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In this paper, we have developed and analyzed a deterministic Zika model considering
both vector and sexual transmission route with the effect of human awareness and vector
control in the absence of disease induce death. To formulate the model, we assume that
the Zika virus is being first transmitted to human by mosquito bite, and then it is being
transmitted to his or her sexual partner. The system contains at most three equilibrium
points among them one is the disease free and other two are endemic equilibrium points,
exists under certain conditions. The theoretical analysis shows that the diseases-free
equilibrium is locally and globally asymptotically stable if the basic reproduction num-
ber is less than one. Theatrically we have established that endemic equilibrium point
which is locally asymptotically stable if the basic reproduction number is greater than one.
The system exhibits backward bifurcation when the transmission probability per biting of
susceptible mosquito with infected humans crosses the critical value. We estimate the
model parameters and validate the model by fitting the model with the reported Zika
infected human data from 1 to 36 week of 2016 Zika outbreak in Colombia. Furthermore,
using the normalised forward sensitivity index method we have established that the
model parameter mosquito biting rate, recruitment rate of mosquito, transmission prob-
ability per biting of Susceptible (infected) humans with infected (susceptible) mosquito,
rate of awareness in host population, recovery rates of infected human are most sensitive
parameters of the considered Zika model. Lastly, some conclusions are given to control the
spreading of the Zika disease.

© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recently, Zika virus infection has become a dangerous threat for the human society (Cauchemez, 2016;Mlakar, 2016). It is a
vector borne disease, spreads through the mosquito borne flavi-virus. In the beginning, the infection transmitted to the
human body by the bites of infected Aedes aegypti female mosquitoes, which also transmit the dengue, chikungunya, yellow
fever, Japanese Encepalitie’s virus (European Centre for Disease Control and Prevention (CDC), 2015; World Health
Organisation(WHO), 2016) widely in the tropical and subtropical regions. Symptoms of Zika infection are normally mild,
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including fever, headaches, rash, conjunctivitis and joint pain due to flavi-virus. Zika infection increases the chances of
microcephaly (permanent disabilities) Guillain-Barre syndrome and other neurological disorder in newborn babies from
infected mothers (Cauchemez, 2016; Mlakar, 2016).

This virus was first identified from rhesus monkeys in 1947 in the Zika forest of Uganda (Dick, Kitchen, & Haddow, 1952;
Sikka, Chattu, & Popli, 2016) and from humans in Nigeria in 1954 (Dick et al., 1952; Macnamara, 1954; Shapshak, 2015, pp.
477e500) but it was not spread in epidemic form among the human population until 2007 (European Centre for Disease
Control and Prevention (CDC), 2015; Duffy, 2009). The first Zika outbreak among human occurred in Yap Island,
Micronesia in 2007 (European Centre for Disease Control and Prevention (CDC), 2015; Duffy, 2009; Manore and Hyman,
2016). Afterward, this disease highly spread among human in a different country. First Zika virus, epidemic occurred in
French Polynesia in the year 2013e2014 (Hancock, Marfel, & Bel, 2014). After 2015, it is spreading rapidly worldwide. The
country Brazil, Southern and Central American as well as in Caribbean, countries are highly affected by Zika. World Health
Organisation declared Zika as “public health emergency of the international 2016. According to Pan American Health
Organisation (PAHO) and WHO, 583451 suspected and 223477 confirmed cumulative Zika cases were reported up to 04
January 2018 by countries and territories in the Americans amongwhich the respective cases for Brazil are 231725 and 137288
respectively.

Recent studies showed that Zika virus can be transmitted not only by vector only, it also spread by sexual interactionwhich
was reported in (Foy, 2011; Dallas County Health Human Services (DCHHS), 2016; Centres for Disease Control and Prevention
(CDC), 2016; The Toronto Star, 2016; Musso, 2015). A remarkable observation was given by the authors in (Musso, 2015)
reported that though Zika virus was disappeared from the blood of an infected person even then it was present in his semen,
which point out the possibility of sexual transmission of the Zika virus.

Though Zika infection is a threat for public health, but at present no vaccination is available to protect from Zika infection
and no particular treatment, medicine or fast diagnostic test is available to treat or diagnose this infection. Thus human
awareness through health programs and control of mosquitoes through insecticides is the two effective ways to prevent its
infection transmission among the host population.

In the last few years, a number of mathematical models have been reported (Agusto et al., 2017a, 2017b; Bearcroft, 1956;
Bonyah, Khan, Okosun, & Islam, 2017; Imran, Usman, Dur-e-Ahmad, & Khan, 2017; Kucharski et al., 2016; Perkins, Siraj,
Ruktanonchai, Kraemer, & Tatem, 2016; Shah, Patel, & Yeolekar, 2017) to study the Zika virus transmission dynamics. In
those models, the investigators have incorporated the following factors, (i) both vector and sexual transmission (Agusto et al.,
2017a, 2017b; Shah et al., 2017), (ii) both vector and sexual transmission route with bilinear incidence rate and they estab-
lished the backward bifurcation and the global stability of DFE for the samemodel, but in a single model backward bifurcation
and the global stability of DFE are contradictory to each other. (iii) the vertical transmission and vector transmission (Agusto
et al., 2017a, 2017b; Imran et al., 2017) and (iv) optimal control on spraying insecticides, other prevention, and treatment
(Bonyah et al., 2017; Pontryagin, Boltyanskii, Gamkrelidze,&Mishchenko,1986; Shah et al., 2017). The impact of awareness on
dengue dynamics has been studied by Gakkhar and Chavda (Gakkhar & Chavda, 2013).

In order to study the impact of human awareness and vector control, we construct a Zika model including both vector and
sexual transmission route, we also include the human awareness (Mishra & Gakkhar, 2014) and vector control. In this work,
we have established thewellposedness, positivity and boundedness, the local and global stability of the DFE and the existence
and local stability of endemic equilibrium (EE). Finally, we have validated and estimated the model parameters of the
considered model comparing the model predictions with the reported zika infected data of a particular area. To explore the
model robustness to parameter values used we investigate the sensitivity analysis using the normalised forward sensitivity
index. We also studied numerically the impact of sexual transmission on the epidemic growth rate as well as on the basic
reproduction number. To the best of our knowledge effect of vector transmission, sexual transmission, vector control, and
human awareness has not yet been considered in a single Zika model. So in this paper, we are considering all these four
important facts to propose a Zika model and intend to study its dynamical behaviour.

The rest of the paper is organized as follows: The formulation and basic properties of the model have been described in
section-2. An investigation of the stability and bifurcation of the model has been reported in section-3. Parameter estimation
and model validation done by simulating the model with reported real data done in section-4. Sensitivity analysis of the
model is presented in section-5 and section-6 deals with the effect of sexual transmission on basic reproduction number and
epidemic growth rate numerically. Finally, all the results have been concluded in the section-7.
2. Model formulation

Let the total human population NhðtÞ is classified into four compartments comprised of susceptible human ShðtÞ, exposed
human EhðtÞ, infected human IhðtÞ and recovered humanRhðtÞ. Here we have considered that a human individual who
recovered from infection of Zika virus gain lifelong immunity from it. Sine only female mosquito spreads the zika infection so
the total female mosquito population NvðtÞ is divided into three compartments viz. susceptible mosquitoes SvðtÞ, exposed
mosquitoes EvðtÞ and infected mosquitoes IvðtÞ. Again recovery of mosquito from Zika infection is not taken into consideration
due to its short life span.

