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control in the absence of disease induce death. To formulate the model, we assume that
the Zika virus is being first transmitted to human by mosquito bite, and then it is being
transmitted to his or her sexual partner. The system contains at most three equilibrium
points among them one is the disease free and other two are endemic equilibrium points,
exists under certain conditions. The theoretical analysis shows that the diseases-free

g;{:} 3;‘3;5 equilibrium is locally and globally asymptotically stable if the basic reproduction num-
Vector transmission ber is less than one. Theatrically we have established that endemic equilibrium point
Sexual transmission which is locally asymptotically stable if the basic reproduction number is greater than one.
Basic reproduction number The system exhibits backward bifurcation when the transmission probability per biting of
Stability analysis susceptible mosquito with infected humans crosses the critical value. We estimate the
Backward bifurcation model parameters and validate the model by fitting the model with the reported Zika
Sensitivity analysis infected human data from 1 to 36 week of 2016 Zika outbreak in Colombia. Furthermore,

using the normalised forward sensitivity index method we have established that the
model parameter mosquito biting rate, recruitment rate of mosquito, transmission prob-
ability per biting of Susceptible (infected) humans with infected (susceptible) mosquito,
rate of awareness in host population, recovery rates of infected human are most sensitive
parameters of the considered Zika model. Lastly, some conclusions are given to control the
spreading of the Zika disease.
© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Recently, Zika virus infection has become a dangerous threat for the human society (Cauchemez, 2016; Mlakar, 2016). Itis a
vector borne disease, spreads through the mosquito borne flavi-virus. In the beginning, the infection transmitted to the
human body by the bites of infected Aedes aegypti female mosquitoes, which also transmit the dengue, chikungunya, yellow
fever, Japanese Encepalitie’s virus (European Centre for Disease Control and Prevention (CDC), 2015; World Health
Organisation(WHO), 2016) widely in the tropical and subtropical regions. Symptoms of Zika infection are normally mild,
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including fever, headaches, rash, conjunctivitis and joint pain due to flavi-virus. Zika infection increases the chances of
microcephaly (permanent disabilities) Guillain-Barre syndrome and other neurological disorder in newborn babies from
infected mothers (Cauchemez, 2016; Mlakar, 2016).

This virus was first identified from rhesus monkeys in 1947 in the Zika forest of Uganda (Dick, Kitchen, & Haddow, 1952;
Sikka, Chattu, & Popli, 2016) and from humans in Nigeria in 1954 (Dick et al., 1952; Macnamara, 1954; Shapshak, 2015, pp.
477-500) but it was not spread in epidemic form among the human population until 2007 (European Centre for Disease
Control and Prevention (CDC), 2015; Duffy, 2009). The first Zika outbreak among human occurred in Yap Island,
Micronesia in 2007 (European Centre for Disease Control and Prevention (CDC), 2015; Duffy, 2009; Manore and Hyman,
2016). Afterward, this disease highly spread among human in a different country. First Zika virus, epidemic occurred in
French Polynesia in the year 2013—2014 (Hancock, Marfel, & Bel, 2014). After 2015, it is spreading rapidly worldwide. The
country Brazil, Southern and Central American as well as in Caribbean, countries are highly affected by Zika. World Health
Organisation declared Zika as “public health emergency of the international 2016. According to Pan American Health
Organisation (PAHO) and WHO, 583451 suspected and 223477 confirmed cumulative Zika cases were reported up to 04
January 2018 by countries and territories in the Americans among which the respective cases for Brazil are 231725 and 137288
respectively.

Recent studies showed that Zika virus can be transmitted not only by vector only, it also spread by sexual interaction which
was reported in (Foy, 2011; Dallas County Health Human Services (DCHHS), 2016; Centres for Disease Control and Prevention
(CDC), 2016; The Toronto Star, 2016; Musso, 2015). A remarkable observation was given by the authors in (Musso, 2015)
reported that though Zika virus was disappeared from the blood of an infected person even then it was present in his semen,
which point out the possibility of sexual transmission of the Zika virus.

Though Zika infection is a threat for public health, but at present no vaccination is available to protect from Zika infection
and no particular treatment, medicine or fast diagnostic test is available to treat or diagnose this infection. Thus human
awareness through health programs and control of mosquitoes through insecticides is the two effective ways to prevent its
infection transmission among the host population.

In the last few years, a number of mathematical models have been reported (Agusto et al., 2017a, 2017b; Bearcroft, 1956;
Bonyah, Khan, Okosun, & Islam, 2017; Imran, Usman, Dur-e-Ahmad, & Khan, 2017; Kucharski et al., 2016; Perkins, Siraj,
Ruktanonchai, Kraemer, & Tatem, 2016; Shah, Patel, & Yeolekar, 2017) to study the Zika virus transmission dynamics. In
those models, the investigators have incorporated the following factors, (i) both vector and sexual transmission (Agusto et al.,
2017a, 2017b; Shah et al., 2017), (ii) both vector and sexual transmission route with bilinear incidence rate and they estab-
lished the backward bifurcation and the global stability of DFE for the same model, but in a single model backward bifurcation
and the global stability of DFE are contradictory to each other. (iii) the vertical transmission and vector transmission (Agusto
et al., 2017a, 2017b; Imran et al., 2017) and (iv) optimal control on spraying insecticides, other prevention, and treatment
(Bonyah et al., 2017; Pontryagin, Boltyanskii, Gamkrelidze, & Mishchenko, 1986; Shah et al., 2017). The impact of awareness on
dengue dynamics has been studied by Gakkhar and Chavda (Gakkhar & Chavda, 2013).

In order to study the impact of human awareness and vector control, we construct a Zika model including both vector and
sexual transmission route, we also include the human awareness (Mishra & Gakkhar, 2014) and vector control. In this work,
we have established the wellposedness, positivity and boundedness, the local and global stability of the DFE and the existence
and local stability of endemic equilibrium (EE). Finally, we have validated and estimated the model parameters of the
considered model comparing the model predictions with the reported zika infected data of a particular area. To explore the
model robustness to parameter values used we investigate the sensitivity analysis using the normalised forward sensitivity
index. We also studied numerically the impact of sexual transmission on the epidemic growth rate as well as on the basic
reproduction number. To the best of our knowledge effect of vector transmission, sexual transmission, vector control, and
human awareness has not yet been considered in a single Zika model. So in this paper, we are considering all these four
important facts to propose a Zika model and intend to study its dynamical behaviour.

The rest of the paper is organized as follows: The formulation and basic properties of the model have been described in
section-2. An investigation of the stability and bifurcation of the model has been reported in section-3. Parameter estimation
and model validation done by simulating the model with reported real data done in section-4. Sensitivity analysis of the
model is presented in section-5 and section-6 deals with the effect of sexual transmission on basic reproduction number and
epidemic growth rate numerically. Finally, all the results have been concluded in the section-7.

