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1 Introduction
Osteosarcoma, a highly aggressive bone malignancy with molecular heterogeneity, 
remains a leading cause of cancer mortality in children and adolescents [1–3]. The global 
burden of osteosarcoma continues to escalate, driven by its propensity for recurrence, 
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Abstract
Background Osteosarcoma, a highly malignant bone tumor prevalent in children 
and adolescents, continues to have poor long-term survival rates, particularly in 
metastatic cases. While histone acetylation dysregulation has been implicated in cancer 
progression, the role of histone acetylation modification-related proteins (HAMRPs) in 
osteosarcoma immune infiltration and prognosis remains unclear.

Methods The expression patterns, prognostic implications, and clinical correlations 
of HAMRPs in osteosarcoma were analyzed using the TARGET, GEO, TISCH, and HPA 
databases. The effectiveness of HAMRPs in predicting the immune landscape of 
osteosarcoma was confirmed using CIBERSORT, ssGSEA, and ESTIMATE algorithms. The 
study employed GSEA analysis, wound healing assay, Transwell, and western blot to 
explore the role and regulatory mechanism of the key gene ASH1L in osteosarcoma 
progression.

Results Two distinct histone acetylation modification patterns were identified, 
showing significant differences in survival, clinical features, and immune landscape. 
Comprehensive clinical correlation analysis and Kaplan-Meier analysis of all HAMRPs 
used for two subtypes revealed that higher ASH1L expression was found in metastatic 
osteosarcoma cases and indicated poorer survival outcomes. In vitro experiments 
confirmed that ASH1L promoted osteosarcoma metastasis and epithelial-mesenchymal 
transition via the AKT/mTOR pathway. Additionally, an ASH1L-derived risk model was 
developed to aid personalized clinical decisions.

Conclusions This study elucidates the prognostic and immunological significance of 
HAMRPs and highlights ASH1L as a novel aggressive marker in osteosarcoma.
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metastatic dissemination, and dismal long-term outcomes [4–7]. While current treat-
ment combines surgery with neoadjuvant/adjuvant chemotherapy [8–10], options 
remain limited for metastatic or recurrent cases. The disease shows striking pulmonary 
tropism, with lung metastases causing most fatalities [11]. Before effective chemother-
apy, 85% of localized cases developed lung metastases post-local treatment [12]. Cur-
rently, metastatic osteosarcoma maintains a dismal 15–30% 5-year survival rate, with no 
major therapeutic breakthroughs in decades [13, 14], highlighting the critical need for 
predictive biomarkers and precision therapies.

Chromatin architecture, nucleosome stability, and transcriptional regulation are 
primarily orchestrated by histones [15–18]. As highly conserved nuclear proteins in 
eukaryotes, histones possess a strong positive charge and assemble into histone octam-
ers, forming the structural core of nucleosomes [19]. These canonical histones play a 
pivotal role in genome compaction by wrapping DNA into nucleosomal units, thereby 
facilitating critical cellular processes such as transcription, replication, and DNA repair 
[20].

Cancer genomics reveals frequent mutations in epigenetic regulators [21]. Among 
these, histone modifications constitute a fundamental layer of epigenetic regulation, 
profoundly shaping gene expression and the interpretation of genetic information [22, 
23]. Histones undergo a diverse array of post-translational modifications (PTMs), which 
serve as dynamic epigenetic marks and modulate their interactions with DNA [24]. To 
date, numerous PTMs have been identified, including methylation, acetylation, propio-
nylation, butyrylation, lactylation, ubiquitination, phosphorylation, and citrullination, 
among others [25–28]. These modifications frequently occur in combinatorial patterns, 
collectively forming the “histone code”—a sophisticated regulatory mechanism that 
vastly expands the informational potential of the genetic code [16, 29]. The histone code 
exerts widespread influence over diverse biological processes, including cell metabolism, 
differentiation, senescence, chromatin remodeling, DNA repair, and transcriptional 
regulation [28]. The functional consequences of these modifications depend on multiple 
factors, such as PTM type, histone variant, and the precise amino acid residue targeted 
[30].

Histone acetylation, one of the earliest discovered histone PTMs, exists as both inter-
nal lysine and N-terminal modifications [31, 32]. This modification typically induces 
chromatin relaxation, facilitating transcriptional machinery recruitment and enhanc-
ing gene expression [33]. The dynamic equilibrium between histone acetyltransferases 
(HATs) and histone deacetylases (HDACs) tightly regulates this process, playing piv-
otal roles in chromatin remodeling and transcriptional control [34–37]. HDACs restore 
lysine positive charges by removing acetyl groups, thereby suppressing gene transcrip-
tion [38]. In osteosarcoma, HDAC1/2 inhibition has demonstrated anti-metastatic 
effects [39], with mechanistic studies showing HDAC inhibition reduces NRP1 expres-
sion and SRC/FAK/ROCK1 pathway activity [40]. Additionally, HDAC1 promotes 
metastasis through SMO/Hedgehog activation via miR-326 suppression [41].

Conversely, HATs mediate lysine acetylation using acetyl-CoA, promoting transcrip-
tion initiation [42]. KAT7, for instance, regulates osteosarcoma metastasis and immune 
responses through CCL3/JAK-STAT signaling and epithelial-mesenchymal transi-
tion (EMT) markers [43]. Similarly, HBO1 overexpression in osteosarcoma promotes 
tumor growth and migration [44]. The BET protein family, which recognizes acetylated 
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histones, shows oncogenic relevance [45], with NHWD-870 improving chemosensitiv-
ity via GP130/STAT3 inhibition [46]. BRD4 further modulates lipid metabolism and fer-
roptosis through ACSL3 splicing [47]. While these findings suggest histone acetylation’s 
involvement in osteosarcoma progression, current research remains fragmented, focus-
ing on individual histone acetylation modification-related protein (HAMRP) or specific 
sites. Notably, no integrated multi-omics studies have systematically examined HAM-
RPs’ effects on immune infiltration and clinical outcomes in osteosarcoma.

