaque assay in
Vero cells as described previously [53].
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4.2. Plasmids

Plasmids pL, expressing TCRV L protein under control of the T7 RNA polymerase promoter,
was previously generated [36].

Plasmids pSag and pLag express the full-length antigenomic TCRV S and L RNAs, respectively,
under control of the T7 polymerase promoter. Plasmids were constructed using a modified version of
transcription vector pTV2.0 (pTV2.0 (Sac-)); transcripts were designed to contain an additional G at the
5′ end [11,54].

To obtain pLag, total RNA extracted from Vero cells infected for 96 h with TCRV at a multiplicity
of infection (MOI) of 0.1 PFU/cell was used as a template to amplify the 5′ and 3′ regions of TCRV L
genome using RT-PCR. To obtain the DNA fragment spanning positions 6087 to 7102 at the genome
3′ end, we used forward primer L3 fw and a reverse 19-nt oligonucleotide (L3 rv) designed on the
basis of the L genome 3′ end sequence directly determined for JUNV and MACV. This sequence was
previously demonstrated to be functional in reverse genetic systems [30,55]. The PCR product was
phosphorylated and inserted at the StuI restriction site of pTV2.0(SacI-) immediately downstream of
the T7 RNA polymerase promoter. The DNA fragment corresponding to the 5′ region (positions 1 to
193) of TCRV L RNA, obtained by using primers L5 fw and L5 rv, was phosphorylated and cloned at
the SmaI site of the vector immediately upstream of the hepatitis delta virus ribozyme sequence (HDV
Rz) that preceded a T7 polymerase terminator signal. The resulting plasmid was used as backbone
to assemble the full length TCRV L antigenomic sequence by consecutive cloning of three different
fragments, obtained from previously constructed plasmids pZ, p96 and pL [11].

pLag-pol(−) codes for a mutant L protein, which harbors a substitution within motif C that
abrogates L polymerase activity. To construct pLag-pol(−), plasmid L C3 [56] was digested with BstEII,
and the mutation (D1330A)-containing fragment was inserted into wild-type pLag digested with the
same enzyme, in replacement of the wild type sequence.

For the construction of pSag, the sequence comprised between positions 67 to 3066 of the
TCRV S segment was obtained after digestion of clone p2b2 [18] with NcoI and BstEII and then
was used to replace the NcoI-BstEII fragment in plasmid p15-2, a parental construct of pAgenCAT,
which expressed a functional TCRV S antigenome analog [11]. In both plasmids pSag and pLag,
an extra C nucleotide (nt) was inserted at the 3′ end of the antigenomic sequence by site-directed
mutagenesis, using QuikChange PCR mutagenesis kit (Agilent, Santa Clara, CA, USA) and primers
containing the mutation. This modification was reported to enhance the activity of the hepatitis delta
virus ribozyme (HDV Rz) of the plasmid vector [16,57].

To generate plasmid pSagGFP, a DNA fragment comprised of the Enhanced Green Fluorescent
Protein (EGFP) coding sequence was amplified by PCR from pEGFP-C3 (Takara Bio USA, Inc., Mountain
View, CA, USA) using a phosphorylated 19-nt long reverse primer (GFP rv) corresponding to the 5′

terminus of GFP ORF, and a forward primer (GFP fw) including a SfiI site, 39 nt of the TCRV Sag IGR
sequence and 23 nt complementary to the 3′-terminus of GFP ORF. The PCR product was cleaved with
SfiI and the DNA fragment comprised of the GFP ORF was gel-purified. On the other hand, pSag was
digested with NcoI followed by Klenow fill-in and then cleaved with SfiI. The vector-comprising
fragment was then ligated to the GFP-encoding fragment to introduce GFP in the GPC locus.

Plasmid pSagCherry was obtained following a similar approach. Forward oligonucleotide
(SacI-mCherry fw) was designed to contain the SacI restriction site sequence, followed by 30 nt of
the S 5′antigenomic non-coding region (NCR) and the 5′ terminal 31-nt sequence of the mCherry red
fluorescent protein ORF. The reverse primer (SfiI-mCherry rv) was comprised of the SfiI restriction
site, followed by 60 nt of the S IGR sequence and a 27-nt sequence complementary to the 3′ terminal
region of the mCherry ORF. These oligonucleotides were used to obtain a DNA fragment by PCR using
pmCherry-N1 vector (Takara Bio USA, Inc., Mountain View, CA, USA) as a template. The PCR product
was digested by SacI and SfiI restriction enzymes and the SacI-SfiI fragment was inserted between the
same sites into the NP locus of pSag.
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Plasmid pSagPVUII contains a PvuII site located 6 nt downstream of the GPC stop codon. It was
obtained by introducing a two-nucleotide substitution into pSag, using QuikChange PCR mutagenesis
kit (Agilent, Santa Clara, CA, USA) with primers pSagPvuII fw and pSagPvuII rv. The resultant mutant
plasmid was excised with HpaI and SfiI and the DNA fragment carrying the PvuII site was swapped
with the wild type HpaI-SfiI fragment in pSag.

To obtain plasmid pSagGPXJcl3, the coding sequence of GPC from JUNV strain XJCl3 was obtained
by PCR using pcDNA3.1-GPC XJCl3 [58] as a template. Reverse primer (GPCjunv rv) was designed
to contain a NcoI site and the 5′ terminal 18-nt sequence of the GPC JUNV XJCl3 ORF. Forward
primer (PvuII-GPCjunv fw) was comprised of a PvuII site followed by a sequence that included 21 nt
complementary to the 3′-terminal region of GPC JUNV XJCl3 ORF. The PCR product was digested
with NcoI and PvuII restriction enzymes, the NcoI-PvuII fragment was purified and cloned between
the same sites of pSagPVUII, to replace TCRV GPC with JUNV GPC.