2. Model formulation

Let the total human population N (t) is classified into four compartments comprised of susceptible human S, (t), exposed
human Ej(t), infected human I(t) and recovered humanR(t). Here we have considered that a human individual who
recovered from infection of Zika virus gain lifelong immunity from it. Sine only female mosquito spreads the zika infection so
the total female mosquito population N,(t) is divided into three compartments viz. susceptible mosquitoes S,(t), exposed
mosquitoes E,(t) and infected mosquitoes I, (t). Again recovery of mosquito from Zika infection is not taken into consideration
due to its short life span.

To formulate the model the following factors are taken into consideration:
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(i) Constant recruitment rate for both susceptible human and vector population.

(ii) Natural death rate for both human and vector population.

(iii) Horizontal transmission of infection from infected vectors to susceptible human when infected vectors bite susceptible
human.

(iv) Sexual transmission of infection to susceptible human when a susceptible human interact sexually with an infected
human.

(v) Horizontal transmission of infection from infected human to susceptible vectors when susceptible vectors bite infected
human.

(vi) Two steps of human awareness has considered. At a constant rate susceptible human can take following awareness
steps to protect them from zika (a) using mosquito-nets, and mosquito repellents (b) avoiding sexual interaction or
using a condom at the period of zika out break.

(vii) Vector control: spray of insecticide and removal of the stagnant water can control vector.

Let, m be the constant recruitment rate of susceptible human and p be the natural death rate of the human population.
Suppose, susceptible individuals acquire infection due to effective contact with an infected vector at rate Ay = b2,§+h"" LAy = %
be the infection due to sexual interaction with the infected individuals and susceptible human become aware at a constant
rate a and enter into recovered class Ry. So the total infection strength of human is A, = A; + 1;.Here we assume that the
susceptible mosquitoes acquire infection at a rate 1,5, from infected human where 1, = bz,(",—;’“.

Under the above assumptions, the flow diagram for both human population and vector population of the proposed zika
model is given in the following flow diagram (see Fig. 1).

According to the assumptions and from the flow diagram, the dynamics of the Zika virus can be represented by the
following system of non linear differential equations:

%:w— (M +22)Sh — (1 + @)S

%: (O + 42)Sp — (0 + W)Ep

% =0E, — (v + Wl

%zylhprthaSh v
% =m —ASy — (U +b)S,

s~ (o1 + 11 +DIE,

% =01E, — (g +b)l,

A S E O-IEV

A%

l (4 +0)S, l (1, +D)E, l (1, + D)1,

Fig. 1. Flow diagram of Zika virus in both human and mosquito population.
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The state variables and parameters used in the zika transmission model are summarised in Table 1.
2.1. Positivity and boundedness of the solutions

The considered model will be biologically meaningful when all the variables are non-negative for t > 0. In other words the
solution with positive initial conditions will remain positive for all time, which we shall establish in the following Lemma.

Lemma 1. Let G(t) = (Sp, Ep, In, Ry, Sy, Ey, I,)with the initial condition G(0) > 0.Then the solutions G(t) of the model (1) is non

negative for all t > 0. Also tlim SupN(t) = gand[lim SupN,(t) = u]ﬁbhold.

Proof: Since Ayis a function of I,, Nyand A,is a function of I, Ny and for T = sup{t > 0 : G(t) > 0} the first equation of the model
(1) can be explicitly written as:

ds
= = A1 (1, Np)S(6) = 22 I, Nu)S(6) = (1 + @S (0
Integrating the above equation in the range [0, T] we get,

T

9 L5,00) |exp / D (on), Nu(m) + Do (), Nl | + (e + @)
0
T
— mexp / i (), N (1)) + Ao (I (n), Ny ()l + (g + @)T
0
which gives
T

Sn(T)exp (A1 (L(m), Na(m)) + A2 (In(m), Ny (m)))dn + (m+ @)T | | = Su(0)

0
T y
- / T exp / Dt (o), Na () + Ao (I (n). N ()] + (i + @)y | dy
0 0

or

Table 1
Description of state variables and parameters
State variables Description
Ny, Total human population
Sh Susceptible human population
Ep Exposed human population
Iy Infected human population
Ry Recovered human population
N, Total vector population
Sy Susceptible vector population
E, Exposed vector population
I, Infected vector population
Parameters Description
™y Recruitment rate of human and mosquito respectively
My pq Natural death rate of human and mosquito respectively
b, Mosquito biting rate
ay Transmission probability per biting of -Susceptible humans with infected mosquito
) Transmission probability per biting of Susceptible mosquito with infected humans.
c Sexual contact rate between a susceptible human to an infected human
ay Transmission probability per sexual contact- among a susceptible and infected human
a Progression rate from exposed to infected human
y Recovery rate of infected human
a Rate of awareness in host population
a1 Progression rate from exposed to infected mosquito

b Constant rate of effective mosquito control
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T
Su(T) =Sp(0)exp {— (/(M (Iv(n),Nh(n))Hz(ln(n),Nh(n)))dH(u+a)T>]
0
T
+exp{— (/(M (Iu(n),Nh(n))+/12(1h(n),Nh(n)))dn+(u+a)T)]
0

T y
x / wexp( / iy (Iumwh(n))+Az<1h<n>7Nh<nmdn+(u+a>y) dy>0
0 0

Similarly it can be shown that E,(T), I,,(T), Ry (T),S,(T), E,(T)and I,(T)all are positive for all T >0 thus G > Ofor all t > 0. Hence
the first part of the Lemma is proved.

For the next part of the Lemma it should be noted that 0 < Sy(t),E,(t),In(t),Rp(t) < Np(t),0<S,(t),E,(t),I,(t) < Ny(t).
Adding first four component equations of the model (1) we have

Similarly adding last three equations of the model (1) we have

dN,
dtv =m — (u1 +b)N, (3)
Integrating and taking limsup and liminf for t — coin the above two equations we get, T [lim infNp(t) < tlim supNy(t) < gand

/tﬂb < tli—To infN,(t) < tango supN,(t) < uﬁb‘ which implies tllrgosupNh(t) =7 and tllrzlo SupN,(t) = ulqb'

We shall now analyze our proposed zika virus transmission model (1) in the following biologically feasible closed region Qwhich
is defined below:

Q:{(SbEh»IthhvsmEvaV) = %Zr :Sh+Eh+Ih +Rh §§$SU+EU+I S[u ﬂlb}
1

In the next Lemma we shall establish the closed regionQ as a positively invariant set.