Our study integrates bulk and single-cell osteosarcoma transcriptomics to character-
ize HAMRPs. We identified two acetylation patterns correlating strongly with immune-
inflamed and immune-desert phenotypes. Focusing on metastatic mechanisms, we 
elucidated ASH1L’s role in migration and EMT. The resulting ASH1L-based risk model 
effectively captures tumor heterogeneity while demonstrating prognostic value. This 
comprehensive HAMRP analysis may enable better outcome prediction and precision 
therapy.

2 Methods
2.1 Data sources

A thorough examination of osteosarcoma cohorts was performed using two publicly 
available databases: the GEO database (https://www.ncbi.nlm.nih.gov/geo/) and the 
TARGET database ( h t t p s :  / / w w w  . c a n c e  r . g o  v / c c g  / r e s e  a r c h / g  e n o m  e - s e q u e n c i n g / t a r g e t). 
The GSE21257 cohort included 53 osteosarcoma patients with comprehensive follow-up 
and sequencing data for survival analysis. The TARGET cohort included 85 osteosar-
coma patients with clinically documented data and matching bulk RNA-seq informa-
tion. Bulk RNA-seq data were normalized using transcripts per kilobase million (TPM) 
and then log2-transformed to represent gene expression levels. For duplicate data, the 
mean RNA expression level was used. The gene expression matrices were integrated to 
form an osteosarcoma meta-cohort of 138 samples. To mitigate any potential bias, the 
“SVA” package was employed for correction. We performed differential gene expres-
sion analysis using the limma-voom pipeline on log2(TPM + 1) transformed data. Lowly 
expressed genes were first filtered. The voom transformation with precision weights was 
applied to model mean-variance relationships, followed by linear modeling with empiri-
cal Bayes moderation. P-values were adjusted using the Benjamini-Hochberg method 
(FDR < 0.05).

2.2 Determination of different patterns by consensus clustering analysis

The HAMRP gene list was compiled from published literature (see supplementary Table 
S1) [21, 48, 49]. To identify prognosis-related HMARPs, univariate Cox regression was 
implemented to screen gene lists using the “survival” package. The presence of a hazard 
ratio (HR) greater than 1 signifies a more unfavorable prognosis, while an HR less than 
1 denotes a more favorable prognosis. Furthermore, unsupervised consensus cluster-
ing with the k-means clustering algorithm was performed for 1000 replicates to identify 
potential histone acetylation modification patterns in osteosarcoma. This analysis was 
facilitated by the “ConsensusClusterPlus” package. The optimal cluster count was deter-
mined through the use of cumulative distribution function (CDF) and consensus matri-
ces, with the cluster number (k) ranging from two to ten. Kaplan-Meyer (KM) analysis 
was executed with the utilization of the “survival” and “survminer” packages to ascertain 
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the overall survival (OS) of varied histone acetylation modification patterns. Principal 
component analysis (PCA) was conducted to ascertain the heterogeneity among distinct 
histone acetylation modification patterns. Subsequently, the expression levels of prog-
nostically relevant HAMRPs in various patterns were analyzed using the limma-voom 
pipeline.

2.3 Immune landscape analysis and biological feature analysis of histone acetylation 

modification patterns

The ESTIMATE algorithm was employed to assess variations in the tumor microenvi-
ronment (TME) across different histone acetylation modification patterns, while the 
ssGSEA algorithm quantified tumor-infiltrating immune cells (TICs) within these pat-
terns. We employed the c2.cp.kegg_medicus.v2023.2.Hs.symbols.gmt marker gene sets 
for gene set variation analysis (GSVA) to elucidate the distinct functions and enrichment 
pathways associated with various histone acetylation modification patterns. We con-
ducted gene set enrichment analysis (GSEA) with marker gene sets (c6.all.v2023.2.Hs.
symbols.gmt) to investigate oncogenic signaling across various histone acetylation mod-
ification patterns. A statistically significant result was defined as an adjusted P value less 
than 0.05.

2.4 Subcellular localization and single-cell transcriptome analysis

TISCH2 (http://tisch.comp-genomics.org/) was utilized to analyze single-cell RNA 
sequencing data from the GSE162454 cohort. The single-cell mRNA expression of 
HAMRPs in immune-infiltrating and osteosarcoma cells was evaluated following the 
elimination of inter-sample batches, the uniform annotation of cell types, and the iden-
tification of malignant cells. Additionally, subcellular localization was determined using 
immunofluorescence images from the Human Protein Atlas (HPA,  h t t p s : / / w w w . P r o t e i 
n a t l a s . o r g /     , HPA accession: HPA004806). Composite images were generated by merg-
ing individual organelle marker channels (ASH1L, ER, DAPI, etc.), with splices reflecting 
natural interfaces between distinct fluorescent signals.

2.5 ASH1L-derived risk stratification system establishment and validation

The limma-voom pipeline was employed to identify differentially expressed genes 
(DEGs) between ASH1L high- and low-expression subgroups. Significant DEGs 
(adjusted p-value ≤ 0.05) were subsequently analyzed through Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses.

Using the “caret” package, the osteosarcoma meta-cohort was randomly partitioned 
into training and validation sets in equal proportions, with the training cohort utilized 
for model development and both test and combined cohorts employed for validation. 
To construct the ASH1L-derived prognostic index (ADPI), we first performed univariate 
Cox regression to evaluate the prognostic impact of the DEGs identified above, followed 
by LASSO regression for feature selection and multivariate Cox analysis to determine 
the final gene set and their respective coefficients. The ADPI score was calculated as the 
sum of each gene’s expression level multiplied by its corresponding coefficient (ADPI 
score = Σ(coefi × Expi)).

Survival outcomes across different ADPI score groups were compared using Kaplan-
Meier analysis, while the predictive accuracy of the ADPI was assessed across all cohorts 

http://tisch.comp-genomics.org/
https://www.Proteinatlas.org/
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through time-dependent receiver operating characteristic (ROC) curve analysis, per-
formed using the “timeROC” package.

