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The characteristics of pulmonary tuberculosis are complex, and the cost of manual screening is high. The detection model based on
convolutional neural network is an essential method for assisted diagnosis with artificial intelligence. However, it also has the
disadvantages of complex structure and a large number of parameters, and the detection accuracy needs to be further improved.
Therefore, an improved lightweight YOLOv4 pulmonary tuberculosis detection model named MIP-MY is proposed. Firstly, over
300 actual cases are selected to make a common dataset by professional physicians, which is used to evaluate the performance of
the model. Subsequently, by introducing the inverted residual channel attention and the pyramid pooling module, a new structure
of MIP is created and used as the backbone extractor of MIP-MY, which could further decrease the number of parameters and fuse
context information. Then the multiple receptive field module is added after the three effective feature layers of the backbone
extractor, which effectively enhances the information extraction ability of the deep feature layer and reduces the miss detection
rate of small pulmonary tuberculosis lesions. Finally, the pulmonary tuberculosis detection model MIP-MY with lightweight and
multiple receptive field characteristics is constructed by combining each improved modules with multiscale structure. Compared
to the original YOLOV4, the model parameters of MIP-MY is reduced by 47%, while the mAP value is raised to 95.32% and the
miss detection rate is decreased to 6%. It is verified that the model can effectively assist radiologists in the diagnosis of

pulmonary tuberculosis.

1. Introduction

Pulmonary tuberculosis has become a global public health
emergency, in which people are infected with a chronic
infectious disease caused by Mycobacterium tuberculosis [1].
According to the World Health Organization (WHO)
survey, pulmonary tuberculosis is one of the leading causes of
death from infectious diseases around the world. It is es-
timated that about 64% of 10 million pulmonary tuberculosis
cases are detected and treated each year [2]. Improving the
awareness rate and early detection rate of pulmonary tu-
berculosis plays a vital role in the treatment of the disease, as
well as the prevention of the spread of the disease [3].
Computed tomography (CT) is one of the auxiliary imaging
diagnostic methods for tuberculosis screening, having a
lower missed detection and false detection rate than chest
radiographs. It is a more efficient choice to adopt CT

technology to identify substantial chest lesions and detect
the severity of lung diseases in patients with tuberculosis [4].

With the development of artificial intelligence, some
scholars have gradually begin to integrate the deep learning
image processing algorithm of deep learning with CT
technology to achieve a more accurate diagnosis and de-
tection of lung diseases. Many deep learning models of
computer-aided diagnosis have been built based on the deep
convolution neural network (DCNN). Gao et al. [5] com-
bined with CT technology proposed a high-precision clas-
sification model of five types of pulmonary tuberculosis
based on CNN and support vector machine. Ma et al. [6]
proposed an automatic detection model of active pulmonary
tuberculosis based on U-Net [7], which can detect the lo-
cation of lesions more accurately. Liu et al. [8] built sim-
ulated and real data sets based on CT images of lung cancer
lung nodules and realized automatic detection of lesions
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through an improved single-stage target detection network
YOLOvV3 [9]. Yang et al. [10] took the two-stage target
detection network Faster-RCNN as the main body, which
improved the detection accuracy of pulmonary tuberculosis.
However, its parameter scale was large and was not con-
ducive to generalization.

Considering that the current detection model for
pulmonary CT disease has the problem of excessive pa-
rameters and does not use effective lightweight methods, it
may be a feasible strategy to learn from the lightweight
methods in other detection fields. In reference [11], Ye et al.
[11] replaced the backbone network of YOLOv4 [12]
through MobileNetv3 [13] and realized the lightweight of
the model. Although Mobilenetv3 reduces the amount of
parameters, if it is directly used in the detection of pul-
monary tuberculosis CT, it may lack the mining of deep
feature information of the image, which is not enough to
solve the problem of missed detection rate of small targets
by YOLOV4, and the detection accuracy needs to be further
improved. Reference [14] achieves lightweight by reducing
the number of convolution layers in YOLOvV5 [15], which
obviously improves the detection speed. However, because
the lightweight YOLOV5 focuses on the detection of large
targets, the detection performance of small targets is still
slightly insufficient. Small lesions on pulmonary tubercu-
losis CT cannot be ignored. The structure and performance
of YOLOV5 are less different from those of YOLOv4.
Therefore, improving on YOLOV4 is an effective strategy.
CT images of pulmonary tuberculosis have mainly have
typical features such as cavity [16] and tree-in-bud pattern
[17]. However, open data sets are uneven and there is no
uniform format, so it is essential to design a set of standard
datasets. Additionally, the existing tuberculosis detection
model has a large number of parameters and consumes a lot
of computing resources, which makes it difficult to be
applied to medical institutions with a large number of high-
performance equipment. Therefore, it is an important goal
to realize the lightweight of the model. At the same time, an
ordinary lightweight detection model cannot obtain the
deeper semantic information of CT images, resulting in a
high rate of missed detection. Therefore, ensuring high
detection accuracy and efficiency of tuberculosis simulta-
neously is one of the main objectives of this study, which is
of great significance for tuberculosis screening and
diagnosis.