Lemma 2. The closed region Q defined above is a positively invariant set for the model (1) with non- negative initial condition
in®’.

Proof: Here N, = S, + E + I, + Ry, so the rate of change of the total human populationNy, is

obtained from equation (2) in the form.

% = m — uNy, Similarly total vector population is N, = S, + E, + I,, and hence the rate of change of the total mosquito is
obtained from (3), as

dN,
ar oMo (41 +Db)Ny

Using a standard comparison theorem from Lakshmikantham et al. (1989) it can be shown that
Np(£) < Np(0)e ™ + % (1 —e™#) and Ny(t) < N,(0)e~ i +P)t 4 T (1 — e~ (mvbt),

This followsNy(t) < fiand Ny(t) < M:Tjrbiho(O) < % andN,(0) < M”}rb respectively.

Thus the closed region Q is positively invariant.

Again if Ny (0) > fand N, (0) > M]’thhen the solution contained in £ or N (t) approach to and N,(t) approach to#]”ib and then the

infected classes Ey, Iy, E, and I, approach to zero, so Q is attracting set that is all solutions in 9&‘:1 eventually enters in Q. So, bio-
logically and mathematically the model is well posed in the invariant set Q (Hethcote, 2000). Hence, it is sufficient to consider the
dynamics of the transmission of zika virus model (1) in the invariant set Q.
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3. Steady state analysis

In this section we shall carry out qualitative analysis of the model (1) to investigate existence and stability of the steady
states.

3.1. Disease free equilibrium and basic reproduction numbers

The disease free equilibrium (DFE) of the model (1) is obtained by using E;, = I;, = E, = I, = 0 in the steady state conditions.

Thus the disease free equilibrium point Eg of the model (1) is given by Eo(S),E2,19,R9,S0 E0.1%) = (uia 0,0, 4%, 215.0, 0)

In order to calculate the basic reproduction number we use the next generation operator method on the model (1).
Consider the infected compartments (Ey, I, E,, I,) at the disease free equilibrium (DFE) and applying Vanden Diressche and
Watmaugh (Van den Driessche & Watmough, 2002) technique, the Jacobian matrices Fand V (for the new infection terms and
the remaining transfer terms respectively) are given by.

0c0 0c0
0 43S, 0 XS, kk 0 0 0 a; a; as ag
~ lo 0o o o =k 0o o 4 1 (o 0 0 o0
F = 0 1958 o o I’ V = 0 0 k& 0] SO that FV “BEEG | a5 ag 0 0
o o o o 0 0 -0, ki 0 0 0 0

where, ky = 0+ ky = v+ u, k3 = 01 + py + b, kg = g + b, 28 = bf;gl, 219 = . 20 = bzaz ,ay = A9S0akskaay = 29SDaksky,

ay = 298Dk ksky, a3 = 1980k koo, a4 = Alsgklkzkg as = 2°800ksky, ag = 2050k, ksky. Now. the basic reproduction number Ry
is obtained as the spectral radius p(FV~!) (Van den Driessche & Watmough, 2002) that is the dominant Eigen value of the
matrix FV-1,
The characteristic polynomial of the matrix FV-1 is 12(112 —IA—m) where | = a;/D,m = azas/D?,D = kykykzksand the
quadratic polynomial of the above characteristic polynomial is g(A) = (AZ —IA—m) with I>0,m > 0.So g(4) = 0 gives a unique
positive root, which provides the basic reproduction number Rj given below:

1

2 2
Ro = p(FV"1) = e § 29Shokska + ((13Shokska)” + 423 A0SpS0001kkaksks)

Again g(0) = -m<0 andg(1) = 1— (I + m). Define R =+ m that is R} = m@%sﬁkm +A?Sgo1/1853) = Rys + Ry

/ 2 Shk3k4ﬂ / 2 Shoﬂ Sva
where Ry = bk 1S the contribution from sexual transmission and Ry, = W

(vector) transmission. Again from the relation g(1) = 1 — R;; we have the following three observation:

is the contribution from mosquito

(i) whenRj, = 1 then g(1) = 0 thus the positive root of the equation g(1) = Oisonei.e Ry = 1(ii)when R < 1theng(1)> 0
so the positive root of the equation g(4) = 0 lies between zero and one as g(0) <0 thus Rg < 1.(iii) when R > 1 then
g(1) <0 again g(0) < 0 so positive root of g(1) = 0 greater than one that is Ry > 1. Thus from the above three observation
one can conclude that R = 1(<1, > 1) if and only if Ry = 1(<1, >1). Since two threshold numbers Ry and R;, are
equivalent so we use onlyRj in the next part of the paper.

3.2.1. Local stability of the disease free equilibrium

Lemma 3. The disease free equilibrium (DFE) Eyis locally asymptotically stable for Rjy <1 and unstable for Ry, >1 where R} is
defined in the text.
Proof. The variational matrix of the model (1) at the disease free equilibrium 50(52, EY, 12, RB SS, ES, 18) is given by
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—(u+a) 0 -2 0o 0o o0 -Ns)
0 ko Y 0o o o A
0 s -k, 0 0 0 0
J(Eo) = a 0 Yy -u 0 0 0
0 0 -5 0 —k4 O 0
0 0 % 0 0 —ks O
0 0 0 0 0 o —kg

The characteristic roots corresponding to matrix J(Eg) are—(u+a), —u, —k4 and the remaining four roots are roots of the
following equation:

x4 mx® +mox? + m3x +my =0

where my = ky + ky + k3 + kg, my = kiky + kq k3 + kyky + kzk3 + koky + k3k4 — 0Cay,
ms3 = kykskyq + koksky + (k3 + kq)(k1ky — acay), my = kq k2k3k4(1 - R6)

Now by the Routh-Hurtwiz criteria the eigen values of the block matrix B will be negative or have negative real part if m; > 0,
for i=1,2,3,4and mymyms > m%m4 + m%. All these conditions will be satisfied if Ry <1. Thus by Routh-Hurtwiz criteria the
disease free equilibrium (DFE) is locally asymptotically stable if Ry <1. Thus the disease free equilibrium (DFE) Eyis locally
asymptotically stable for Ry <1 otherwise it is unstable.

Using the Lemma-3 we can say that zika virus can be eliminated from the population whenR;, can be brought to a value less than
unity. It is clear from the expression of Ry that with the increase of both the rate of awareness (a) in host population and the rate of
effective mosquito control (b) Ryodecreases. Thus the factorsa andb help us to keep the value of R;, below unity and increase the range

of stability of the disease free equilibrium. Thus we can speak that awareness in host population and vector control helps the society
to eliminate zika virus from human population.