2.6 Clinical correlation analysis

Cox regression analysis assessed the ADPI score’s role as an independent prognos-
tic factor. Correlations between ADPI score and clinicopathologic characteristics were 
analyzed using Kruskal-Wallis and Wilcoxon rank-sum tests. Kaplan-Meier survival 
analyses were conducted across various subgroups based on age (≤ 18 and > 18 years), 
sex (female and male), and metastatic status (metastatic and non-metastatic).

2.7 Cell lines

The human osteoblast cell (hFOB1.19) and the osteosarcoma cell lines (MG63 U2OS, 
and MNNG/HOS) were sourced from the China Center for Type Culture Collec-
tion (Shanghai, China). Osteosarcoma cell lines were cultured in a medium with 10% 
fetal bovine serum and 100 U/ml penicillin/streptomycin at 37  °C with 5% CO2. The 
hFOB1.19 cells were maintained at 33.5  °C with 5% carbon dioxide. Prior to freezing, 
authentication of these cells was conducted using STR identification.

2.8 Quantitative real-time reverse transcription-PCR (qRT-PCR)

RNA was isolated using RNA-easyTM reagent from Vazyme Biotech Co., Ltd., Nanjing, 
China, followed by cDNA synthesis using a reverse transcription kit (Yeasen, China). 
QRT-PCR analysis was conducted using the SYBR Green Master Mix (Takara, China) on 
a Bio-Rad CFX96 instrument (USA). Relative gene expression was calculated using the 
2–ΔΔCT method, with β-actin serving as the internal control. Supplementary Table S2 
provides primer sequences for relevant genes.

2.9 Plasmid construction and transfection

RiboBio (Guangzhou, China) synthesized shRNA sequences for ASH1L for gene down-
regulation, as detailed in supplementary Table S3. GenePharma (Suzhou, China) created 
plasmids that overexpress ASH1L and an empty vector. Transfection was performed 
using Lipofectamine 3000 (Invitrogen, USA) and assessed 24–48 h later using qRT-PCR 
or western blot (WB).

2.10 Western blot assay

The cells were lysed in RIPA lysis buffer with protease and phosphatase inhibitors, all 
from Beyotime, China. Proteins were separated using 8–10% SDS-PAGE and subse-
quently transferred to a PVDF membrane (Millipore, USA). The membranes were then 
blocked using rapid blocking liquid (NCM Biotech, Suzhou, China) and incubated with 
the appropriate primary antibodies at 4 °C overnight. The blots were then subjected to 
an enhanced chemiluminescence reagent (NCM Biotech, Suzhou, China). Antibody 
against mTOR (66888-1-Ig), p-AKT (66444-1-Ig), E-cadherin (60335-1-Ig), N-cad-
herin (66219-1-Ig), p-mTOR (67778-1-Ig), AKT (60203-2-Ig), β-actin (66009-1-Ig), and 
vimentin (60330-1-Ig) were obtained from Proteintech (Wuhan, China). ASH1L anti-
body (ab50981) was purchased from Abcam (Shanghai, China). Band intensities were 
quantified using Image J (v.1.53), normalized to β-actin. Data represent mean ± SEM 
(n = 3 independent experiments).
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2.11 Wound healing assay

Before the confluence of osteosarcoma cells reaches 90%, a scratch is produced in each 
well of the plate with a 200 µL sterile pipette tip.Subsequently, the medium was replaced 
with serum-free medium. Photographs of each wound were taken at 0, 24, and 48 h after 
changing the culture medium.The migration speed was determined using the scratch 
width.

2.12 Transwell assay

Osteosarcoma cells were transfected and re-suspended in a serum-free medium. A 
single-cell suspension was then seeded into each upper chamber of 24-well transwell 
inserts (JET Biofil, China) with or without matrix to assess the cells’ migration or inva-
sion capabilities. After 16 h of culture, the bottom of each transwell insert was washed 
with PBS, then fixed with 4% paraformaldehyde and stained with 0.1% crystal violet.

2.13 Statistical analysis

Data analysis was conducted using R4.3.0. Data were reported as mean ± standard devia-
tion for at least three separate experiments. Comparisons were conducted using either 
Student’s t-test or one-way ANOVA. *P < 0.05; **P < 0.01; ***P < 0.001; NS no significance.

3 Results
3.1 Prognostic significance and subtype identification of HAMRPs in osteosarcoma

We initially conducted an analysis of the association between HAMRPs and outcomes 
in conjunction with the TARGET and GEO cohorts. Univariate Cox regression analy-
sis identified eight HAMRPs significantly influencing osteosarcoma patient progno-
sis (Fig. 1A). As an indicator of good prognosis, SP140 exhibited a substantial positive 
correlation with SP110, yet a pronounced negative correlation with indicators of poor 
prognosis, encompassing ASH1L, ZMYND11, HDAC4, and SIRT1 (Fig. 1B). The chro-
mosomal location of the aforementioned prognosis-related HMARPs is displayed in 
Fig. 1C.

Osteosarcoma patients were grouped using unsupervised clustering to examine the 
influence of HAMRPs on different molecular subtypes. Two distinct histone acety-
lation modification patterns, labeled HAMPcluster C1 and HAMPcluster C2, were 
identified (Fig. 1D-F). The HAMPcluster C1 exhibited a substantial survival benefit, as 
evidenced by Fig.  1G. In addition, PCA analysis further confirmed a clear separation 
between HAMPcluster C1 and HAMPcluster C2 (Fig.  1H). Subsequent investigations 
into the transcriptional profiles of HAMRPs between two distinct phenotypes revealed 
that HAMRPs identified as favorable indicators (comprising SP140 and SP110) dem-
onstrated remarkably elevated expression levels in HAMPcluster C1 (Fig. 1I). By con-
trast, HAMRPs with adverse prognostic potential (e.g., ASH1L, ZMYND11, SMARCA2, 
HAT1, HDAC4, and SIRT1) exhibited significantly higher expression in HAMPcluster 
C2 (Fig. 1I).