To formulate the model the following factors are taken into consideration:
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(i) Constant recruitment rate for both susceptible human and vector population.
(ii) Natural death rate for both human and vector population.
(iii) Horizontal transmission of infection from infected vectors to susceptible humanwhen infected vectors bite susceptible

human.
(iv) Sexual transmission of infection to susceptible human when a susceptible human interact sexually with an infected

human.
(v) Horizontal transmission of infection from infected human to susceptible vectors when susceptible vectors bite infected

human.
(vi) Two steps of human awareness has considered. At a constant rate susceptible human can take following awareness

steps to protect them from zika (a) using mosquito-nets, and mosquito repellents (b) avoiding sexual interaction or
using a condom at the period of zika out break.

(vii) Vector control: spray of insecticide and removal of the stagnant water can control vector.

Let, p be the constant recruitment rate of susceptible human and m be the natural death rate of the human population.

Suppose, susceptible individuals acquire infection due to effective contact with an infected vector at rate l1 ¼ b2a1Iv
Nh

, l2 ¼ ca2Ih
Nh

be the infection due to sexual interaction with the infected individuals and susceptible human become aware at a constant
rate a and enter into recovered class Rh. So the total infection strength of human is lh ¼ l1 þ l2.Here we assume that the

susceptible mosquitoes acquire infection at a rate lvSv from infected human where lv ¼ b2a3Ih
Nh

.

Under the above assumptions, the flow diagram for both human population and vector population of the proposed zika
model is given in the following flow diagram (see Fig. 1).

According to the assumptions and from the flow diagram, the dynamics of the Zika virus can be represented by the
following system of non linear differential equations:

dSh
dt

¼ p� ðl1 þ l2ÞSh � ðmþ aÞSh
dEh
dt

¼ ðl1 þ l2ÞSh � ðsþ mÞEh
dIh
dt

¼ sEh � ðgþ mÞIh
dRh
dt

¼ gIh � mRh þ aSh

dSv
dt

¼ p1 � lvSv � ðm1 þ bÞSv
dEv
dt

¼ lvSv � ðs1 þ m1 þ bÞEv
dIv
dt

¼ s1Ev � ðm1 þ bÞIv

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(1)
Fig. 1. Flow diagram of Zika virus in both human and mosquito population.
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The state variables and parameters used in the zika transmission model are summarised in Table 1.

2.1. Positivity and boundedness of the solutions

The considered model will be biologically meaningful when all the variables are non-negative for t � 0. In other words the
solution with positive initial conditions will remain positive for all time, which we shall establish in the following Lemma.

Lemma 1. Let GðtÞ ¼ ðSh; Eh; Ih;Rh; Sv; Ev; IvÞwith the initial condition Gð0Þ � 0.Then the solutions GðtÞ of the model (1) is non
negative for all t � 0. Also lim

t/∞
supNhðtÞ ¼ p

mand limt/∞
supNvðtÞ ¼ p1

m1þbhold.

Proof: Since l1is a function of Iv; Nhand l2is a function of Ih;Nh and for T ¼ supft >0 : GðtÞ >0g the first equation of the model
(1) can be explicitly written as:

dSh
dt

¼p� l1ðIv;NhÞShðtÞ� l2ðIh;NhÞShðtÞ � ðmþ aÞShðtÞ
Integrating the above equation in the range [0, T] we get,

d
dt

8<:ShðtÞ
24exp

0@ZT
0

½l1ðIvðhÞ;NhðhÞÞ þ l2ðIhðhÞ;NhðhÞÞ�dh
1Aþ ðmþ aÞT

359=;
¼ p exp

0@ZT
0

½l1ðIvðhÞ;NhðhÞÞ þ l2ðIhðhÞ;NhðhÞÞ�dhþ ðmþ aÞT
1A
which gives

ShðTÞexp
240@ZT

0

ðl1ðIvðhÞ;NhðhÞÞ þ l2ðIhðhÞ;NhðhÞÞÞdhþ ðmþ aÞT
1A35� Shð0Þ

¼
ZT
0

p exp

0@Zy
0

½l1ðIvðhÞ;NhðhÞÞ þ l2ðIhðhÞ;NhðhÞÞ�dhþ ðmþ aÞy
1Ady
or
Table 1
Description of state variables and parameters

State variables Description

Nh Total human population
Sh Susceptible human population
Eh Exposed human population
Ih Infected human population
Rh Recovered human population
Nv Total vector population
Sv Susceptible vector population
Ev Exposed vector population
Iv Infected vector population
Parameters Description
p,p1 Recruitment rate of human and mosquito respectively
m, m1 Natural death rate of human and mosquito respectively
b2 Mosquito biting rate
a1 Transmission probability per biting of -Susceptible humans with infected mosquito
a3 Transmission probability per biting of Susceptible mosquito with infected humans.
c Sexual contact rate between a susceptible human to an infected human
a2 Transmission probability per sexual contact- among a susceptible and infected human
s Progression rate from exposed to infected human
g Recovery rate of infected human
a Rate of awareness in host population
s1 Progression rate from exposed to infected mosquito
b Constant rate of effective mosquito control
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ShðTÞ¼ Shð0Þexp
24�

0@ZT
0

ðl1ðIvðhÞ;NhðhÞÞþ l2ðIhðhÞ;NhðhÞÞÞdhþðmþ aÞT
1A35
þexp

24�
0@ZT

0

ðl1ðIvðhÞ;NhðhÞÞþ l2ðIhðhÞ;NhðhÞÞÞdhþðmþ aÞT
1A35

0 1

�
ZT
0

p exp@Zy
0

½l1ðIvðhÞ;NhðhÞÞþ l2ðIhðhÞ;NhðhÞÞ�dhþðmþ aÞyAdy>0
Similarly it can be shown that EhðTÞ; IhðTÞ;RhðTÞ; SvðTÞ; EvðTÞand IvðTÞall are positive for all T >0 thus G>0for all t > 0. Hence
the first part of the Lemma is proved.

For the next part of the Lemma it should be noted that 0< ShðtÞ;EhðtÞ; IhðtÞ;RhðtÞ � NhðtÞ;0< SvðtÞ;EvðtÞ; IvðtÞ � NvðtÞ:
Adding first four component equations of the model (1) we have

dNh
dt

¼p� mNh (2)
Similarly adding last three equations of the model (1) we have

dNv

dt
¼p1 � ðm1 þ bÞNv (3)
Integrating and taking limsup and liminf for t/∞in the above two equations we get, pm � lim
t/∞

infNhðtÞ � lim
t/∞

supNhðtÞ � p
m and

p1
m1þb � lim

t/∞
infNvðtÞ � lim

t/∞
supNvðtÞ � p1

m1þb, which implies lim
t/∞

supNhðtÞ ¼ p
m; and lim

t/∞
supNvðtÞ ¼ p1

m1þb.

We shall now analyze our proposed zika virus transmission model (1) in the following biologically feasible closed regionUwhich
is defined below:

U¼
�
ðSh; Eh; Ih;Rh; Sv; Ev; IvÞ2<7

þ : Sh þ Eh þ Ih þRh �
p

m
; Sv þ Ev þ Iv � p1

m1 þ b

�

In the next Lemma we shall establish the closed regionU as a positively invariant set.

Lemma 2. The closed region U defined above is a positively invariant set for the model (1) with non- negative initial condition
in<7.

Proof: Here Nh ¼ Sh þ Eh þ Ih þ Rh, so the rate of change of the total human populationNh is
obtained from equation (2) in the form.
dNh
dt ¼ p� mNh Similarly total vector population is Nv ¼ Sv þ Ev þ Iv, and hence the rate of change of the total mosquito is

obtained from (3), as

dNv

dt
¼p1 � ðm1 þ bÞNv
Using a standard comparison theorem from Lakshmikantham et al. (1989) it can be shown that

NhðtÞ � Nhð0Þe�mt þ p
m ð1�e�mtÞ and NvðtÞ � Nvð0Þe�ðm1þbÞt þ p1

m1þb ð1 � e�ðm1þbÞtÞ.
This followsNhðtÞ � p

mand NvðtÞ � p1
m1þbif Nhð0Þ � p

m andNvð0Þ � p1
m1þb respectively.