3.2.2. Global asymptotic stability of the disease free equilibrium

In this section we have studied the global asymptotic stability of the disease free equilibrium (DFE) to ensure that the
elimination of zika virus i.e. elimination of disease is independent of the initial sizes of the subpopulations of the model. For
this purpose we consider the feasible region 1 = {X €Q: S5, < S g., S < SS} where X = (Sy, Ep, In, R, Sv, Ev, I,) and to establish
the invariance of the region we shall establish the following Lemma.

Lemma 4. The region Q, is a positively invariant for the model (1).
Proof: From the first equation of the model (1) we have

% (t)=m— (A +A)Sp(t) — (u+a)Sp(t) <7 — (U +a)Sy(t) = (u+a) (ﬁf Sh(f)>

= (1+a)(Sh —Sh(t)) as S} = ;= which gives Sy,(t) < Sp — [S) — S(0)]e~**¢. Thus if S,(0) < Spfor all t > O thenSy(t) < S for
allt > 0.
Again from the fifth equation of the model (1) we have

= (i +b){uﬂ b_sym} ~ b (S2-5.00).

Which gives S,(t) < S° — (S° — S,(0))e~ (D)X, Thus if S,(0) < S for all t > O then S,(t) < S forall t > 0.
Summing above two we have the region Q1 is positively invariant and attracts all solutions in®” for the model (1). In the next
theorem we have studied the global asymptotic stability of Ej.

Theorem 1. The disease free equilibrium Eq of the model (1) is globally asymptotically stable (GAS) in Qiwhenever Rjy < 1.
Proof: Let X1 = (Sp, Ry, Sy) and X5 = (Ep, Iy, Ey, 1) and grouping the model (1) into
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dx,

@ = Fx.0)
dx

ot = X1 %)

where F(X1,0)is obtained from the right hand side of first, fourth and fifth equations of the model (1) with E;, = I;, = E, = I, = Oand
G(X1,X>) is obtained from the right hand side of second, third, sixth and seventh equations of the model (1).
Now considering the reduced model:

ds,

- — (b +a)Sp

dR

d_['h = —,U.Rh + ClSh (5)
ds,

E: ™ — (,LLl +b)sv

Let X9 = (SR, S0) = (TLI T m+b) be the equilibrium of the reduced model (5). Now we shall show that X? is a globally

stable equilibrium in Q1 .To prove this we solve the equations (5) which gives:

Sh(0) = g+ [S1(0) ~gT] e W Su(0) = 5 + [S.(0) g e ) and Ry(e) =

(Ru(0) + S(0) = g — %% )e ™.
Thus Sy, ”u+a7 Ry H%,
This asymptotic nature is independent of initial conditions in Q4. Hence the convergence of solutions of (2) is global in Q1. Next

we require G(Xq,X>) is to satisfy the following two conditions given in Castill-Chavez et al (Castillo-Chavez, Blower, Van den
Driessche, Kirschner, & Yakubu, 2002), namely

— — -~ 0 ~ 070
16X, 0) = 0 and 2. G(X;,Xz) = Dx,G(XS, 0)X; — G(X1.X2), G(X1,X2) = OWhere (X3, 0) = (74,0,0, 78 -1 0,0

wi (510 — gg)eer s

m
S,,Hﬂﬁb as t— oco.

—k; 298) 0 As)
a 7’{2 0 0
0 2050 kg

0 0 01 7’(4

It is an M-matrix that is off diagonal elements of the matrix are non-negative. The

and DXZG(X?, 6) = is the Jacobian of G(X1,X,) with respect to (Ep, I, E,, L) is calculated at (X?,ﬁ).

G
~ ~ o~ 0
relationG (X1, X5) = Dy, G(X?, 0)X, — G(X;.,X2) gives G(Xy, Xp) = él with G; = Cozzlf]’;;< - ”S’gsh>1h+ byay 35 (1 -
0

N N
G 5“)’ G3 = b2a3No <1 Gl N"—>Ih

In the region Q1,5 < Sh,Sv < SO and hence we get Nj, < NO. Thus, if the human population is at equilibrium level then we have
(1 —’;’—5 %) >0, ( —S— —V) > Otherefore G(X1 X2) > 0.So by the theorem in Castilo-Chavez et al (Castillo-Chavez et al., 2002)
h

the disease free equilibrium is globally asymptotically stable as the human population is constant in the absence of disease induced
death. The biological significance of the above theorem is that the zika virus can be eliminated from the population if Ry can be
brought down to a value less than or equal to unity what so ever the size of the initial subpopulation in each class.

3.3. Existence and stability of endemic equilibrium point

In this part we shall find conditions for the existence and stability of endemic equilibrium for the model (1). Let E{(S*},, E*},,
I'n,R*y,S",,E*,, ")) be an arbitrary endemic equilibrium of the model (1) which have been obtained from the steady states of
the model, where the components of E; are given below:



S.K. Biswas et al. / Infectious Disease Modelling 5 (2020) 23—41 31

" T " 71'12 - 770/1; R W(yol;; + akqky)

S: * b - * b - * b - *
h A+ u+a h ki (Ap +p+a) h kiky (A + p+ a) h ukykay (2 + p+a)

*_ T E*: F]A: *_ W]Jl}\:
! /L/ +u;+b ! 1(3()\“ + U +b) ! k3](4(/1u + U +b)

with
A: :bzaflfl _ bz()ig}l.O'/l; (6)
Nh k]kz </1h +,u+a>
* szﬁI: C(Jéz]; m szﬁT(]O’]A; C(leTrO')\;;
Ah: ¥ ¥ ¥ * (7)
N Ny T |kska(A, +p1 +b)  kiky (/lh +u+ a)

The expressions of A:, /1?, represent the forces of infection of mosquitoes and human at steady state. Substituting the value
of A: from (6) in (7) and simplifying we get the quadratic equation satisfied by /1;; in the form:

*2 *
Co)th +C1Ah +c=0 (8)

co = mkykokskg{byosuo + kiky (g +b)}>0,c = 7Tk12k22k3k4(,u + a)Z(,u] +b)(1 - R6)

where The

c1 = mwhkykoksks(p + a)[byasuo + 2k ky (ug + b)] — ok, koby?aqagmioq i+ {byazpuo + kiky(1q + b) }caymksky)
endemic equilibrium of the model (1) can be obtained by solving the quadratic equation (8) for A;; and substituting into (1).
From the expression of /1,: it is clear that ¢y is always positive and ¢, is positive if Rj, < 1. Since equation (8) is a second degree
equation in A;;, depending on values of A; the number of endemic equilibrium point will be generated. Thus from the above
discussions we can summarize the following theorem:

Theorem 2. The model (1) has

(a) An endemic equilibrium if c; <0&Rj>1 or ¢; <0,c; =0 that is Ry = 1.