3.2 Distinct TME characteristics in the two histone acetylation modification patterns

CIBERSORT analysis identified significant differences in naive B cells, memory B cells, 
plasma cells, CD8 + T cells, regulatory T cells (Tregs), gamma delta T cells, macrophages, 
and monocytes across various histone acetylation modification patterns (Fig.  2A-B). 
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Subsequent assessment of the overall variation in TME using the ESTIMATE algorithm 
revealed that HAMPcluster C1 exhibited the higher immune score and the lower tumor 
purity, indicative of a superior immune response (Fig. 2C). Conversely, HAMPcluster C2 
demonstrated the opposite characteristics (Fig. 2C).

The application of the ssGSEA method revealed that the HAMPcluster C1 exhibited 
augmented immune cell infiltration, including dendritic cells (DCs), activated DCs, 
CD8 + T cells, natural killer (NK) cells, plasmacytoid DCs, T follicular helper cells (Tfh), 
Th1 cells, macrophages, neutrophils, Th2 cells, tumor-infiltrating lymphocytes (TILs), 
Tregs, and T helper cells (Fig.  2D). These findings align with the immunoinflamma-
tory phenotype characteristics. Simultaneously, the HAMPcluster C2 pathway activity 
was suppressed, affecting checkpoint, Type I IFN Response, APC co-inhibition, APC 
co-stimulation, cytokine-cytokine receptor, cytolytic activity, human leukocyte antigen 
(HLA), inflammation-promoting, MHC class I, para-inflammation, T cell co-inhibition, 
and T cell co-stimulation (Fig. 2D). Accordingly, HAMPcluster C2 was classified as an 
immune-desert phenotype characterized by immunosuppression and minimal immune 

Fig. 1 Determination of histone acetylation modification patterns in osteosarcoma. (A) Prognosis-related HMARPs 
in osteosarcoma filtered by univariate Cox regression. (B) Interactions among HAMRPs in osteosarcoma, with red 
and blue lines denoting positive and negative correlations, respectively. (C) Location of prognosis-related HMARPs 
on different chromosomes. (D) Unsupervised clustering of prognosis-related HMARPs in osteosarcoma cohort and 
consensus matrices for k = 2. (E) The cumulative distribution function plot of consensus clustering at k = 2–9. (F) 
The delta plot assessing the change in area under the CDF curve. (G) Kaplan-Meier analysis for assessing overall 
survival in two histone acetylation modification patterns. (H) Principal component analysis demonstrating the dis-
tribution of two histone acetylation modification patterns in osteosarcoma. (I) The expression of prognosis-related 
HMARPs between two distinct histone acetylation modification patterns
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cell infiltration, consistent with its low probability of survival (Fig.  2A-E). In addition, 
HAMPcluster C2 also had attenuated expression of immune checkpoint genes (ICGs) 
and major histocompatibility complex (MHC) molecules, with particularly pronounced 
downregulation of LAG3, CTLA4, HAVCR2, CD48, LGALS9, HLA − DQB1 and 
HLA − DPA1 (Fig. 2F-G). In general, HAMPcluster C2 exhibited reduced immune cell 
infiltration and lower expression of ICGs compared to another cluster.

Fig. 2 Characterization of the immune landscape for each histone acetylation modification pattern. (A-B) The pro-
portion of immune-infiltrating cells in two histone acetylation modification patterns analyzed by CIBERSORT. (C) 
Discrepancies in overall immune status between HAMPcluster C1 and C2 samples. (D) Differences in immune cell 
infiltration and immune-activated pathways between HAMPcluster C1 and C2 analyzed by ssGSEA. (E) Heatmap 
for visualization of differences in the immune score, stromal score, ESTIMATE score, tumor purity, immune cells, and 
function in distinct histone acetylation modification patterns. (F-G) Expression patterns of immune checkpoints 
(F) and major histocompatibility complex molecules (G) in distinct histone acetylation modification patterns
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3.3 Distinct clinicopathologic features and functional annotations in the two histone 

acetylation modification patterns

The relationship between histone acetylation modification patterns and clinicopatho-
logic characteristics, such as age, gender, and metastasis, was further investigated. A 
higher proportion of patients with metastatic osteosarcoma was observed in HAMP-
cluster C2 compared to HAMPcluster C1 (Fig. 3A). Notably, histone acetylation modi-
fication patterns were found to be independent of age but correlated with gender, with 
a higher proportion of male patients in HAMPcluster C2 (Fig. 3B-C). GSVA enrichment 
analysis was performed to assess the biological characteristics and activities of the two 
distinct histone acetylation modification patterns. As illustrated in Fig. 3D, HAMPclus-
ter C1 demonstrated a marked enrichment in biosynthesis, apoptotic, and JAK-STAT 
pathways, including NAD biosynthesis, bile acid biosynthesis, extrinsic apoptotic path-
way, and cytokine JAK-STAT signaling pathway. A GSEA analysis using C6 oncogenic 
signature gene sets was performed to investigate the link between histone acetylation 
modification patterns and carcinogenesis pathways. The gene signatures representing 
E2F3-activated (E2F3_UP.V1_UP) and KRAS‐activated (KRAS.KIDNEY_UP.V1_UP) 
were particularly enriched in HAMPcluster C2 (Fig.  3E). Conversely, HAMPcluster 
C1 was associated with the STK33-activated oncogenic signatures (STK33_SKM_UP, 
STK33_NOMO_UP, and STK33_UP) (Fig. 3F).

Fig. 3 Characterization of the clinical parameters and potential biological mechanisms for each histone acetyla-
tion modification pattern. (A-C) Clinical correlation analysis between histone acetylation modification patterns 
and clinical information including metastatic status (A), gender (B), age (C). (D) GSVA enrichment analysis showing 
distinct activation states of biological pathways in distinct histone acetylation modification patterns. (E-F) GSEA 
enrichment analysis of HAMPcluster C1 and C2 using C6 oncogenic signature gene sets
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3.4 Relationship between HAMRPs and clinicopathologic features

This study aimed to investigate the association between prognosis-related HMARPs and 
clinicopathological characteristics in osteosarcoma. However, no substantial disparities 
were identified in the expression of the eight prognosis-related HMARPs among various 
clinical subgroups of osteosarcoma, including different age stratifications and between 
male and female patients (Supplementary Fig. 1).