The major contributions in our study can be summarized
as follows.

(1) At present, some existing models lack the ability to
distinguish small objects, so that the miss detection
rate stays in a high position without going down. For
this reason, a new module of the multiple receptive
field block (MRFB) with dilated convolution is
designed in this paper. This module expands the
acceptance range of the pulmonary tuberculosis
detection model. It enhances the ability of feature
extraction for various sizes of lesions to prevent some
small size lesions that are detrimental to identify
from being omitted.
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(2) Location, classification, and the confidence score of
pulmonary tuberculosis lesions are equally important
factors affecting the detection capability of the
model. Taking these three factors as optimization
objects can further improve the detection accuracy of
the model. Consequently, an integrated loss function
is designed which can train these three factors si-
multaneously. In the iterative training process of the
model, the actual location of the lesions will be
continuously updated continuously by the inte-
grating loss function, the classification of the lesions
will be determined, and the reliability of all lesions
will be optimized simultaneously.

(3) Lightweight convolution layers are constructed to
reduce the number of model parameters, and a new
backbone extractor MIP is designed. Its internal
inverted residual channel attention module and
pyramidal pooling layer can assist the model in
extracting the deeper semantic information of pul-
monary tuberculosis lesions. It realizes lightweight in
structure and avoids overfitting to a certain extent,
enhances the relationship between the different sizes
of regions on feature maps, and completes the fusion
of multiscale feature information.

The remainder of this paper is organized as follows. In
Section 1, a standard data set of pulmonary tuberculosis is
built, which contains CT slices of 300 patients with pul-
monary tuberculosis. And a lightweight method is also in-
troduced that is used in the pulmonary tuberculosis detection
model. In Section 2, a pulmonary tuberculosis detection
model MIP-MY is designed based on an improved YOLOv4
algorithm. In section 3, we carry out a quantitative analysis
and score comparison on the results of networks. Finally, we
discuss some related issues and make conclusions in
Section 4.

2. Dataset and Lightweight Method

Currently, the public data set on CT of pulmonary tuber-
culosis CT is scarce, with incomplete image data, and the
format is not unified. Therefore, it is imperative to design a
standard data set for the research of this study. The light-
weight detection model is one of the targets to be achieved in
this paper. While completing the lightweight, we must
ensure a higher accuracy, which is also the difficulty in
designing the pulmonary tuberculosis detection model.

2.1. Creation of Dataset. The experimental data for this study
is the actual data set provided by the Imaging Department of
Beijing Chest Hospital, China. A total of 300 CT cases of
pulmonary tuberculosis are collected to form the experi-
mental data set. Each CT slice is segmented according to the
thickness standard of 1.25 mm, of the which the CT sections
of pulmonary tuberculosis cavity and the tree-in-bud pattern
accounted for 50%, respectively. The cavity diameter in the
data set ranges from 10 mm to 126.4 mm, and the tree-in-
bud pattern with uniform density is selected as the sample.
The areas from 16 x16 to 128 x128 on the CT slices are
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defined as a cluster of tree-in-bud pattern lesions, respec-
tively. The distribution maps of the size of the lesions size in
the dataset are shown in Figure 1. As shown from
Figures 1(a) and 1(b), there are more small cavities with a
diameter less than or equal to 30 mm, accounting for about
33% of the total. And more samples of tree-in-bud patterns
in clusters with the size from 32 x 32 to 64 x 64 account for
about 40% of the total. The standard for the above data set
was established by three clinical doctors with more than five
years of experience at Beijing Chest Hospital after discussion
at the meeting, and the Labellmg tool [18] tool was used to
outline and calibrate the lesion of pulmonary tuberculosis,
providing a guarantee of the consistency and validity of the
dataset.

The unified preprocessing of each CT image is carried out,
and its format is converted from DICOM to PNG, which is
more convenient for processing. The resolution is adjusted to
512 x 512, and the number of coding bits is 24. Additionally, to
reduce interference to the detection model, background in-
formation is filtered, including bed board and clothing outside
the outline of the lung.