(b) A unique coincident endemic equilibrium if ¢;<0 and c¢;2 — 4cocy = 0.

(c) Two endemic equilibria exists if c; >0 that is Ry <1, ¢; <0 and €12 — 4coc >0
(d) No endemic equilibrium exist other case.

Theorem 3. If Ry >1 then the endemic equilibrium of the model (1) is locally asymptotically stable.
Proof: To prove this theorem we shall use the Krasnoselskii sub linearity trick method (Esteva & Vargas, 2000; Hethcote &
Thieme, 1985). Here we shall prove that the linearized part of (1) around the endemic equilibriumE; has no solution of the form

—

Y(t)=Y e (9)

with 70 = (Y1,Ys,Y3,Y,,Ys5),Y;,weC and Re(w) > 0 where C is the set of complex numbers.
From the system of equations (1) we consider the following subsystem:

dE byl I
b~ ( 21\0;11/+601<]2 h)(Nh*Eh*Ih*Rh)*klEh
h h

=
% = oE, — kol

%:71h—uRh+a(Nh—Eh—Ih—Rh) (10)
o = Dol £, 1) ~ ks,

A~ 01E, — (g + D)k

Linearizing (10) around the endemic equilibrium E; (Sp, Ep,, I, R}, S, E,., I,) we get

vty
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dEy _ (bzallz N cayl), . k1) E, (bzoql: N caply cazs;‘,) . <b2a11: N cazl;’;) R, | b2a1sh,

@« ~Un, TN N, NN N, N N,

dIy,

d[’ = O'Eh kzlh

dR

d—th:—aEh+(7—a)Ih—(u+a)Rh (11)
@ _ bz(sz;‘, _ (bzdfl;: i k3>E,, _ bzafl;;]v

dt Nh Nh h

di,

dt = 01E (ILLl + b)IV

The jacobian of the linear system (11) at Eqis

—(Ma+k) B—h Ay 0 s

¢ —ky 0 0 0

J(Eq) = -a y-a —(p+a 0 0
0 Ja 0 —(h+k) -4
0 0 0 71 7](4

where J, —Cazs"f szf,:]sﬂh bzﬁ‘]is.

Substltutlon of a solution of the form (9) in the linearized model (11) yields the following linear equations:

=G - A)Ya it e

sz = (7Y1 — I(2Y2

wY3 = —aY; — (a—-7)Y, - (u+a)¥s 1)
wYq =JaYs — (A +k3)Yq — 1, Y5

wY5 =01 Y4 - k4Y5

Solving for Y,, Y3, Y4from second, third and fifth equation of (12) and then substituting these results into its first and fourth
equations we get the following equivalent system:

1 * *
{1+k { JrAh((tﬂr,u)+ Apo 'w+“+YHY]:JlY2+LaY5’(1+kg>Y2:£Y1
2

w+u+a w+tkot+u+a kq kq ks
) ky+o+w v
1 Y; = aY Y-
( +u+a> T Ttk o) e (13)

A*g'] w ) ]4 ( u)) 01
1+ v - +— Y, = P Y- , 1+ Y- = Y,
( W+ k)bt hks) At ks) Ak ka)'s Ryt

v

Adding the first and third equations of (13) and removing the negative term of the left hand side (Esteva, Gumel, & de Leon,
2009) we get the following system of equations:

(1+Gi(w)]Y1 + [1 +G3( Y3 = (MY); + (MY);3

1+ G (w)]Y2 = (MY), (14)
[T+ Ga(w)]Ys = ( )

1+ Gs(w)]Ys = (MY)s

1 An(w+p 1 Mo(w+u+y) | aky(ky+o+w o _ 1 Ao _
where,  Gj(w) = |+ S ’k2+w{ wolotiey) palallabotol b Gy (w) = lG3 () = 5aCa(@) = 5 { 0 454 ), G5 (@) =
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0 m 0 0 m
m; 0 0 O O } ; ;
and M = 8 1’;114 8 8 8 ,where my =2.my =2.m3 =, my = i ms :A;:ka,ms =
5
0 0 0 mg O

Here the notation(M Y );represent the i-th co-ordinate of the vector(M Y). it should be noted that the matrix M has non-negative entries and the
"

endemic equilibrium E1 = (Epy, I, Ry Evy I, 1) satisfies E1 = MEy. If Yis a solution of (14) then it is possible to find a minimal positive
number rsuch that

Y| < 1y (15)

where |Y| = (|1, |Yal,|Y3l, |Yal, |Ys|). Here the numberris also the minimal positive number that satisfies the inequality |Y1|+
|Y3| < r(Ej, + R},). We want to show that Re(w) < 0. On the contrary we assume Re(w) > 0 and we consider the two cases: © = 0
and w=0.

In first casew = 0 the system of equations (12) is homogeneous linear system of equations. It is clear that the coefficient

determinant 4 is non zero and consequently the system (12) has the unique solution Y = Owhich corresponds to the disease free
steady state of the system (1).

Next we consider the second case w # 0. By the assumption Re(w) > 0, we have ReG;(w) > 0, (i= 1,2, 3,4, 5) which implies that
|1 +G;j(w)| > 1 for alli. Let us now define G(w) = min|1 + G;(w)|,i =1,2,3,4,5.Then G(w)>1or equivalently%< 1. The property

of minimality of r implying |Y| >ﬁ£1. Now taking norms of both sides of the second equation of (14) we get

G(w)[Y2| <M([Y]), <T(MIEq|); < Ty (16)

This inequality implies |Y,| < %I; which contradicts. Hence Re(w) <O0. Thus the real parts of all eigenvalues of the charac-
teristic equation of the linear system (1) will be negative. So E; is locally asymptotically stable.

3.4. Backward bifurcation

In this section we shall study the possibility of a backward bifurcation in the zika model (1) using centre manifold theorem
as discussed by in Castillo-Chavez and Song (Castillo-Chavez & Song, 2004).

Theorem4. The model (1) undergoes backward bifurcation at Ry = 1 whenever the sign of the coefficient @’ is positive where a'is
defined in (18).