Metastasis continues to significantly hinder the improvement of prognosis in osteosar-
coma patients [50, 51]. While no significant associations were found between the expres-
sion of six of the prognosis-related HMARPs and metastasis, ASH1L and SP140 stood 
out in our analysis (Fig. 4A, Supplementary Fig. 2). We observed that ASH1L expression 
was significantly higher in metastatic osteosarcoma cases, while SP140 expression was 
elevated in non-metastatic cases (Fig. 4A). This differential expression pattern suggested 
a potential role for ASH1L in osteosarcoma metastasis.

Subsequently, patients were stratified according to ASH1L and SP140 expression lev-
els. Consistently, KM survival analysis demonstrated that patients with higher SP140 
expression exhibited significantly prolonged overall survival (OS) (P = 0.008), while 
higher ASH1L expression was associated with poorer OS (P = 0.011) (Fig. 4B).These find-
ings further supported the hypothesis that ASH1L plays a significant role in osteosar-
coma prognosis.

Furthermore, we explored the expression of ASH1L and SP140 at the single-cell level 
(Fig. 4C). ASH1L was more abundantly expressed in malignant cells compared to SP140, 

Fig. 4 Screening ASH1L as a potential aggressive marker for osteosarcoma. (A) ASH1L expression levels were 
elevated in patients with metastatic osteosarcoma, while SP140 expression levels were attenuated in patients with 
metastatic osteosarcoma. (B) Kaplan-Meier analysis for assessing overall survival of osteosarcoma patients with 
different ASH1L or SP140 expression. (C) The expression distribution of ASH1L and SP140 in osteosarcoma and im-
mune cell subpopulations at the single-cell level. Cell-type annotations were supplied by TISCH, and gene expres-
sion levels were visualized using UMAP plots. (D) Immunofluorescence analysis of ASH1L subcellular localization 
in U2OS cells. (E) Expression of ASH1L in hFOB1.19 cells and osteosarcoma cells detected by qRT‒PCR. (F) Western 
blot and quantitative analysis of ASH1L protein levels in hFOB1.19 cells and osteosarcoma cells
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reinforcing the idea that ASH1L may be involved in the malignant progression of osteo-
sarcoma (Fig. 4C).

Given the extensive literature on the role of SP140 in osteosarcoma [52–55], our sub-
sequent focus shifted to investigating the specific function of ASH1L in osteosarcoma 
and its underlying mechanisms. We first characterized the subcellular localization 
and expression of ASH1L in osteosarcoma using HPA database (accession number: 
HPA004806). Immunofluorescence staining revealed that ASH1L was predominantly 
expressed in the nucleoplasm and the Golgi apparatus (Fig. 4D, Supplementary Fig. 3). 
Additionally, the expression level of ASH1L in osteosarcoma cell lines was significantly 
elevated compared to that in control osteoblasts, as detected by qRT-PCR and Western 
blotting (Fig. 4E-F).

3.5 ASH1L modulates osteosarcoma metastasis via EMT

ASH1L’s role in osteosarcoma metastasis was further investigated by stable knockdown 
of ASH1L in two osteosarcoma cell lines (Fig.  5A-B). As demonstrated in Fig.  5C-D, 
osteosarcoma cells with ASH1L downregulation exhibited diminished invasion and 
migration capabilities compared to the control cells by Transwell assays. In accordance 
with these observations, the scratch wound healing assays revealed reduced cell migra-
tion ability following ASH1L silencing in MNNG/HOS and MG63 cells (Fig. 5E). EMT 
has been identified as a hallmark of cancer as well as a pivotal factor in tumor metasta-
sis [56, 57]. Therefore, we analyzed EMT marker expression in osteosarcoma cells after 
ASH1L knockdown. The results demonstrated that suppression of ASH1L enhanced the 

Fig. 5 ASH1L knockdown impairs osteosarcoma metastasis and EMT. (A-B) Validation of ASH1L downregulation in 
MNNG/HOS and MG63 cells by qRT-PCR (A) and Western blot (B). (C) The impaired cell migration of osteosarcoma 
cells after ASH1L silencing in transwell assays. (D) The impaired cell invasion of osteosarcoma cells after ASH1L 
silencing in transwell assays. (E) The impaired cell migration of osteosarcoma cells after ASH1L silencing in scratch 
wound healing assays. (F) Western blot and quantitative analysis of EMT marker expression levels in MNNG/HOS 
cells after silencing ASH1L. (G) Western blot and quantitative analysis of EMT marker expression levels in MG63 
cells after silencing ASH1L
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expression of epithelial markers (E-cadherin) and diminished the expression of mesen-
chymal markers (N-cadherin and vimentin) (Fig. 5F-G).

The qRT-PCR and WB results indicated the successful establishment of MNNG/HOS 
and MG63 cells overexpressing ASH1L (Fig. 6A-B). As anticipated, the proliferative and 
invasive capabilities of osteosarcoma cells transfected with the ASH1L overexpress-
ing plasmid were considerably elevated (Fig. 6C-E). Furthermore, the expression levels 
of E-cadherin were reduced, while N-cadherin and Vimentin expression levels were 
increased (Fig.  6F-G). Consequently, these findings collectively indicate that ASH1L 
functions as a positive regulator of osteosarcoma metastasis.