The data set contains a total of 3764 CT slices of cavity
and tree-in-bud pattern, from which 70% are randomly
selected as the train set, the remaining 10% as test set 1, and
the last 20% as test set 2. Test Set 1 is responsible for
subsequent ablation experiments, while test set 2 is re-
sponsible for evaluating the diagnostic level of the pulmo-
nary tuberculosis detection model.

Data enhancement enriches the diversity of the data set.
Specifically, each CT image of the train set has a 40% chance
of scaling and flipping horizontally and randomly distorting
the input image with an aspect ratio of 0.8 to 2.0. These
measures double the number of samples in the train set. This
study has signed a patient information confidentiality
agreement with the Imaging Department of Beijing Chest
Hospital to filter out patients’ sensitive information by
technical means, and the right to use the dataset is merely
effective in this study.

2.2. Lightweight Method. At present, the detection model
based on the convolutional neural network has some
problems such as a large number of parameters and long
training time, which requires high hardware computing
capacity. Therefore, this paper will adopt a lightweight
method to modify the model to make it suitable for general
hardware devices.

MobileNetv3 is a lightweight neural network commonly
used in image processing. It is based mainly on the principle
of separable depthwise convolution [19] to achieve the
lightweight target.

Compared with traditional convolution, depthwise sepa-
rable convolution has fewer parameters. The Depthwise Sep-
arable Convolution traverses only one by one corresponding to
the input channel and then expands the number of output
channels by 1x1 Pointwise Convolution. The principle of
Depthwise Separable Convolution is shown in Figure 2.

The number of parameters required for traditional
convolution and Depthwise Separable Convolution is set to

N, and N, respectively, and their calculation formulas are
shown in formulas (1) and (2).

leih'iw'cin'cout'kz’ (1)
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where i, and i, are the height and width of the input tensor,
k is the size of the selected convolution kernel, and ¢;, and
Cout TeSpectively represent the number of input and output
channels. Furthermore, as shown in formula (3)
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In practical application, N, is much less than N, which
means Depthwise Separable Convolution can reduce com-
putational overhead to a greater extent.

The model in reference [11] replaced YOLOv4’s back-
bone extractor CSPDarkNet53 [20] by MobileNetv3, which
reduces the number of parameters to a great extent.
However, it is difficult to achieve high accuracy if this model
is directly used to detect pulmonary tuberculosis. If the
lightweight of the model is improved at the expense of
detection accuracy, that will be contrary to the main target of
our study. Therefore, this article will ameliorate the Mobi-
leNetv3 and YOLOv4 to reduce the parameters of the
pulmonary tuberculosis detection model, improve detection
efficiency as well as the accuracy.

3. Design of Pulmonary Tuberculosis
Detection Model

The structure of the pulmonary tuberculosis detection model
refers to the YOLOv4 method, and the structure of YOLOv4
is shown in Figure 3. As can be seen from Figure 3, the
original YOLOv4 enhances the learning feature information
ability by virtue of the CSPDarkNet53 as the backbone part,
which reduces model overfitting through the combination of
traditional convolution and residuals. The neck part is
spliced with SPP module (spatial pyramid pooling) [21] and
PAN module (path aggregation network) [22] to complete
the multiscale feature information fusion of different re-
gions. Finally, the multiscale feature information is collected
by using the three Heads in the prediction part to generate
the final prediction bounding box. The original YOLOv4
focuses on efficiency and accuracy, but has not yet achieved
satisfactory results in the field of pulmonary tuberculosis
detection.

Different from the original YOLOv4, the developed
pulmonary tuberculosis detection model named MIP-MY
comprises three parts: a backbone extractor, enhanced
feature extractor, and a bounding box generator. A new
backbone extractor MIP is designed for MIP-MY, which is
the lightweight module of the detection model. MIP uses the
newly designed IRCA (Inverted Residual Channel Atten-
tion) module and pyramid pooling module to achieve
lightweight. MIP can extract abundant contextual infor-
mation and make preliminary sampling for pulmonary
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FiGure I: Distribution maps of the size of the lesions size. (a) Distribution maps of the cavity. (b) Distribution maps of the tree-in-bud
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1x1 Pointwise Conv

Input 3x3 Depthwise Conv

FIGURE 2: Principle of depthwise separable convolution.

tuberculosis. Then, in order to capture lesions of different
sizes, we designed MRFB (multiple accept field block)
module to construct the enhanced feature extractor, which
can have a wider acceptance field to reduce the missed
detection of small lesions. According to the momentous
information (lesion location, classification, and confidence
score) output by the bounding box generator, a compre-
hensive loss function is designed to regression the lesion
location and optimize the confidence score.