Proof: We redefine the model (1) by changing the variables:

Let Sh = xlth = Xz,Ih = X3,Rh = X4,SU = X5,EV = XG,IV = X7. So that

Np=x1 + X3 + X3 + x4, Ny = X5 + X5 + X7

Applying vector notation X = (x; ,xz,x3,x4,x5,x6,x7)Tthe model (1) can be written as
4X = f(X) where f = (fi.fo.fs.fa.f5.f6.f7)" as follows:
dxq bya1x7 + cagxs
- :fl [ G ettt S
dt X1+ Xy +X3+Xg
@ —f = ( byaqx7 + cazxs
a 72~ X1 +X2+X3+ X4

dx
d_t3 =f=0X— (v + Wx3

)Xl = (u+a)x

)Xl = (0 4+ uxz

dX4

g = Ja= s -t ax (a7
dX5 b2tX3X3X5

=2 = ———— 22270 b)x

dt f5 1 X1+ Xy + X3+ X4 (k1 +b)xs

dXG bz(X3X3X5

P fe=— =2 (g b)x

el L RS R

dX7

a =f7=01%6 — (11 + b)x7
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For the above system the disease free equilibrium (DFE) E} given byEj, = (x9,0,0,x,x2,0,0) where x? = M—ia,xg = %,xg =
mﬂ 4B

The jacobian matrix of the above system at the disease free equilibrium Eg is given by

—(u+a) 0 -0 0 0 299
0 —ky 29x9 0 o0 A%
0 s -k 0 0 0 0
J(Eg) = a vy —u 0 0 0
0 0 % 0 -k O 0
0 0 2% 0 0 —k3 O
0 0 0 0 0 o Kk

Taking a3 as a bifurcation parameter we found Ry (e = a3) = 1, which gives. The jacobian of the transformed model (17) at the
disease free equilibrium at a3 = a3 has a simple zero eigenvalue and all other eigenvalues have negative real part. So the centre
manifold theory can be used to study the dynamics of the model (17) near a3 = of.In particular we will use the theorem given by
Castillo-Chavez and Song (Castillo-Chavez & Song, 2004). The necessary computation for the theorem given bellow:

The right eigenvector:

The right eigenvector of the jacobian associated with zero eigenvalue atas =of is given by: W = (wy,wa,ws,

T canksks(y+b b kaksk. +b)m kskqm(pqy+b
Wy, Ws, Wg, W7) where, w; = — <%§‘;ﬁ> + #> a2 = 20;1;2(Z;1;L1r1) W3 = #ﬁm)’
1 k k
W4:7(W3’Y+aW1),W5:——3,W6 4W7_1>O
Iz 01 01

The left eigenvector of the jacobian matrix associated with zero eigenvalue atc is given by
_ _ ka(u+a) _ kika(u+a)
V—(O v2,1/3,00v6,1) where vy = ‘l;zﬂlﬂt’v = ]agzmu
*f
VEWiW; =v wiW;
k%:l ki fax ax 2 Z ox;ox;

, Vg = %>0. The bifurcation coefficients a’andb’are given by

where
aZf aZf 7 2f7
WiWj—>— Wiw—=> WiW;
+U3,JZ Tox;0x; +UGZ "ox;ox; +U7Z " ox;0x;
Ph _ fh _ capa 62fz _Ph bzalﬂa h o hH _¥hH _ Ph
Ox30X7 Ox10x3 mw(u+a) 9x;0xq7  Ox10x7 w(u+a) dx;0xy; Oxp0x7  OXx70X3  OX30X7

0°f % byu? 0% H  %*h  Ph capp? 2fz 2copp?

T Ox70xg  0X40X7 W+ a) OX30Xy  OX20X3  OXq0X3 OX30Xa  m(L+ Q) 3 T T+

and all others de-

fs  0%fs 0% fe 0% 0% 16][67 byasmu? 0% 0%fs  brozu

0X30X1 B 0X10x3 a 0X30Xx) - 0Xp0X3 B 0X40X3 n 0X30x4 2 6)(3 (u+ b)ﬂ276X53X3 n 0X30Xs5 Toow
rivatives are zero so that

2ky ITyC0pa + by a + rr3cagp + r3byag o + T2C062}l.+

2k4ar: 2#0 rr (X*T(
Cl, = 4772 (TCOQ + bza]) +71 2531
ﬂbZa]

byoy (1 + b)mks

(bop+a) —

r2C0127 +rbyayu + rybyay

*
2u0qTog

k3 )
—————=—(r3bymp+rbymipu+rybymy + =m(uq + b)bya
(,u1+b)7rzk3(3 2Mip + Tyt + Tybomy + =2 m(py + b)by

(18)

the value of b’ = ZZ,iﬂvkwiaf{g vGZ, Wi Vo a5 M — =0,k=1,2,3,4,7 and vs = 0 and the only non-zero derivative is

X003 a
s _ bymp 1 _ orthymp
00, = i b Therefore b’ = T (i b >0.
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Hence the model (1) undergoes backward bifurcation at R, = 1 whenever a’ > 0.

In backward bifurcation a stable disease free equilibrium (DFE) co-exists with two endemic equilibrium (EE) among which one is
unstable and other one is stable when R{y < 1.The biological significance of the backward bifurcation phenomenon of the zika model
(1) is that the condition Rjy <1 for elimination of zika from population is the necessary condition but not sufficient, in that case
elimination of zika depend on initial sizes of the population that fact is present in Fig. 2.

4. Model fitting to the Zika infected data in Colombia: Parameter Estimation and Model validation

In this section we have validated the considered Zika model (1) considering the reported Zika infected human data of 1 to 36
weeks 2016 in Colombia which is given in Table 2. The data has been provided by National Institute of Health SIVIGILA, Colombia
which also has been used in literature (Aranda, Gonzalez-Para, & Benincasa, 2019). We found the best fitted model parameters for
the considered model (1) with the above said data by using MATLAB minimization software package fmincon. In order to fit the
model (1) to the weekly reported Zika infected data in Colombia to the year 2016 we considered the initial susceptible human as
19471223 and the initial number of infected populations as 2173 as reported in (Aranda et al., 2019) and initial density of the other
populations we assume arbitrarily. Similarly, some model parameters are assumed arbitrarily and then using the MATLAB mini-
mization software package the remaining parameters have been estimated and those values summarized in Table 3.

In Fig. 3 we have plotted the reported Zika infection data in Colombia from 1 to 36 week of 2016 using blue dots and considering
the estimated model parameters we have predicted the density of the infected populations up to 80 weeks. It is clear from the
prediction of the solution curve that the disease will no longer out break after 50 weeks in Colombia, which is supported by the
reported real cases in the same region by WHO (Zika-Epidemiological Repo, 2017) . Our model we predict that there will be 113
average weekly cases during 37 to 52 week of the year 2016 which is close to 130 reported real cases by WHO (Zika-
Epidemiological Repo, 2017). According to our model prediction zika will be eradicated from Colombia on or after 28 week of
2017 which also supported by real data (Zika-Epidemiological Repo, 2017).