Fig. 6 ASH1L overexpression promotes osteosarcoma metastasis and EMT. (A-B) Validation of ASH1L overexpres-
sion in MNNG/HOS and MG63 cells by qRT-PCR (A) and Western blot (B). (C) The enhanced cell migration of osteo-
sarcoma cells after ASH1L overexpression in transwell assays. (D) The enhanced cell invasion of osteosarcoma cells 
after ASH1L upregulation in transwell assays. (E) The enhanced cell migration of osteosarcoma cells after ASH1L 
overexpression in scratch wound healing assays. (F) Western blot analysis was used to determine the expression 
levels of EMT markers after ASH1L upregulation. (G) Quantitative analysis of EMT marker expression levels in osteo-
sarcoma cells after ASH1L overexpression
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3.6 ASH1L affects AKT/mTOR signaling in osteosarcoma

We conducted GO, KEGG, and GSEA analyses to investigate the molecular mecha-
nisms by which ASH1L enhances osteosarcoma cell migration and invasion. A total of 
1722 DEGs were identified between patients with osteosarcoma exhibiting high and 
low expression of ASH1L (Supplementary Fig.  4). The DEGs were mainly associated 
with immune-related GO terms, such as MHC protein complex binding, T cell activa-
tion regulation, and immune receptor activity (Fig. 7A). With regard to the KEGG path-
way, DEGs were predominantly implicated in osteoclast differentiation and rheumatoid 
arthritis (Fig. 7B). GSEA analysis indicated significant enrichment of the MTOR_UP.N4.
V1_DN gene set in the low-ASH1L expression subgroup (Fig.  7C). Multiple molecu-
lar mechanisms facilitate EMT, and the AKT/mTOR signaling cascade represents a 
pivotal pathway modulating cancer metastasis and EMT process [58–60]. We there-
fore assayed the expression of phosphorylated AKT (p-AKT), AKT, phosphorylated 
mTOR (p-mTOR), and mTOR to explore the impact of ASH1L on AKT/mTOR activa-
tion in osteosarcoma cells. Consistent with the results of GSEA, the WB assay revealed 

Fig. 7 ASH1L positively regulates AKT/mTOR pathway in osteosarcoma cells. (A) GO enrichment analysis of DEGs 
between high and low ASH1L expression groups, which includes the top 6 significantly enriched terms from each 
of the three GO categories: biological processes, including leukocyte mediated immunity (GO:0002443), posi-
tive regulation of cell activation (GO:0050867), lymphocyte mediated immunity (GO:0002449), leukocyte cell-cell 
adhesion (GO:0007159), positive regulation of leukocyte activation (GO:0002696), regulation of T cell activation 
(GO:0050863); molecular functions, including immune receptor activity (GO:0140375), MHC protein complex bind-
ing (GO:0023023), MHC class II protein complex binding (GO:0023026), electron transfer activity (GO:0009055), 
phosphotyrosine residue binding (GO:0001784), T cell receptor binding (GO:0042608); and cellular components, 
including external side of plasma membrane (GO:0009897), cytoplasmic vesicle lumen (GO:0060205), vesicle 
lumen (GO:0031983), MHC protein complex (GO:0042611), secretory granule lumen (GO:0034774), secretory gran-
ule membrane (GO:0030667). (B) KEGG enrichment analysis of DEGs between high and low ASH1L expression 
groups. (C) GSEA analysis showing that ASH1L expression is correlated with mTOR signaling pathway activity. (D) 
Western blot and quantitative analysis of p-AKT, AKT, p-mTOR, and mTOR expression levels in osteosarcoma cells 
with ASH1L silencing. (E) Western blot and quantitative analysis of p-AKT, AKT, p-mTOR, and mTOR expression 
levels in osteosarcoma cells with ASH1L overexpression
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that ASH1L knockdown attenuated the phosphorylation of AKT and mTOR (Fig. 7D). 
Conversely, ASH1L overexpression augmented the protein expression of p-AKT and 
p-mTOR (Fig. 7E). Collectively, the above findings demonstrated that ASH1L promoted 
AKT/mTOR signaling and metastasis of osteosarcoma cells.

3.7 Predicting prognosis in osteosarcoma patients using the ASH1L-derived risk 

stratification system

In order to further refine the ASH1L-derived risk stratification system, univariate 
COX regression analysis was conducted to filter 371 OS-related DEGs (Fig. 8A). After 
the LASSO algorithm and multivariate Cox regression, 10 final candidate DEGs were 
screened to construct the ADPI for application to individual osteosarcoma patients 
(Fig.  8B-C). The formula of ADPI is as follows: ADPI score = (0.90109 × MYC) + 
(-2.46868 × SIGLEC11) + (-0.33500 × PRAME) + (-3.83926 × CASK) + (1.16010 × 
LYNX1) + (-3.07271 × USP9X)+ (-2.48589 × WDR53) + (-0.71537 × CACNA2D3) 
+ (-0.57813 × CNR1) + (1.34005 × MCF2). The ADPI scores were calculated for each 

Fig. 8 Construction of the ASH1L-derived risk stratification system. (A) Volcano plot of univariate COX regres-
sion. The x-axis represents the magnitude of the effect size, in the form of HR. A HR greater than 1 suggests an 
increased risk, while a HR less than 1 suggests a protective effect. The y-axis represents the statistical significance 
of each variable. Points on the plot represent individual variables (DEGs). (B) Construction of the ASH1L-derived risk 
stratification system using LASSO regression analysis. Plot for the coefficients of LASSO regression (upper panel). 
Ten-fold cross-validation for LASSO regression to select the optimal penalty coefficient (lower panel). (C) Construc-
tion of the ASH1L-derived risk stratification system using multivariate Cox analysis in the training cohort from the 
meta-cohort. (D) Distribution of ADPI scores, survival status, and expression of hub DEGs in the training cohort 
from the meta-cohort. (E) Distribution of ADPI scores, survival status, and expression of hub DEGs in the validation 
groups from the meta-cohort. (F) Distribution of ADPI scores, survival status, and expression of hub DEGs in the 
entire cohort
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patient in both the training and test cohorts and patients were subsequently categorized 
into high- and low-risk groups (Fig. 8D-F). A notable heterogeneity in survival time was 
found between osteosarcoma patients with elevated and reduced ADPI scores (Fig. 9A-
C). In all cohorts, osteosarcoma patients with higher ADPI scores exhibited a higher 
mortality rate (Fig. 9A-C). The AUC values of 0.960, 0.951, and 0.957 at 1, 3, and 5 years, 
respectively, confirmed the excellent potential of the ASH1L-derived genetic prognostic 
index in assessing the outcomes (Fig. 9D). Similar results were obtained for the valida-
tion and the entire cohort, with AUCs exceeding 0.7 (Fig. 9E-F). The results suggest that 