Thus the closed region U is positively invariant.
Again if Nhð0Þ> p

mand Nvð0Þ> p1
m1þbthen the solution contained inU or NhðtÞ approach to p

mand NvðtÞ approach to p1
m1þb and then the

infected classes Eh; Ih; Ev and Iv approach to zero, so U is attracting set that is all solutions in <7
þ eventually enters in U. So, bio-

logically and mathematically the model is well posed in the invariant set U (Hethcote, 2000). Hence, it is sufficient to consider the
dynamics of the transmission of zika virus model (1) in the invariant set U.
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3. Steady state analysis

In this section we shall carry out qualitative analysis of the model (1) to investigate existence and stability of the steady
states.
3.1. Disease free equilibrium and basic reproduction numbers

The disease free equilibrium (DFE) of themodel (1) is obtained by using Eh ¼ Ih ¼ Ev ¼ Iv ¼ 0 in the steady state conditions.

Thus the disease free equilibrium point E0 of the model (1) is given by E0ðS0h;E0h;I0h;R0h;S0v ;E0v ;I0v Þ ¼
�

p
mþa;0;0;

ap
mðmþaÞ;

p1
m1þb;0;0

�
.

In order to calculate the basic reproduction number we use the next generation operator method on the model (1).
Consider the infected compartments ðEh; Ih; Ev; IvÞ at the disease free equilibrium (DFE) and applying Vanden Diressche and
Watmaugh (Van den Driessche&Watmough, 2002) technique, the Jacobianmatrices Fand V (for the new infection terms and
the remaining transfer terms respectively) are given by.

F ¼

0BBBBBB@
0 l02S

0
h 0 l01S

0
h

0 0 0 0
0 l0v S

0
v 0 0

0 0 0 0

1CCCCCCA; V ¼

0BB@
k1 0 0 0
�s k2 0 0
0 0 k3 0
0 0 �s1 k4

1CCA, so that FV�1 ¼ 1
k1k2k3k4

0BB@
a1 a2 a3 a4
0 0 0 0
a5 a6 0 0
0 0 0 0

1CCA
where; k1 ¼ sþ m; k2 ¼ gþ m; k3 ¼ s1 þ m1 þ b; k4 ¼ m1 þ b; l01 ¼ b2a1

N0
h
; l02 ¼ ca2

N0
h
; l0v ¼ b2a3

N0
h
; a1 ¼ l02S

0
hsk3k4a1 ¼ l02S

0
hsk3k4;

a2 ¼ l02S
0
hk1k3k4; a3 ¼ l01S

0
hk1k2s1; a4 ¼ l01S

0
hk1k2k3; a5 ¼ l0v S

0
v sk3k4; a6 ¼ l0v S

0
v k1k3k4: Now, the basic reproduction number R0

is obtained as the spectral radius rðFV�1Þ (Van den Driessche & Watmough, 2002) that is the dominant Eigen value of the
matrix FV�1.

The characteristic polynomial of the matrix FV�1 is l2ðl2 �ll�mÞ where l ¼ a1=D;m ¼ a3a5=D2;D ¼ k1k2k3k4and the

quadratic polynomial of the above characteristic polynomial is gðlÞ ¼ ðl2 �ll�mÞ with l>0;m>0.So gðlÞ ¼ 0 gives a unique
positive root, which provides the basic reproduction number R0 given below:

R0 ¼ rðFV�1Þ ¼ 1
2k1k2k3k4

8><>:l02S
0
hsk3k4 þ ððl02S0hsk3k4Þ

2 þ 4l01l
0
v S

0
hS

0
vss1k1k2k3k4Þ

1
2

9>=>;.

Again gð0Þ ¼ �m<0 andgð1Þ ¼ 1� ðl þ mÞ. Define R0o ¼ lþm that is R00 ¼ s
k1k2k3k4

ðl02S0hk3k4 þl01S
0
hs1l

0
v S

0
V Þ ¼ R00S þ R00V

where R00S ¼
l
0
2S

0
hk3k4s

k1k2k3k4
is the contribution from sexual transmission and R00V ¼ l

0
1S

0
hs1l

0
V S

0
Vs

k1k2k3k4
is the contribution from mosquito

(vector) transmission. Again from the relation gð1Þ ¼ 1� R00 we have the following three observation:

(i) when R00 ¼ 1 then gð1Þ ¼ 0 thus the positive root of the equation gðlÞ ¼ 0 is one i.e R0 ¼ 1 (ii) when R00 < 1 then gð1Þ> 0
so the positive root of the equation gðlÞ ¼ 0 lies between zero and one as gð0Þ<0 thus R0 <1.(iii) when R00 > 1 then
gð1Þ<0 again gð0Þ<0 so positive root of gðlÞ ¼ 0 greater than one that is R0 >1. Thus from the above three observation
one can conclude that R00 ¼ 1ð<1; >1Þ if and only if R0 ¼ 1ð<1; >1Þ. Since two threshold numbers R0 and R00 are
equivalent so we use onlyR00 in the next part of the paper.
3.2.1. Local stability of the disease free equilibrium

Lemma 3. The disease free equilibrium (DFE) E0is locally asymptotically stable for R00 <1 and unstable for R00 >1 where R00 is
defined in the text.

Proof. The variational matrix of the model (1) at the disease free equilibrium E0ðS0h; E0h; I0h;R0h; S0v ; E0v ; I0v Þ is given by
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JðE0Þ¼

0BBBBBBBBBBBBBBBB@

�ðmþ aÞ 0 �l02S
0
h 0 0 0 �l01S

0
h

0 �k1 l02S
0
h 0 0 0 l01S

0
h

0 s �k2 0 0 0 0
a 0 g �m 0 0 0

0 0 �l0v S
0
v 0 �k4 0 0

0 0 l0v S
0
v 0 0 �k3 0

0 0 0 0 0 s1 �k4

1CCCCCCCCCCCCCCCCA

The characteristic roots corresponding to matrix JðE0Þ are�ðmþaÞ;�m;�k4 and the remaining four roots are roots of the

following equation:

x4 þm1x
3 þm2x

2 þm3xþm4 ¼ 0
wherem1 ¼ k1 þ k2 þ k3 þ k4;m2 ¼ k1k2 þ k1k3 þ k1k4 þ k2k3 þ k2k4 þ k3k4 � sca2;

m3 ¼ k1k3k4 þ k2k3k4 þ ðk3 þ k4Þðk1k2 � sca2Þ;m4 ¼ k1k2k3k4
�
1� R00

�

Now by the Routh-Hurtwiz criteria the eigen values of the block matrix B will be negative or have negative real part if mi > 0;

for i ¼ 1;2;3;4and m1m2m3 >m2
1m4 þ m2

3. All these conditions will be satisfied if R00 <1. Thus by Routh-Hurtwiz criteria the
disease free equilibrium (DFE) is locally asymptotically stable if R00 <1. Thus the disease free equilibrium (DFE) E0is locally
asymptotically stable for R00 <1 otherwise it is unstable.

Using the Lemma-3we can say that zika virus can be eliminated from the populationwhenR00 can be brought to a value less than
unity. It is clear from the expression of R0 that with the increase of both the rate of awareness (a) in host population and the rate of
effective mosquito control (b) R0decreases. Thus the factorsa andb help us to keep the value of R00 below unity and increase the range
of stability of the disease free equilibrium. Thus we can speak that awareness in host population and vector control helps the society
to eliminate zika virus from human population.