The theoretical finding in Lemma-3, 4 and theorem-1are graphically verified considering the model parameters as given Table 3
(see Fig. 4). For these values of the parameters the value of basic reproduction number is less than unity. Hence the disease free
equilibrium point is globally asymptotically stable for these parametric values. In Fig. 4 we have presented the time series of I;,, and
I, for different initial values of the populations. It is clear that if the system starts for different initial points then it will ultimately

(@ (b)
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13 S
S S

o

®
n
=1
S

Infected human popula(ion(lh)
Infected mosquitoes population(lv)

Stable EEP
0.6 150
Stable EEP
04 Unstable EEP 100
Unstable DFE Stable DFE
nstable
0.2 StabllDFE & 1 50 /Unstable EeP Unstable DFE
0 02 04 06 08 1 12 14 16 18 0 0.2 04 06 08 1 12 14 16 18
Threshold number (Ro) Threshold number (RD)

Fig. 2. Backward bifurcation diagram of the modified zika model (17) for: (a) infected human (b) infected mosquito population using the parameter values 7 =3.3,m =
1000, = 0.8, 41 = 0.35, 1 = 0.4,01 = 2/7 and the values of the other parameters presented in Table 3.

Table 2

The weekly reported data of Zika infection cases in Colombia from 1 to 36 week of 2016 provided by National Institute of Health SIVIGILA, which also used in
(Aranda et al., 2019).

Week Cases Week Cases Week Cases Week Cases
1 2173 10 2655 19 3281 28 705
2 4105 11 2639 20 638 29 648
3 4166 12 3882 21 1567 30 496
4 4669 13 3808 22 2014 31 416
5 4198 14 3059 23 1539 32 215
6 4316 15 3364 24 1344 33 301
7 5460 16 2671 25 1128 34 271
8 2865 17 2665 26 991 35 568
9 3767 18 2687 27 892 36 383
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Fig. 3. The reported infected populations (the blue dots) and the best. fitted solution (solid red curve) the model (1).

Table 3
Parameter values and their Sensitivity indices of the model (1) with respect to.Rj,.
Parameter Values Source Sensitivity index
b, 0.45 Agusto et al. (20174, 2017b) 1.99928242
s 0.00019204 Estimated 1.01880565
T 100 Assume 0.99964121
o 0.04441746 Estimated 0.99964121
a3 0.04791129 Estimated 0.99964121
a1 0.02070591 Estimated 0.50624931
7 0.35808521 Estimated 5.36009473 x 10-04
o 0.03362689 Estimated 3.58792179 x 10-%4
c 0.00552894 Estimated 3.58792179 x 10-%4
m 0.01747 Kucharski et al. (2016) —0.99964121
¥ 0.07098011 Estimated —0.99730175
a 0.00000440 Estimated —0.02239870
Hq 0.02053120 Estimated —1.92341903 x 10-%
b 0.00071429 Assume —6.69166430 x 1098
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= = =1,(0)=50; sool = = =, (0)=1000;]|
= = '
2 | g 7001 1
S E] [
2 2 ]
2 = 600f 1
2 ] .
i = [
E § S00f 1
H 5 R
S I 400 1
g E 2 ‘,‘ [y
H 2 300 “ \‘ 1
i 200 ‘,“‘ 1
ALY
100F ““o |
. LA
150 200 250 300 Y " : :
) 0 50 100 150 200 250 300
Time(days) Time(days)

Fig. 4. Time series for (a) infected human I, and (b) infected mosquito I, populations for the parameters given in Table 3 with different initial conditions for the model

(1)

converge to I, = Oand I, = Orespectively. Thus from the Fig. 4 it clear that system is locally as well globally asymptotically stable if
the condition stated in the corresponding lemmas and theorem is satisfied.
Since the system contains fourteen parameters among them some parameters are highly sensitive. A small change of the pa-

rameters will affect highly the system. In this next section using sensitivity analysis we shall determine the highly sensitive
parameters.
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5. Sensitivity analysis

Using sensitivity analysis we shall determine the parameters those have high significant impact on the threshold number
R}, of the zika model (1). Such analysis tells us the importance of each parameter on disease transmission and this will help the
public helth authorities to place of priority for prevention and controlling the spread of the zika virus in the human popu-
lation. Such information is also important for experimental design, data assimilation and reduction of complex nonlinear
model (Powell, Fair, Le Claire, Moore, & Thompson, 2005).

In order to perform such analysis we shall use the normalised forward sensitivity index of a variable with respect to a
parameter which is expressed as the ratio of the relative variation in the variable to the relative variation in the parameter. The
sensitivity index can be defined using partial derivatives.

Definition 4.1. The normalised forward sensitivity index of R;, that depends differentiably on a parameter [ is defined by

yfi’ = %.R—’l,] (Chitnis, Hyman, & Cushing, 2008).

Using the explicit expression ofR;, in the above sensitivity index formula we have derived an expression for the sensitivity
of Ry with respect to each parameter. Then using the base line values of parameters, given in Table 3 we have estimated the
numerical values for the sensitivity index and the results are also summarised in Table 3.

A small variation in a most sensitive parameter will create large quantitative variation. Thus it should be carefully esti-
mated whether a small variation in a least sensitive parameter will not create large variation so it need not require too much
effort to estimate such least sensitive parameters.

Table 3 presents the base line value of parameters used for the numerical simulation and it also shows the sensitivity
indices of the zika model with respect toR;,. From Table 3 it is clear that the mosquito biting rate b, is the most sensitive
parameter with sensitivity index 1.999 which indicates that increase (or decrease) the mosquito biting rate b, by 10% will be
followed by an immediate increase (or decrease) in R, by 19.99%. Similarly increase (or decrease) of the parameters 7y, aq, a3,
o1 by 10% will be followed by an immediate increase (or decrease) in Rj, by 9.99%, 9.99%, 9.99%, 5.56% respectively.

Though the recruitment rate of human has the most negative sensitivity index but in the epidemiological context the
important parameters which have negative sensitivity indices are v,a, ;,b. The significance of negative sensitivity indices of
the above said parameters are increase (or decrease) in the parameters vy, a by 10% will be followed by an immediate decrease
(or increase) in Ry by 9.97%, 0.224% respectively. In summary, the zika sensitivity analysis identifies the most important
parameters driving the transmission mechanism of the zika virus. The results suggest that a control strategy that reduces the
mosquito biting rate, recruitment rate of mosquito, transmission probability per biting of susceptible humans by infected
mosquito, transmission probability per biting of susceptible mosquito with infected humans, progression rate from exposed
to infected mosquito, progression rate from exposed to infected human, transmission probability per sexual contact among a
susceptible and infected human and sexual contact rate between a susceptible human to an infected human (b,,m,a1,a3,01,0,
ay,c) respectively and the control strategy that increase rate of recovery rate of infected human, awareness in host population,

s D,=0.4;
--w- b2=0.45;
—*—b,=0.5

e D,=0.4;
= = =b,=0.45; 451

—*—b,=0.5

401

35¢

301

25¢

Exposed human population (Eh)
Infected human population (Ih)

0 50 100 150 200 250 300 0 . . | .
Time(days) 0 50 100 150 200 250 300
Time(days)

Fig. 5. Time series of the model (1) for the different values of b, of (a) Exposed human population (b) infected human population, other parameter values
presented in Table 3.
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death rate of mosquito and constant rate of effective mosquito control (vy,a,u;,b) will effectively resist the spread of zika virus
in the human population.