Fig. 9 Validation of the ASH1L-derived risk stratification system and the relationship between ADPI scores and 
clinical parameters. (A-C) Survival analysis of osteosarcoma patients with various ADPI scores in the training co-
hort (A), validation cohort (B), and entire cohort (C) from the meta-cohort. (D-F) ROC curves for osteosarcoma 
patients with various ADPI scores in the training cohort (D), validation cohort (E), and entire cohort (F) from the 
meta-cohort. (G) Associations between ADPI scores and metastatic status of osteosarcoma in the meta-cohort. (H) 
Associations between ADPI scores and gender of osteosarcoma in the meta-cohort. (I) Associations between ADPI 
scores and age of osteosarcoma in the meta-cohort. (J) A nomogram that integrates ADPI score and other clinical 
parameters of osteosarcoma in the meta-cohort. (K) The calibration curve of the nomogram
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the ASH1L-derived risk stratification system could be a useful tool for predicting clini-
cal outcomes. Subsequent analysis of age, gender, and metastatic status across scoring 
subgroups revealed a significantly lower proportion of osteosarcoma metastases in the 
low ADPI scoring group (Fig. 9G-I). Furthermore, elevated ADPI scores were observed 
to potentially contribute to shorter OS times in various clinical subgroups of osteosar-
coma, including patients aged above or below 18 years, patients with metastatic osteo-
sarcoma, patients with non-metastatic osteosarcoma, male patients, and female patients 
(Supplementary Fig.  5). Finally, a nomogram was developed to predict outcomes in 
osteosarcoma patients, integrating clinicopathologic characteristics for easy calculation 
of individual survival probabilities (Fig.  9J). Calibration curve analysis confirmed that 
the nomogram’s predictions were proximate to the observed outcomes (Fig. 9K). These 
findings suggest that ADPI could be a supplementary tool for risk stratification in osteo-
sarcoma clinical management.

4 Discussion
Osteosarcoma, a highly aggressive bone cancer primarily affecting long bones and occa-
sionally craniofacial regions, remains challenging to treat, particularly in metastatic 
cases [61–63]. Despite improved 5-year survival rates (~ 75%) for localized disease with 
surgery and chemotherapy, outcomes for metastatic osteosarcoma remain poor [64, 65]. 
Thus, understanding the molecular drivers of metastasis is critical for developing tar-
geted therapies. Recent studies highlight histone acetylation modifiers as key players in 
cancer progression, making them attractive therapeutic targets [66–69]. Our study com-
prehensively explores histone acetylation modification patterns, their prognostic signifi-
cance, clinical relevance, and impact on the immune landscape in osteosarcoma.

Osteosarcoma’s biological heterogeneity contributes to variable treatment responses 
and disease outcomes [70, 71]. Using unsupervised clustering, we identified two dis-
tinct histone acetylation modification patterns with divergent prognoses and immune 
phenotypes. HAMPcluster C2, associated with higher tumor purity and shorter over-
all survival, contrasts with HAMPcluster C1, which exhibits higher immune infiltration 
and better outcomes. This suggests that immune activity within the TME influences 
prognosis.

The interaction between tumors and immune cells within the TME is increasingly 
recognized as a crucial factor in cancer progression and response to therapy [72–81]. 
Osteosarcoma is composed not only of malignant cells but also of infiltrating immune 
cells, cancer-associated stromal cells, and extracellular matrix components [82]. Our 
ssGSEA analysis revealed significant differences in immune cell infiltration (e.g., CD8 + T 
cells, macrophages, NK cells, and Tregs) between the two clusters. CD8 + T cells, known 
for their antitumor effects via IFN-γ and granzyme B production [83], exist in function-
ally diverse subsets (Tc1, Tc2, Tc22) that shape immune responses [84]. Similarly, NK 
cells modulate innate and adaptive immunity through cytokine secretion [85]. These 
TICs recruited into the TME exert pro- or antitumor functions and could profoundly 
influence tumor biology and antitumor immunological state [86]. These findings explain 
why HAMP cluster C1—with enhanced immune activation—correlates with better 
survival, offering potential insights for immunotherapeutic strategies. Immune check-
point inhibitors (ICIs) hold promise but face challenges due to tumor heterogeneity 
and dynamic immune checkpoint gene (ICG) expression [87–89]. Moreover, a possible 
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resistance mechanism to ICIs is the abnormal HLA antigen presentation pathway [90]. 
Downregulation of HLA serves as an immune evasion mechanism employed by tumors 
[91]. Our investigation revealed that the expression levels of ICGs and MHC molecules 
could be effectively discriminated in the osteosarcoma patient population according to 
diverse HAMPs. In summary, the analysis of HAMPs could provide valuable insights 
into the TIME of osteosarcoma patients, potentially aiding in the development of per-
sonalized immunotherapy.

In order to identify potential therapeutic targets, we systematically evaluated all 
HAMRPs used in the initial unsupervised clustering by clinical correlation analysis 
and Kaplan-Meier survival assessment. Our investigation showed that among all ana-
lyzed HAMRPs, ASH1L expression was elevated in metastatic osteosarcoma cases and 
was strongly associated with poorer overall survival. Furthermore, single-cell genom-
ics showed that ASH1L was more abundantly expressed in malignant cells compared to 
SP140. These results suggest that ASH1L may play a crucial role in osteosarcoma carci-
nogenesis. ASH1L belongs to the trithorax-group proteins, which are essential for epi-
genetic gene activation mechanisms and was first identified and cloned by the Nakamura 
group in 2000 [92–94]. Located at cytogenetic band 1q22, ASH1L is a histone methyl-
transferase that contains four AT hooks, an SET structural domain, a PHD finger motif, 
a bromoadjacent homology domain, and a bromodomain [95, 96]. Its bromodomain 
enables it to specifically bind to certain chromatin or protein targets, providing flexible 
regulation of its activity [93]. Furthermore, ASH1L specifically occupies the transcribed 
regions of active genes [95].