3.2.2. Global asymptotic stability of the disease free equilibrium
In this section we have studied the global asymptotic stability of the disease free equilibrium (DFE) to ensure that the

elimination of zika virus i.e. elimination of disease is independent of the initial sizes of the subpopulations of the model. For

this purpose we consider the feasible regionU1 ¼ fX2U : Sh � S 0
h; Sv � S0v gwhere X ¼ ðSh; Eh; Ih;Rh; Sv; Ev; IvÞ and to establish

the invariance of the region we shall establish the following Lemma.

Lemma 4. The region U1 is a positively invariant for the model (1).
Proof: From the first equation of the model (1) we have

dSh
dt

ðtÞ¼p�ðl1 þ l2ÞShðtÞ� ðmþ aÞShðtÞ�p�ðmþ aÞShðtÞ¼ ðmþ aÞ
� p

mþ a
� ShðtÞ

	

¼ ðmþaÞðS0h �ShðtÞÞ as S0h ¼ p
mþa which gives ShðtÞ � S0h � ½S0h � Shð0Þ�e�ðmþaÞt . Thus if Shð0Þ � S0hfor all t � 0 thenShðtÞ � S0h for

all t � 0 :

Again from the fifth equation of the model (1) we have

dSv
dt

ðtÞ¼p1 � lvSv �ðm1 þ bÞSvðtÞ�p1 � ðm1 þ bÞSvðtÞ�
p1

� �
0

	

¼ ðm1 þ bÞ

m1 þ b
� SvðtÞ ¼ ðm1 þ bÞ Sv � SvðtÞ :
Which gives SvðtÞ � S0v � ðS0v � Svð0ÞÞe�ðm1þbÞt . Thus if Svð0Þ � S0v for all t � 0 then SvðtÞ � S0v for all t � 0.
Summing above two we have the region U1 is positively invariant and attracts all solutions in<7 for the model (1). In the next

theorem we have studied the global asymptotic stability of E0.

Theorem 1. The disease free equilibrium E0 of the model (1) is globally asymptotically stable (GAS) in U1whenever R00 � 1.
Proof: Let X1 ¼ ðSh;Rh; SvÞ and X2 ¼ ðEh; Ih; Ev; IvÞ and grouping the model (1) into
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dX1

dt
¼ FðX1;0Þ

dX2

dt
¼ GðX1;X2Þ

where FðX1;0Þis obtained from the right hand side of first, fourth and fifth equations of the model (1)with Eh ¼ Ih ¼ Ev ¼ Iv ¼ 0and
GðX1;X2Þ is obtained from the right hand side of second, third, sixth and seventh equations of the model (1).

Now considering the reduced model:

dSh
dt

¼ p� ðmþ aÞSh
dRh
dt

¼ �mRh þ aSh

dSv
dt

¼ p1 � ðm1 þ bÞSv

9>>>>>>>=>>>>>>>;
(5)
Let X0
1 ¼ ðS0h;R0h; S0v Þ ¼

�
p

mþa;
ap

mðmþaÞ;
p1

m1þb

�
be the equilibrium of the reduced model (5). Now we shall show that X0

1 is a globally

stable equilibrium in U1 .To prove this we solve the equations (5) which gives:

ShðtÞ ¼ p
mþa þ

h
Shð0Þ� p

mþa

i
e�ðmþaÞt ; SvðtÞ ¼ p1

m1þb þ


Svð0Þ� p1

m1þb

�
e�ðm1þbÞ and RhðtÞ ¼ ap

mðmþaÞ �
�
Shð0Þ � p

mþa

	
e�ðmþaÞt þ�

Rhð0Þ þ Shð0Þ � p
mþa � ap

mðmþaÞ
	
e�mt :

Thus Sh/
p

mþa;Rh/
ap

mðmþaÞ; Sv/
p1

m1þb as t/∞.

This asymptotic nature is independent of initial conditions in U1. Hence the convergence of solutions of (2) is global in U1. Next
we require GðX1;X2Þ is to satisfy the following two conditions given in Castill-Chavez et al (Castillo-Chavez, Blower, Van den
Driessche, Kirschner, & Yakubu, 2002), namely

1. GðX1; 0
!Þ ¼ 0

!
and 2 . bGðX1;X2Þ ¼ DX2

GðX0
1; 0
!ÞX2 � GðX1;X2Þ; bGðX1;X2Þ � 0Where ðX0

1; 0
!Þ ¼

�
p

mþa;0;0;
ap

mðmþaÞ;
p1

p1þb;0;0
�

and DX2
GðX0

1; 0
!Þ ¼

0BBBBBB@
�k1 l02S

0
h 0 l01S

0
h

s �k2 0 0

0 l0v S
0
v �k3 0

0 0 s1 �k4

1CCCCCCA is the Jacobian of GðX1;X2Þ with respect to ðEh; Ih; Ev; IvÞ is calculated at ðX0
1; 0
!Þ.

It is an M-matrix that is off diagonal elements of the matrix are non-negative. The

relationbGðX1;X2Þ ¼ DX2
GðX0

1; 0
!ÞX2 � GðX1;X2Þ gives bGðX1; X2Þ ¼

0BB@
bG1
0bG3
0

1CCAwith bG1 ¼ ca2
S0h
N0

h

 
1 � N0

h

S0h

Sh
Nh

!
Ih þ b2a1

S0h
N0

h

 
1 �

N0
h

S0h

Sh
Nh

!
Iv:bG3 ¼ b2a3

S0v
N0

h

 
1 � N0

h

S0v

Sv
Nh

!
Ih:

In the regionU1; Sh � S0h; Sv � S0v and hence we get Nh � N0
h. Thus, if the human population is at equilibrium level then we have 

1�N0
h

S0h

Sh
Nh

!
>0;

 
1�N0

h

S0v

Sv
Nh

!
>0therefore bGðX1;X2Þ � 0

!
. So by the theorem in Castilo-Chavez et al (Castillo-Chavez et al., 2002)

the disease free equilibrium is globally asymptotically stable as the human population is constant in the absence of disease induced
death. The biological significance of the above theorem is that the zika virus can be eliminated from the population if R0 can be
brought down to a value less than or equal to unity what so ever the size of the initial subpopulation in each class.
3.3. Existence and stability of endemic equilibrium point

In this part we shall find conditions for the existence and stability of endemic equilibrium for themodel (1). Let E1ðS*h; E*h;
I*h;R

*
h; S

*
v; E*v; I*vÞ be an arbitrary endemic equilibrium of the model (1) which have been obtained from the steady states of

the model, where the components of E1 are given below:



S.K. Biswas et al. / Infectious Disease Modelling 5 (2020) 23e41 31
S*h ¼ p

l*h þ mþ a
; E*h ¼ pl*h

k1
�
l*h þ mþ a

�; I*h ¼ psl*h

k1k2
�
l*h þ mþ a

�;R*h ¼
p
�
gsl*h þ ak1k2

�
mk1k2

�
l*h þ mþ a

�
S*v ¼

p1

l*v þ m1 þ b
; E*v ¼

p1l
*
v

k3
�
l*v þ m1 þ b

�; I*v ¼ p1s1l
*
v

k3k4
�
l*v þ m1 þ b

�
with
l*v ¼
b2a3I

*
h

N*
h

¼ b2a3msl
*
h

k1k2
�
l*h þ mþ a

	 (6)

* b a I* ca I* m
"

b a p s l* ca psl*
#

lh ¼ 2 1 v

N*
h

þ 2 h

N*
h

¼
p

2 1 1 1 v

k3k4
�
l*v þ m1 þ b

�þ 2 h

k1k2
�
l*h þ mþ a

	 (7)
The expressions of l*v ; l
*
h represent the forces of infection of mosquitoes and human at steady state. Substituting the value

of l*v from (6) in (7) and simplifying we get the quadratic equation satisfied by l*h in the form:

c0l
*
h
2 þ c1l

*
h þ c2 ¼ 0 (8)

c0 ¼ pk1k2k3k4fb2a3msþ k1k2ðm1 þ bÞg>0; c2 ¼ pk1
2k2

2k3k4ðmþ aÞ2ðm1 þ bÞð1� R0 Þ

where 0

c1 ¼ pk1k2k3k4ðmþ aÞ½b2a3msþ 2k1k2ðm1 þ bÞ� � ms½k1k2b22a1a3p1s1mþ fb2a3msþ k1k2ðm1 þ bÞgca2pk3k4�
The

endemic equilibrium of the model (1) can be obtained by solving the quadratic equation (8) for l*h and substituting into (l).