Now, to verify the sensitive parameters we have plotted the solution curve for the number of infected and exposed humans
for different values of the model parameters keeping the initial conditions same. To simulate the system numerically we have
to use the estimated model parameter as presented in Table 3 with the initial conditions: S,(0) = 1000, E, (0) = 06, I,(0) = 04,
R, (0) = 00, S,(0) = 4000, E,(0) = 500,1,(0) = 100.

The time series of exposed human and the infectious human are plotted in Fig. 5(a) and (b) respectively for different values
of mosquito biting rate (b,). It is clear from the figures that the number of both class increases due to the increase (decrease) in
b,. Thus the mosquito bite rate plays an important role to spreads the zika virus.

The effect of sexual contact rate (c) between a susceptible human and an infected human on exposed and infectious
human population has been presented in Fig. 6(a) and (b) respectively. It is clear from Fig. 6(a and b) that due to increase or
decrease of sexual contact rate (c) both the exposed and infectious human population increases or decreases.

The effect of human awareness rate (a) on zika transmission dynamics among human presented in Fig. 7(a and b). From
these two figures it is clear that increase of human awareness decreases both exposed and infectious human population and
vice-versa.

(b)

Exposed human population (E,)
Infected human population (I")

[} 50 100 150 200 250 300 0 50 100 150 200 250 300
Time(days) Time(days)

Fig. 6. Time series presenting the effect of Sexual contact rate c between a susceptible human to an infected human on the (a) exposed human and (b) infected
human, using the parameter values presented in Table 3.
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Fig. 7. Time series of Zika model (1) for different values of human awareness a and other parameter values presented in Table 3: (a) exposed human and (b)
infected human.
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In Fig. 8 we have presented the time series of exposed human and infected human for different values of vector control (b).
It is clear from the figure that both the exposed human population and infectious human population decrease as the vector
control increase.

Thus from the above series of time series analysis it is clear that the amount of exposed and infected human population
decrease when the vector biting rate (b, ), the sexual contact rate (c) among susceptible human to infected human decrease
and the human awareness rate (a) the vector control rate (b) increase. Considering above said four facts simultaneously as a
precautionary measures we presents the behaviour of the infected human population in Fig. 9. The figure shows that the
number of infected human population decreases when the vector biting rate and the sexual contact rate decreases and the
human awareness rate and the vector control rate increases simultaneously over a period of time.

6. Effect of sexual transmission on epidemic growth rate and basic reproduction number

In this section we have established the effect of sexual transmission to the epidemic growth rate as well as basic repro-
duction number. In deterministic epidemic model the disease free equilibrium (DFE) locally stable if the basic reproduction
number Ry <1 and unstable if Ry > 1 (Van den Driessche & Watmough, 2002) and for R > 1 disease outbreak occurs. The
dominant eigen value of the jacobian matrix at the disease free equilibrium (DFE) is the initial outbreak growth rate (). In our
model the dominant eigenvalue of the jacobian matrix at the DFE is the dominant root of the corresponding characteristic
equation (4). It is a four degree equation, so it is not easy to find the explicit expression of the dominant root i.e.to find the
initial epidemic growth rate of the model. So, we shall establish the effect of sexual transmission on epidemic growth rate and
basic reproduction number numerically. In Fig. 10(a) and (b) we have presented the effect of a; on the basic reproduction
number Ry and the epidemic growth rate r respectively. Fig. 10(a and b) show that the basic reproduction number and the
epidemic growth rate both increase with the increase of the transmission probability per sexual contact between susceptible
and infected human.

7. Conclusion

In this work, we have developed and analyzed a deterministic ODE model for Zika virus transmission dynamics that in-
corporates both mosquito and sexual transmission paths, which also includes vector control and human awareness. The
positivity and boundedness of the proposed model are investigated here. We obtained the basic reproduction number by
next-generation matrix technique. The steady-state analysis shows that the disease-free equilibrium (DFE) is and globally
asymptotically stable if the basic reproduction number Rj less than unity. The conditions for the existence of endemic
equilibrium of the model are obtained. Using the Krasnoselskii sub linearity trick method we have established that the
endemic equilibrium is locally asymptotically stable if the basic reproduction number R, is greater than one. Under some
condition the model exhibits the phenomenon of backward bifurcation. The biological significance of this result is that the
condition reproduction number less than unity for the elimination of zika virus from the population is the necessary condition
but not sufficient. We estimate the model parameters and validate the model by using the reported Zika infection data in
Colombia of the year 2016.
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Fig. 8. Time series of the Zika model (1) showing the effect of vector control b on the (a) exposed human and (b) infected human using the parameter values
presented in Table 3.
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Fig. 9. Time series of the zika model (1) presenting the effect of vector biting rate, sexual contact rate, human awareness and vector control simultaneously on the
behaviour of the infected human population. The solid line graphics obtained using the parameter values
b, =0.45,c = 0.00552894, a = 0.0000044, b = 0.00071429 and the dashed line graphics obtained by using the parameter values a = 0.0000088, b, = 0.4,c =
0.001382235, b = 0.00214287 the other parameter values presented in Table 3.
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Fig. 10. Presents the effect of a; on (a) the basic reproduction number Ry and on (b) the epidemic growth rate r using the parameter values = = 0.08547,c = 0.4
and the values of the others parameter presented in Table. 3.

The effect of sexual transmission both on basic reproduction number and epidemic growth rate have been established
numerically which shows that with the increase of sexual transmission rate the density of exposed and infected populations
both increases. So we can control zika virus by controlling sexual transmission rate. Sensitivity and numerical analyses were
done to determine the impact of the parameters on the zika infection. The most effective parameters were found the mos-
quito biting rate, recruitment rate of mosquito, transmission probability per biting of a susceptible human with an infected
mosquito, the rate of the awareness host population and the recovery rate of the infected human population. This model will
help the public health planar to frame a policy for controlling Zika. In further, we will extend the model incorporating the
optimal control theory.
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