Several recent studies have demonstrated significant associations between ASH1L 
and immune infiltration patterns. Notably, ASH1L has been implicated in establish-
ing an immunosuppressive microenvironment in hepatocellular carcinoma (HCC) by 
modulating the expression of zonula occludens-1, a critical tight junction protein [97]. 
Xia et al. discovered that ASH1L regulates induced Treg polarization and T cell autoim-
munity through direct targeting of the Smad3 promoter and enhancing local H3K4 tri-
methylation [98]. Furthermore, ASH1L exerts its immunoregulatory effects through SET 
domain-dependent H3K4 methylation at the Tnfaip3 promoter, epigenetically activating 
transcription of A20 - a critical ubiquitin-editing enzyme [99]. This epigenome-immu-
nome interplay highlights ASH1L as a potential therapeutic target for autoimmune dis-
orders characterized by IL-6 dysregulation. In experimental autoimmune uveitis models, 
stabilization of ASH1L mRNA was shown to effectively suppress pathogenic Th17 cell 
responses [100]. Additionally, ASH1L-mediated histone modifications at the Elk3 pro-
moter enhance chromatin accessibility and initiate Elk3 transcription, thereby driving 
group III innate lymphoid cell differentiation [101].

In our study, ASH1L exhibited elevated expression levels in all three osteosarcoma 
cell lines, with a predominant localization in the nucleoplasm and the Golgi appara-
tus. Previous studies have similarly shown that ASH1L is aberrantly expressed in vari-
ous cancer types, contributing to malignancy and poor prognosis [96, 102–106]. Ding 
et al. confirmed the presence of ASH1L mutations and high levels of amplification in 
bladder cancer [107]. Demelash et al. observed that ASH1L altered Cdk5/p35 pathway 
activity in lung adenocarcinoma, contributing to the acquisition of highly metastatic 
and invasive features [108]. Overexpression of miR-142–3p in thyroid follicular adeno-
mas acted as a tumor suppressor by significantly downregulating ASH1L and MLL1, 
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restoring thyroid-specific HOXB3 gene expression [109]. Additionally, ASH1L has been 
shown to trigger uncontrolled and persistent expression of HOXA9/A10 during normal 
myeloid differentiation, a process that contributes to leukemogenesis [110]. Zhu et al. 
demonstrated that ASH1L retains the histone H3K36 dimethylation mark and promotes 
the recruitment and stabilization of the oncogene MLL on chromatin, thereby inducing 
leukemogenesis [111]. Sustained activation of the ASH1L-AS1-ASH1L axis increased 
genome-wide H3K4me3 modification levels and modulated NME1-mediated RAS sig-
naling in gastric cancer [96]. It is hypothesized that, due to the complexity of molecu-
lar mechanisms, ASH1L may have distinct functions in different cancers. However, the 
underlying molecular mechanisms of ASH1L in osteosarcoma remain poorly docu-
mented and require further investigation.

Stable knockdown of ASH1L was achieved in osteosarcoma cell lines to assess its effect 
on cell migration and invasion. Functional assays revealed that ASH1L silencing signifi-
cantly suppressed osteosarcoma progression in vitro. EMT is recognized as a crucial bio-
logical process facilitating tumor cell invasion and dissemination from primary tumors 
[112–114]. Concurrently, interference with ASH1L reduced the expression of mesen-
chymal markers compared to the shNC group, suggesting a potential role in EMT. To 
further explore the underlying mechanisms, GSEA enrichment analysis was performed 
on an osteosarcoma meta-cohort. The “MTOR_UP.N4.V1_DN” gene set was enriched 
in the low-ASH1L expression subgroup, suggesting an association between ASH1L and 
AKT/mTOR pathway. This pathway is known to induce EMT through mechanisms such 
as cytoskeletal reorganization, proteasomal degradation of NFAT, and upregulation of 
EMT transcription factors [115–117]. This study demonstrates that ASH1L overexpres-
sion increases p-AKT and p-mTOR levels without affecting total protein concentrations. 
These results support the hypothesis that ASH1L promotes EMT and metastasis via the 
AKT/mTOR pathway. Furthermore, Fig.  9 illustrates the development of an ASH1L-
derived risk stratification system for osteosarcoma, constructed using ASH1L-related 
DEGs, LASSO regression, and multivariate Cox analysis. Comparative ROC curve anal-
ysis across multiple cohorts demonstrated the superior predictive performance of the 
ADPI. Finally, a nomogram was established, integrating clinical variables and the ADPI 
to provide a robust tool for individualized risk assessment in osteosarcoma patients.

In summary, the current study has important implications for characterizing prog-
nostic histone acetylation modulators in osteosarcoma. Further exploration of histone 
acetylation modification patterns, particularly the biological function of ASH1L, will be 
important for improving patient risk stratification and guiding personalized therapeu-
tic strategies. However, it is imperative to acknowledge several limitations. Firstly, the 
relatively limited sample size of osteosarcoma necessitates additional validation of the 
long-term predictive performance in larger, multicenter cohorts. Secondly, our study 
only performed in vitro experiments and lacked in vivo animal experiments, which is 
a research area we will continue to focus on next. Thirdly, while the limma-voom pipe-
line provides a statistically rigorous approach to differential expression analysis in the 
absence of raw count data, future studies with access to raw sequencing data could fur-
ther validate these findings using negative binomial-based approaches. Most notably, 
the precise immunomodulatory mechanisms of ASH1L within the tumor microenviron-
ment require systematic investigation. Given our findings of distinct immune landscape 
patterns between C1 and C2 clusters (particularly the association of ASH1L-enriched 
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C2 with immune suppression), future studies should specifically examine how ASH1L-
mediated histone modifications regulate immune cell infiltration and function.

5 Conclusion
Overall, our analysis offers novel insights into the correlation between histone acetyla-
tion modification patterns, outcomes, clinical parameters, and immune landscape char-
acterization in osteosarcoma. Furthermore, this study elucidated the role of ASH1L in 
promoting AKT/mTOR signal transduction and EMT process in osteosarcoma, suggest-
ing that it may serve as a promising therapeutic target.
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