From the expression of l*h it is clear that c0 is always positive and c2 is positive if R00 <1. Since equation (8) is a second degree

equation in l*h, depending on values of l*h the number of endemic equilibrium point will be generated. Thus from the above
discussions we can summarize the following theorem:

Theorem 2. The model (1) has

(a) An endemic equilibrium if c2 <0⇔R00 >1 or c1 <0; c2 ¼ 0 that is R00 ¼ 1.
(b) A unique coincident endemic equilibrium if c1<0 and c12 � 4c0c2 ¼ 0.
(c) Two endemic equilibria exists if c2 >0 that is R00 <1, c1 <0 and c12 � 4c0c2 >0
(d) No endemic equilibrium exist other case.
Theorem 3. If R00 >1 then the endemic equilibrium of the model (1) is locally asymptotically stable.
Proof: To prove this theorem we shall use the Krasnoselskii sub linearity trick method (Esteva & Vargas, 2000; Hethcote &

Thieme, 1985). Here we shall prove that the linearized part of (1) around the endemic equilibriumE1 has no solution of the form

Y
!ðtÞ¼ Y

!
0e

ut (9)

with Y
!

0 ¼ ðY1;Y2;Y3;Y4;Y5Þ;Yi;u2C and ReðuÞ � 0 where C is the set of complex numbers.
From the system of equations (1) we consider the following subsystem:

dEh
dt

¼
�
b2a1Iv
Nh

þ ca2Ih
Nh

�
ðNh � Eh � Ih � RhÞ � k1Eh

dIh
dt

¼ sEh � k2Ih

dRh
dt

¼ gIh � mRh þ aðNh � Eh � Ih � RhÞ

dEv
dt

¼ b2a3Ih
Nh

ðNv � Ev � IvÞ � k3Ev

dIv
dt

¼ s1Ev � ðm1 þ bÞIv

(10)
Linearizing (10) around the endemic equilibrium E1ðS*h; E*h; I*h;R*h; S*v ; E*v ; I*vÞ we get
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dEh
dt

¼ �
�
b2a1I

*
v

N*
h

þ ca2I
*
h

N*
h

þ k1

�
Eh �

�
b2a1I

*
v

N*
h

þ ca2I
*
h

N*
h

� ca2S
*
h

N*
h

�
Ih �

�
b2a1I

*
v

N*
h

þ ca2I
*
h

N*
h

�
Rh þ b2a1S

*
h

N*
h

Iv

dIh
dt

¼ sEh � k2Ih

dRh
dt

¼ �aEh þ ðg� aÞIh � ðmþ aÞRh

dEv
dt

¼ b2a3S
*
v

N*
h

Ih �
�
b2a3I

*
h

N*
h

þ k3

�
Ev � b2a3I

*
h

N*
h

Iv

dIv
dt

¼ s1Ev � ðm1 þ bÞIv

(11)
The jacobian of the linear system (11) at E1is

JðE1Þ¼

0BBBBBBBB@

��l*h þ k1
�

J2 � l*h �l*h 0 J3
s �k2 0 0 0
�a g� a �ðmþ aÞ 0 0

0 J4 0 ��l*v þ k3
� �l*v

0 0 0 s1 �k4

1CCCCCCCCA
where J2 ¼ ca2S

*
h

N*
h
; J3 ¼ b2a1S

*
h

N*
h

; J4 ¼ b2a3S
*
v

N*
h

.

Substitution of a solution of the form (9) in the linearized model (11) yields the following linear equations:

uY1 ¼ ��l*h þ k1
�
Y1 þ

�
J2 � l*h

�
Y2 � l*hY3 þ J3Y5

uY2 ¼ sY1 � k2Y2
uY3 ¼ �aY1 � ða� gÞY2 � ðmþ aÞY3
uY4 ¼ J4Y2 �

�
l*v þ k3

�
Y4 � l*vY5

uY5 ¼ s1Y4 � k4Y5

(12)
Solving for Y2;Y3;Y4from second, third and fifth equation of (12) and then substituting these results into its first and fourth
equations we get the following equivalent system:


1þ 1
k1

�
uþ l*hðuþ mÞ

uþ mþ a
þ l*hs

uþ k2
:
uþ mþ g

uþ mþ a

��
Y1 ¼ J2

k1
Y2 þ

J3
k1
Y5;
�
1þ u

k2

�
Y2 ¼ s

k2
Y1

�
1þ u

mþ a

	
Y3 ¼ � k2 þ sþ u

ðmþ aÞðk2 þ uÞ aY1 þ
g

mþ a
Y2

�
1þ l*vs1

ðuþ k4Þ
�
l*v þ k3

�þ u

l*v þ k3

�
Y4 ¼ J4

l*v þ k3
Y2;
�
1þ u

k4

�
Y5 ¼ s1

k4
Y4

(13)
Adding the first and third equations of (13) and removing the negative term of the left hand side (Esteva, Gumel, & de Leon,
2009) we get the following system of equations:

½1þ G1ðuÞ�Y1 þ ½1þ G3ðuÞ�Y3 ¼ ðMY
!Þ1 þ ðMY

!Þ3
½1þ G2ðuÞ�Y2 ¼ ðMY

!Þ2
½1þ G4ðuÞ�Y4 ¼ ðMY

!Þ4
½1þ G5ðuÞ�Y5 ¼ ðMY

!Þ5

9>>=>>; (14)

where, G1ðuÞ ¼ 1
k1



uþl

*
hðuþmÞ
uþmþa þ 1

k2þu

�
l
*
hsðuþmþgÞ
uþmþa þak1ðk2þsþuÞ

mþa

��
;G2ðuÞ ¼ u

k2
;G3ðuÞ ¼ u

mþa;G4ðuÞ ¼ 1
l
*
vþk3

�
uþ l

*
vs1

uþk4

�
;G5ðuÞ ¼ u

k4
;
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and M ¼

0BBBB@
0 m1 0 0 m2
m3 0 0 0 0
0 m4 0 0 0
0 m5 0 0 0
0 0 0 m6 0

1CCCCA, where m1 ¼ J2
k1
;m2 ¼ J3

k1
;m3 ¼ s

k2
; m4 ¼ g

mþa;m5 ¼ J4
l
*
vþk3

;m6 ¼ s1
k4
:

Here the notationðMY
!Þirepresent the i-th co-ordinate of the vectorðMY

!Þ. It should be noted that the matrix M has non-negative entries and the

endemic equilibrium E1 ¼ ðE*h; I*h;R*h; E*v ; I*v ; I*v Þ satisfies E1 ¼ ME1. If Yis a solution of (14) then it is possible to find a minimal positive
number rsuch that

jY j � rE1 (15)

where jYj ¼ ðjY1j; jY2j; jY3j; jY4j; jY5jÞ. Here the numberris also the minimal positive number that satisfies the inequality jY1j þ
jY3j � rðE*h þ R*hÞ. We want to show that ReðuÞ<0. On the contrary we assume ReðuÞ � 0 and we consider the two cases: u ¼ 0
and us0.