3.1. Backbone Extractor MIP. The function of the backbone
feature extractor MIP is to analyze the CT images of
pulmonary tuberculosis and extract the image features of
pulmonary tuberculosis lesions. In this paper, according
to the inverted residuals structure of MobileNetv3, a new
IRCA (Inverted Residuals Channel Attention) module is
constructed using channel attention mechanism. By
virtue of the inverted residuals structure, this module can
build a deeper network without a gradient explosion. An
introduced channel attention mechanism can capture the
corresponding context information on each IRCA
module and improve the feature extraction ability of the
network. The structure of IRCA is shown in Figure 4. As a
significant part of MIP, IRCA module constructs seven
effective feature layers for MIP to extract the lesions
information of pulmonary tuberculosis. The MIP con-
nects a pyramid pool module in the last effective feature

Backbone Part: CSPDarkNet53

!

Neck Part: SPP and PAN

|

Prediction Part: Head

ki

Figure 3: The structure of YOLOvA4.

layer to obtain multiple scale feature information. The
structure of MIP and pyramid pooling module is shown
in Figure 5.

Before completing the 1x1 Pointwise Convolution
operation, the IRCA module carries out Global-Average
pooling to obtain the feature graph with a smaller size, and
calculate the weight of the feature map through Relu6 and
Hard-Swish activation function. Finally, the weighted
multiplication is performed through channel attention. The
calculation formula of Global-Average pooling is shown in
formula (4).

Yo Z;‘l:o Xij
2 >

n

(4)

yan =

where x; ; is the pixel on the 2D slices of feature maps and
Yavg is the pixel mean of the Global-Average pooling. The
calculation formula of Relu6 and Hard-Swish activation

function is shown in formulas (5) and (6).
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fl(yavg) = min(max(O, yavg), 6), (5 fi=X- fZ(fl(yavg))’ (7)
fi ( Vave + 3) where the output X of the “Depthwise Separable Convo-
I ( )’avg) = Yavg * +, (6) lution” in formula (7) is a characteristic graph composed of

where f}(¥,,) is the activation result of ReLu6, and the
upper limit of this value is 6. f, (,,) is the activation result
of Hard-Swish. It is found that the accuracy of a neural
network can be enhanced by using the hard-swish activation
function in deeper convolution layers.

n* pixels, and f; is the weighted calculation result of the
whole channel attention.

In order to enable the backbone extractor to acquire
information about the lesions information of different scales,
this design draws lessons from the structure of PSPNet
(Pyramid Scene Parsing Network) [23] and designs a



pyramid pooling module as the integrated pooling layer of
the backbone extractor (max pooling+ average pooling),
which combines four pooled kernels of various scales
(32x32, 16 x16, 8 x 8 and 4 x 4) to further analyze the lo-
cation, size and other information about the lesions.

In summary, this design is improved by using the IRCA
module and pyramid pooling module to compose the
structure of a new backbone extractor MIP.

3.2. Enhanced Feature Extractor Dominated by MRFB.
The last three effective feature layers of the MIP backbone
extractor MIP will export feature maps with the resolution of
the original image of 1 to 8, 1 to 16, and 1 to 32, respectively,
providing pixel information of different sizes of lesions in
pulmonary tuberculosis for subsequently enhanced feature
extractor.

The initially enhanced feature extractor of YOLOV4 is
mainly composed of SPP module and PAN module. SPP will
take the result of the last feature layer of the backbone
extractor as input and divide the feature map into three
subregions of different sizes (8 x8, 4x4, and 2 x(2) for
maximum pooling, collecting multiscale eigenvalues. The
PAN is a reciprocating structure responsible for collecting
the output of three effective feature layers of the backbone
extractor to build a feature pyramid. Each effective feature
layer integrates the sampling information of the other two
layers to complete multiscale feature lesions.

Although the initially enhanced feature extractor uses a
multiscale feature fusion method to collect image infor-
mation, the utilization of multireceptive field information is
far from enough, and it is easy to ignore the feature ex-
pression of small targets. Therefore, in this section, com-
bining the ideas of expansion convolution and receptive field
amplification [24], the MRFB module is designed to opti-
mize the enhanced feature extractor of YOLOv4. The
structure of MREFB is shown in Figure 6.