To obtain mutant plasmid pSagsNCR, plasmid pSag was first digested with HindIII to avoid
amplification of the antigenomic 5′ end, and then employed as a template to obtain a DNA fragment
comprising the mutation by PCR. Forward primer (pSag-sNCR fw) contained a NcoI site and the Sag
3′ NCR sequence including the 28-nt substitution (sNCR) and the 19-nt 3′vcRNA promoter. Reverse
primer (PstI-pSag-sNCR rv) corresponded to a 24-nt sequence of the vector covering a PstI unique site.
The PCR product was cleaved with NcoI and PstI, and the NcoI-PstI fragment was cloned between the
same sites of pSag, replacing the wild type fragment.

All plasmids were purified by using Qiagen Tip-100 (Qiagen Inc., Valencia, Spain). Construct
sequences were confirmed by automated dideoxynucleotide DNA sequencing (Macrogen, Seoul,
Korea). Complete rTCRV S and L sequences were deposed at GenBank with accession numbers
MW071169 and MW071170, respectively. Primer sequences are shown in Supplementary Table S1.
Vector maps are available upon request.

4.3. Rescue of Recombinant TCRV (rTCRV)

Optimal conditions for the generation of rTCRV were set as described in the text. Briefly,
subconfluent monolayers of BHK/T7-9 cells, which constitutively express the T7 RNA polymerase,
were transfected with (amounts per well of 6-well plates) 3.25 µg of pLag, 6 µg of pSag, and 0.1 µg of pL,
using Lipofectamine 2000, according to the manufacturer’s instructions. The transfection medium was
removed after 24 h-incubation and fresh medium supplemented with 1% FBS was added. Supernatants
(P0) were collected at 3 or 6 days post-transfection, clarified by low-speed centrifugation and stored at
−85 ◦C. Unless otherwise indicated, recombinant viruses were amplified in BHK21 cells after infection
of cell monolayers with P0 at MOI 0.005, to reduce production of defective interfering particles [59].
Supernatants were collected at day 7 p.i. and used as viral working stocks.

4.4. Viral Growth Curves

Subconfluent monolayers of Vero or BHK21 cells grown in 6-well plates were infected at MOI
0.005 for 1 h at 37 ◦C. Then, the inoculum was removed and fresh media supplemented with 1% FBS
was added to each well. Aliquots of cell culture supernatants were collected at 1-day interval from 1 to
5 days p.i., clarified by centrifugation and titered by standard plaque assay on Vero cells.

4.5. Purification and Analysis of Viral RNA

Infected-cell monolayers were lysed at the indicated times with TRIzol Reagent (Thermo Fisher,
Waltham, MA, USA) and total RNA was extracted according to the manufacturer’s instructions.
Purified total RNA was subjected to RT-PCR to obtain DNA fragments comprising the S genome
target regions. Direct sequencing of a DNA fragment spanning positions 1 to 332 from the 5′ end (to
control the identity of mutant rTCRVsNCR), or sequencing of individual cDNA molecules previously
cloned into pGEM-T easy (Promega, Madison, WI, USA), covering positions 732 to 1748 (to analyzed
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S IGR), was performed by Macrogen Inc (Seoul, Korea). Oligonucleotides sequences are available
upon request.

4.6. Immunofluorescence Microscopy

Vero cells grown on glass coverslips within 24-well dishes were infected with the indicated virus
at MOI 1-3. At 48 h p.i. cells were washed twice with 1X PBS and fixed with 4% paraformaldehyde for
10 min at room temperature. After washing with PBS, cells were permeabilized by incubation with
0.2% Triton X-100 for 10 min at room temperature, blocked with PBS containing 3% bovine serum
albumin (BSA) for 1 h, and incubated with the primary antibody in PBS containing 3% BSA, for 1 h at
37 ◦C. Antibodies used were: rabbit polyclonal anti-TCRV NP [60] or Mab QC03-BF11 directed against
the GP1 subunit of JUNV GP [40], obtained through the NIH Biodefense and Emerging Infections
Research Resources Repository, National Institute of Allergy and Infectious Diseases, NIH. After being
extensively washed in PBS–3% BSA cells were incubated with the secondary antibody, for 1 h at 37 ◦C.
Alexa Fluor 488 chicken anti-mouse immunoglobulin G (Thermo Fisher, Waltham, MA, USA) was
used to detect JUNV GP and Alexa Fluor 568 goat anti-rabbit immunoglobulin G (Thermo Fisher,
Waltham, MA, USA) was employed to detect TCRV NP. Following washing as indicated above, nuclei
were stained with DAPI (Sigma-Aldrich, St Louis, MO, USA). Cells were mounted on FluorSave
(Calbiochem, San Diego, CA, USA). Images were acquired with a Nikon Eclipse E600 microscope
equipped with a Nikon DS-Fi1 camera.

4.7. Statistical Analysis

Statistical analyses were performed using the SPSS 17.0 statistical software package (SPSS, Inc.,
Chicago, IL, USA). The statistical significance between two groups was analyzed using Independent
Samples T-Test.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/9/11/948/s1,
Figure S1: Alignment of S RNA 5′ non-coding sequence from Clade B NW mammarenaviruses, performed with
T-Coffee (Jalview Version: 2.11.1.2 [35]), Table S1: Oligonucleotides employed in cloning procedures.
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