In first caseu ¼ 0 the system of equations (12) is homogeneous linear system of equations. It is clear that the coefficient
determinant D is non zero and consequently the system (12) has the unique solution Y ¼ 0which corresponds to the disease free
steady state of the system (1).

Next we consider the second case us0. By the assumption ReðuÞ � 0,we have ReGiðuÞ � 0; ði¼ 1;2;3;4;5Þwhich implies that
j1þGiðuÞj>1 for alli. Let us now define GðuÞ ¼minj1 þ GiðuÞj;i ¼ 1;2;3;4;5.Then GðuÞ>1 or equivalently r

GðuÞ< r. The property

of minimality of r implying jYj> r
GðuÞE1. Now taking norms of both sides of the second equation of (14) we get

GðuÞjY2j �MðjY jÞ2 � rðMjE1jÞ2 � rI*h (16)
This inequality implies jY2j � r
GðuÞI

*
h which contradicts. Hence ReðuÞ<0. Thus the real parts of all eigenvalues of the charac-

teristic equation of the linear system (1) will be negative. So E1 is locally asymptotically stable.
3.4. Backward bifurcation

In this sectionwe shall study the possibility of a backward bifurcation in the zikamodel (1) using centre manifold theorem
as discussed by in Castillo-Chavez and Song (Castillo-Chavez & Song, 2004).

Theorem 4. The model (1) undergoes backward bifurcation at R00 ¼ 1whenever the sign of the coefficient a0 is positive where a0is
defined in (18).

Proof: We redefine the model (1) by changing the variables:
Let Sh ¼ x1;Eh ¼ x2; Ih ¼ x3;Rh ¼ x4;Sv ¼ x5;Ev ¼ x6; Iv ¼ x7. So that

Nh ¼ x1 þ x2 þ x3 þ x4;Nv ¼ x5 þ x6 þ x7

Applying vector notation x!¼ ðx1; x2; x3; x4; x5; x6; x7ÞT the model (1) can be written as

d x!
dt ¼ f

!ð x!Þ where f
!¼ ðf1; f2; f3; f4; f5; f6; f7ÞT as follows:
dx1
dt

¼ f1 ¼ p�
�

b2a1x7 þ ca2x3
x1 þ x2 þ x3 þ x4

�
x1 � ðmþ aÞx1

dx2
dt

¼ f2 ¼
�

b2a1x7 þ ca2x3
x1 þ x2 þ x3 þ x4

�
x1 � ðsþ mÞx2

dx3
dt

¼ f3 ¼ sx2 � ðgþ mÞx3
dx4
dt

¼ f4 ¼ gx3 � mx4 þ ax1

dx5
dt

¼ f5 ¼ p1 �
b2a3x3x5

x1 þ x2 þ x3 þ x4
� ðm1 þ bÞx5

dx6
dt

¼ f6 ¼ b2a3x3x5
x1 þ x2 þ x3 þ x4

� ðs1 þ m1 þ bÞx6

dx7
dt

¼ f7 ¼ s1x6 � ðm1 þ bÞx7

(17)
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For the above system the disease free equilibrium (DFE) E00 given byE00 ¼ ðx01;0;0; x04; x05;0;0Þwhere x01 ¼ p
mþa;x

0
4 ¼ ap

mðmþaÞ;x
0
5 ¼

p1
m1þb

The jacobian matrix of the above system at the disease free equilibrium E0 is given by

JðE0Þ¼

0BBBBBBBBBBBBBBBB@

�ðmþ aÞ 0 �l02x
0
1 0 0 0 �l01x

0
1

0 �k1 l02x
0
1 0 0 0 l01x

0
1

0 s �k2 0 0 0 0
a 0 g �m 0 0 0

0 0 �l0v x
0
5 0 �k4 0 0

0 0 l0v x
0
5 0 0 �k3 0

0 0 0 0 0 s1 �k4

1CCCCCCCCCCCCCCCCA
:

Taking a3 as a bifurcation parameter we found R00ða3 ¼ a*3Þ ¼ 1,which gives. The jacobian of the transformed model (17) at the

disease free equilibrium at a3 ¼ a*3 has a simple zero eigenvalue and all other eigenvalues have negative real part. So the centre

manifold theory can be used to study the dynamics of the model (17) near a3 ¼ a*3.In particular we will use the theorem given by
Castillo-Chavez and Song (Castillo-Chavez & Song, 2004). The necessary computation for the theorem given bellow:

The right eigenvector:
The right eigenvector of the jacobian associated with zero eigenvalue ata3 ¼ a*3 is given by: W ¼ ðw1;w2;w3;

w4;w5;w6;w7ÞTwhere, w1 ¼ �
 

ca2k3k4ðm1þbÞ
s1b2a*

3p1
þ b2a1m

p

!
p

ðmþaÞ2;w2 ¼ k2k3k4ðm1þbÞp
ss1b2a*

3mp1
;w3 ¼ k3k4pðm1þbÞ

s1b2a*
3mp1

;

w4 ¼
1
m
ðw3gþ aw1Þ;w5 ¼ � k3

s1
;w6 ¼

k4
s1

;w7 ¼1>0

The left eigenvector of the jacobian matrix associated with zero eigenvalue ata*3 is given by

V ¼ ð0; v2; v3;0;0; v6;1Þ where v2 ¼ k4ðmþaÞ
b2a1m

; v3 ¼ k1k4ðmþaÞ
ab2a1m

, v6 ¼ s1
k3
>0. The bifurcation coefficients a0andb0are given by

a0 ¼
X7

k;i;j¼1

vkwiwj
v2fk
vxivxj

¼ v2
X7
i;j¼1

wiwj
v2f2
vxivxj

þv3
X7
i;j¼1

wiwj
v2f3
vxivxj

þ v6
X7
i;j¼1

wiwj
v2f6
vxivxj

þ v7
X7
i:j¼1

wiwj
v2f7
vxivxj

where

v2f2
vx3vx1

¼ v2f2
vx1vx3

¼ ca2ma
pðmþ aÞ;

v2f2
vx7vx1

¼ v2f2
vx1vx7

¼ b2a1ma
pðmþ aÞ;

v2f2
vx7vx2

¼ v2f2
vx2vx7

¼ v2f2
vx7vx3

¼ v2f2
vx3vx7

¼ v2f2
vx7vx4

¼ v2f2
vx4vx7

¼ � b2a1m
2

pðmþ aÞ;
v2f2

vx3vx2
¼ v2f2

vx2vx3
¼ v2f2

vx4vx3
¼ v2f2

vx3vx4
¼ � ca2m

2

pðmþ aÞ;
v2f2
vx23

¼ � 2ca2m
2

pðmþ aÞ

v2f6
vx3vx1

¼ v2f6
vx1vx3

¼ v2f6
vx3vx2

¼ v2f6
vx2vx3

¼ v2f6
vx4vx3

¼ v2f6
vx3vx4

¼ 1
2
v2f6
vx23

¼ �b2a
*
3p1m

2

ðmþ bÞp2 ;
v2f6

vx5vx3
¼ v2f6

vx3vx5
¼ b2a

*
3m

p
:

and all others de-

rivatives are zero so that

a0 ¼ 2k4ar2
b2a1p

ðrca2 þ b2a1Þ þ
2ms1rr2a

*
3p1

ðm1 þ bÞp2k3
ðb2mþ aÞ � 2k4

pb2a1

0@ rr2ca2aþ r2b2a1aþ rr3ca2mþ r3b2a1mþ r2ca2mþ
r2ca2gþ rb2a2mþ rgb2a1

1A
2ms1ra

*
3

ðm1 þ bÞp2k3

�
r3b2p1mþ rb2p1mþ rgb2p1 þ

k3
s
pðm1 þ bÞb2a

�
(18)

the value of b0 ¼P7
k;i¼1vkwi

v2fk
vxiva*

3
¼ v6

P7
i¼1wi

v2f6
vxiva*

3
as vfk

va*
3
¼ 0; k ¼ 1;2;3;4;7 and v5 ¼ 0 and the only non-zero derivative is

v2f6
vx3va*

3
¼ b2p1m

pðm1þbÞ. Therefore b0 ¼ s1rb2p1m
k3pðm1þbÞ>0.
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Hence the model (1) undergoes backward bifurcation at R00 ¼ 1 whenever a0 >0.
In backward bifurcation a stable disease free equilibrium (DFE) co-exists with two endemic equilibrium (EE) amongwhich one is

unstable and other one is stable when R00 <1.The biological significance of the backward bifurcation phenomenon of the zika model
(1) is that the condition R00 <1 for elimination of zika from population is the necessary condition but not sufficient, in that case
elimination of zika depend on initial sizes of the population that fact is present in Fig. 2.

4. Model fitting to the Zika infected data in Colombia: Parameter Estimation and Model validation
In this section we have validated the considered Zika model (1) considering the reported Zika infected human data of 1 to 36

weeks 2016 in Colombia which is given in Table 2. The data has been provided by National Institute of Health SIVIGILA, Colombia
which also has been used in literature (Aranda, Gonzalez-Para,& Benincasa, 2019).We found the best fitted model parameters for
the considered model (1) with the above said data by using MATLAB minimization software package fmincon. In order to fit the
model (1) to the weekly reported Zika infected data in Colombia to the year 2016 we considered the initial susceptible human as
19471223 and the initial number of infected populations as 2173 as reported in (Aranda et al., 2019) and initial density of the other
populations we assume arbitrarily. Similarly, some model parameters are assumed arbitrarily and then using the MATLAB mini-
mization software package the remaining parameters have been estimated and those values summarized in Table 3.

In Fig. 3we have plotted the reported Zika infection data in Colombia from 1 to 36week of 2016 using blue dots and considering
the estimated model parameters we have predicted the density of the infected populations up to 80 weeks. It is clear from the
prediction of the solution curve that the disease will no longer out break after 50 weeks in Colombia, which is supported by the
reported real cases in the same region by WHO (Zika-Epidemiological Repo, 2017) . Our model we predict that there will be 113
average weekly cases during 37 to 52 week of the year 2016 which is close to 130 reported real cases by WHO (Zika-
Epidemiological Repo, 2017). According to our model prediction zika will be eradicated from Colombia on or after 28 week of
2017 which also supported by real data (Zika-Epidemiological Repo, 2017).

The theoretical finding in Lemma-3, 4 and theorem-1are graphically verified considering the model parameters as given Table 3
(see Fig. 4). For these values of the parameters the value of basic reproduction number is less than unity. Hence the disease free
equilibrium point is globally asymptotically stable for these parametric values. In Fig. 4we have presented the time series of Ih; and
Iv for different initial values of the populations. It is clear that if the system starts for different initial points then it will ultimately
Table 2
The weekly reported data of Zika infection cases in Colombia from 1 to 36 week of 2016 provided by National Institute of Health SIVIGILA, which also used in
(Aranda et al., 2019).

Week Cases Week Cases Week Cases Week Cases

1 2173 10 2655 19 3281 28 705
2 4105 11 2639 20 638 29 648
3 4166 12 3882 21 1567 30 496
4 4669 13 3808 22 2014 31 416
5 4198 14 3059 23 1539 32 215
6 4316 15 3364 24 1344 33 301
7 5460 16 2671 25 1128 34 271
8 2865 17 2665 26 991 35 568
9 3767 18 2687 27 892 36 383

Fig. 2. Backward bifurcation diagram of the modified zika model (17) for: (a) infected human (b) infected mosquito population using the parameter values p ¼ 3:3;p1 ¼
1000;m ¼ 0:8;m1 ¼ 0:35;a1 ¼ 0:4; s1 ¼ 2=7 and the values of the other parameters presented in Table 3.



Fig. 3. The reported infected populations (the blue dots) and the best. fitted solution (solid red curve) the model (1).

Table 3
Parameter values and their Sensitivity indices of the model (1) with respect to.R00:

Parameter Values Source Sensitivity index

b2 0.45 Agusto et al. (2017a, 2017b) 1.99928242
m 0.00019204 Estimated 1.01880565
p1 100 Assume 0.99964121
a1 0.04441746 Estimated 0.99964121
a3 0.04791129 Estimated 0.99964121
s1 0.02070591 Estimated 0.50624931
s 0.35808521 Estimated 5:36009473� 10�04

a2 0.03362689 Estimated 3:58792179� 10�04

c 0.00552894 Estimated 3:58792179� 10�04

p 0.01747 Kucharski et al. (2016) �0.99964121
g 0.07098011 Estimated �0.99730175
a 0.00000440 Estimated �0.02239870
m1 0.02053120 Estimated e1:92341903� 10�06

b 0.00071429 Assume e6:69166430� 10�08

Fig. 4. Time series for (a) infected human Ih and (b) infected mosquito Iv populations for the parameters given in Table 3 with different initial conditions for the model
(1).
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converge to Ih ¼ 0and Iv ¼ 0respectively. Thus from the Fig. 4 it clear that system is locally as well globally asymptotically stable if
the condition stated in the corresponding lemmas and theorem is satisfied.

Since the system contains fourteen parameters among them some parameters are highly sensitive. A small change of the pa-
rameters will affect highly the system. In this next section using sensitivity analysis we shall determine the highly sensitive
parameters.
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5. Sensitivity analysis

Using sensitivity analysis we shall determine the parameters those have high significant impact on the threshold number
R00 of the zikamodel (1). Such analysis tells us the importance of each parameter on disease transmission and this will help the
public helth authorities to place of priority for prevention and controlling the spread of the zika virus in the human popu-
lation. Such information is also important for experimental design, data assimilation and reduction of complex nonlinear
model (Powell, Fair, Le Claire, Moore, & Thompson, 2005).

In order to perform such analysis we shall use the normalised forward sensitivity index of a variable with respect to a
parameterwhich is expressed as the ratio of the relative variation in the variable to the relative variation in the parameter. The
sensitivity index can be defined using partial derivatives.

Definition 4.1. The normalised forward sensitivity index of R00 that depends differentiably on a parameter l is defined by

g
R0
0

l ¼ vR0
0

vl :
l
R0
0
(Chitnis, Hyman, & Cushing, 2008).

Using the explicit expression ofR00 in the above sensitivity index formula we have derived an expression for the sensitivity
of R00 with respect to each parameter. Then using the base line values of parameters, given in Table 3 we have estimated the
numerical values for the sensitivity index and the results are also summarised in Table 3.

A small variation in a most sensitive parameter will create large quantitative variation. Thus it should be carefully esti-
mated whether a small variation in a least sensitive parameter will not create large variation so it need not require too much
effort to estimate such least sensitive parameters.

Table 3 presents the base line value of parameters used for the numerical simulation and it also shows the sensitivity
indices of the zika model with respect toR00. From Table 3 it is clear that the mosquito biting rate b2 is the most sensitive
parameter with sensitivity index 1.999 which indicates that increase (or decrease) the mosquito biting rate b2 by 10% will be
followed by an immediate increase (or decrease) in R00 by 19.99%. Similarly increase (or decrease) of the parameters p1;a1;a3;

s1 by 10% will be followed by an immediate increase (or decrease) in R00 by 9.99%, 9.99%, 9.99%, 5.56% respectively.
Though the recruitment rate of human has the most negative sensitivity index but in the epidemiological context the

important parameters which have negative sensitivity indices are g;a;m1;b. The significance of negative sensitivity indices of
the above said parameters are increase (or decrease) in the parameters g; a by 10% will be followed by an immediate decrease
(or increase) in R00 by 9.97%, 0.224% respectively. In summary, the zika sensitivity analysis identifies the most important
parameters driving the transmission mechanism of the zika virus. The results suggest that a control strategy that reduces the
mosquito biting rate, recruitment rate of mosquito, transmission probability per biting of susceptible humans by infected
mosquito, transmission probability per biting of susceptible mosquito with infected humans, progression rate from exposed
to infected mosquito, progression rate from exposed to infected human, transmission probability per sexual contact among a
susceptible and infected human and sexual contact rate between a susceptible human to an infected human (b2;p1;a1;a3;s1;s;

a2;c) respectively and the control strategy that increase rate of recovery rate of infected human, awareness in host population,
Fig. 5. Time series of the model (1) for the different values of b2 of (a) Exposed human population (b) infected human population, other parameter values
presented in Table 3.
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death rate of mosquito and constant rate of effective mosquito control (g;a;m1;b) will effectively resist the spread of zika virus
in the human population.

Now, to verify the sensitive parameters we have plotted the solution curve for the number of infected and exposed humans
for different values of the model parameters keeping the initial conditions same. To simulate the system numerically we have
to use the estimatedmodel parameter as presented in Table 3 with the initial conditions: Shð0Þ ¼ 1000; Ehð0Þ ¼ 06; Ihð0Þ ¼ 04;
Rhð0Þ ¼ 00; Svð0Þ ¼ 4000; Evð0Þ ¼ 500; Ivð0Þ ¼ 100.

The time series of exposed human and the infectious human are plotted in Fig. 5(a) and (b) respectively for different values
of mosquito biting rate (b2). It is clear from the figures that the number of both class increases due to the increase (decrease) in
b2. Thus the mosquito bite rate plays an important role to spreads the zika virus.

The effect of sexual contact rate (c) between a susceptible human and an infected human on exposed and infectious
human population has been presented in Fig. 6(a) and (b) respectively. It is clear from Fig. 6(a and b) that due to increase or
decrease of sexual contact rate (c) both the exposed and infectious human population increases or decreases.

The effect of human awareness rate (a) on zika transmission dynamics among human presented in Fig. 7(a and b). From
these two figures it is clear that increase of human awareness decreases both exposed and infectious human population and
vice-versa.
Fig. 7. Time series of Zika model (1) for different values of human awareness a and other parameter values presented in Table 3: (a) exposed human and (b)
infected human.

Fig. 6. Time series presenting the effect of Sexual contact rate c between a susceptible human to an infected human on the (a) exposed human and (b) infected
human, using the parameter values presented in Table 3.
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In Fig. 8 we have presented the time series of exposed human and infected human for different values of vector control (b).
It is clear from the figure that both the exposed human population and infectious human population decrease as the vector
control increase.

Thus from the above series of time series analysis it is clear that the amount of exposed and infected human population
decrease when the vector biting rate (b2), the sexual contact rate (c) among susceptible human to infected human decrease
and the human awareness rate ðaÞ the vector control rate (b) increase. Considering above said four facts simultaneously as a
precautionary measures we presents the behaviour of the infected human population in Fig. 9. The figure shows that the
number of infected human population decreases when the vector biting rate and the sexual contact rate decreases and the
human awareness rate and the vector control rate increases simultaneously over a period of time.
6. Effect of sexual transmission on epidemic growth rate and basic reproduction number

In this section we have established the effect of sexual transmission to the epidemic growth rate as well as basic repro-
duction number. In deterministic epidemic model the disease free equilibrium (DFE) locally stable if the basic reproduction
number R00 <1 and unstable if R00 >1 (Van den Driessche & Watmough, 2002) and for R00 >1 disease outbreak occurs. The
dominant eigen value of the jacobianmatrix at the disease free equilibrium (DFE) is the initial outbreak growth rate (r). In our
model the dominant eigenvalue of the jacobian matrix at the DFE is the dominant root of the corresponding characteristic
equation (4). It is a four degree equation, so it is not easy to find the explicit expression of the dominant root i.e.to find the
initial epidemic growth rate of the model. So, we shall establish the effect of sexual transmission on epidemic growth rate and
basic reproduction number numerically. In Fig. 10(a) and (b) we have presented the effect of a2 on the basic reproduction
number R0 and the epidemic growth rate r respectively. Fig. 10(a and b) show that the basic reproduction number and the
epidemic growth rate both increase with the increase of the transmission probability per sexual contact between susceptible
and infected human.
7. Conclusion

In this work, we have developed and analyzed a deterministic ODE model for Zika virus transmission dynamics that in-
corporates both mosquito and sexual transmission paths, which also includes vector control and human awareness. The
positivity and boundedness of the proposed model are investigated here. We obtained the basic reproduction number by
next-generation matrix technique. The steady-state analysis shows that the disease-free equilibrium (DFE) is and globally
asymptotically stable if the basic reproduction number R00 less than unity. The conditions for the existence of endemic
equilibrium of the model are obtained. Using the Krasnoselskii sub linearity trick method we have established that the
endemic equilibrium is locally asymptotically stable if the basic reproduction number R00 is greater than one. Under some
condition the model exhibits the phenomenon of backward bifurcation. The biological significance of this result is that the
condition reproduction number less than unity for the elimination of zika virus from the population is the necessary condition
but not sufficient. We estimate the model parameters and validate the model by using the reported Zika infection data in
Colombia of the year 2016.
Fig. 8. Time series of the Zika model (1) showing the effect of vector control b on the (a) exposed human and (b) infected human using the parameter values
presented in Table 3.



Fig. 9. Time series of the zika model (1) presenting the effect of vector biting rate, sexual contact rate, human awareness and vector control simultaneously on the
behaviour of the infected human population. The solid line graphics obtained using the parameter values
b2 ¼ 0:45; c ¼ 0:00552894; a ¼ 0:0000044; b ¼ 0:00071429 and the dashed line graphics obtained by using the parameter values a ¼ 0:0000088; b2 ¼ 0:4; c ¼
0:001382235; b ¼ 0:00214287 the other parameter values presented in Table 3.

Fig. 10. Presents the effect of a2 on (a) the basic reproduction number R0 and on (b) the epidemic growth rate r using the parameter values p ¼ 0:08547; c ¼ 0:4
and the values of the others parameter presented in Table. 3.
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The effect of sexual transmission both on basic reproduction number and epidemic growth rate have been established
numerically which shows that with the increase of sexual transmission rate the density of exposed and infected populations
both increases. So we can control zika virus by controlling sexual transmission rate. Sensitivity and numerical analyses were
done to determine the impact of the parameters on the zika infection. The most effective parameters were found the mos-
quito biting rate, recruitment rate of mosquito, transmission probability per biting of a susceptible human with an infected
mosquito, the rate of the awareness host population and the recovery rate of the infected human population. This model will
help the public health planar to frame a policy for controlling Zika. In further, we will extend the model incorporating the
optimal control theory.
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