Combined with the structure of the MRFB module, it can
see that the MRFB module adopts parallel expansion con-
volution, and expands and samples the receptive field of the
feature map through the collocation of three expansion rates
(dilated rate takes 1, 3 and 5) and three convolution kernels
(size takes 1 x 1, 3 x 3, and 5 x 5), and adds residual shortcut
to prevent the loss of feature information, and finally splices
the sampling results of each convolution to fuse the in-
formation of multiple receptive fields. As shown in Figure 6,
the MRFB module, as the probe of PAN, is connected with
the backbone feature extractor MIP, which makes up for the
deficiency of PAN feature map information collection.

3.3. Bounding Box Generator and Decoder. The function of
the bounding box generator is to achieve regression of the
information from the pulmonary tuberculosis lesion (lesion
size, class, and location), which is composed of three decou-
pling heads and a decoder. Each head generates three bounding
boxes of different sizes on the multiscale feature map sampled
by PAN to surround the pulmonary tuberculosis lesion. The
parameters of the bounding box include the coordinates of the
center point coordinates, size, class of lesion, and confidence
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score. However, this parameter information cannot directly
reflect the position of the final bounding box in the picture. The
information of the bounding box needs to be further decoded
by the decoder.

3.3.1. Decoding of Bounding Box. The bounding box is
decoded with Anchor. Anchor is a predefined bounding box
on each feature point of the input image. The activation
function for its decoding is shown in formula (8).
1

5

O(t):1+e

(8)

where t represents the confidence score and category prob-
ability of the bounding box, and these two kinds of parameters
are mapped to the range of [0,1] by function o(t). The
decoding definition of the center point coordinates (C,,C,)
of the bounding box is shown in formulas (9) and (10).

Cx = U(xoffset) + Ax’ (9)

CJ/ = U(yoffset) + Ay> (10)

where the coordinate offset (x g and y o) from the
center point of the prediction box is the coordinate offset
and the coordinate offset is relative to the center point of the
prediction box. (A,, A)) is the center point coordinate of the
Anchor, and the center point coordinates (C,,C,) of the
bounding box is obtained after decoding.

The decoding formulas for the height and width of the
bounding box are shown in formulas (11) and (12).

H=¢" Ay, (11)

W=¢e" Ay, (12)

where the 4 and w are the height and width of the bounding
box before decoding, Aj; and Ay are the height and width of
Anchor, and the height H and width W of the decoded
bounding box is calculated, respectively.

After decoding, the pulmonary tuberculosis lesions at the
same position in the image will be surrounded by a large
number of bounding boxes, so it is necessary to filter the
redundant bounding boxes according to the Intersection of
Union threshold (IOU) (usually set to 0.5), and then filter
out these bounding boxes with the highest confidence score
through the nonmaximum suppression algorithm [25]. The
mathematical definition of the IOU is shown in formula (13).

|bn v”|

10U=—|bubgt|, (13)

where the denominator represents the intersection of the area
of the bounding box b and the real box b9, and the numerator
represents the union. IOU reflects the similarity between the
predicted results of the detection model and the ground truth.

3.3.2. Integrated Loss Function. The integrated loss function
of the pulmonary tuberculosis detection network is mainly
composed of regression loss Lgigy, class loss Ly, and
confidence loss L.
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Ficure 6: The structure of MRFB module.

The general loss function of the detection model is
shown in formula (14).

where the subscript (i, j) shows the serial number of the j
bounding box on the pixel point in the feature map, S is
the resolution size of the feature maps and i is the number

L= Letou + Leontigence * Lonass: 19 of predicted bounding boxes on every feature map. Wf’;

The mathematical expression of regression loss Loy is
shown in formula (15).

gt 2
_ 4 t -17"4j t —1Wi,j
vy = | tanT - tanT 2 )
1j i.j
Vi
J
Ja.=— " 15
Y 110U + ;) (15)
$2 N gt
_ p(by;>b75)
Leiou = Z Z 1-10U;; + 7 o vVii|
i i,j

and Hf; are the width and height of the corresponding
ground truth, a; ;v . is the penalty factor of Lcjoy, and
p(bi,j,bf;) is the Euclidean distance between the center
point of the predicted bounding box and the ground truth,
and d, ; represents the diagonal distance of the smallest
enclosed area that can contain both the predicted
bounding box and the ground truth. The definition of class
loss is shown in formula (16).

$ N $ N
Liontidence = Z Z 0,;[-log(E; ;)] +A Z Z(l -0,;)[-log(1 - E; )], (16)
i j tJ

where the O, ; is a binary number to judge whether the
pulmonary tuberculosis focus is in the predicted bounding

box, and E; ; represents the confidence of every pulmonary

tuberculosis focus. A sets as 1 when the IOU is greater than
the threshold, otherwise takes 0. The class loss Ly, is
defined in formula (17).

N M
Lows =Y. 2 05 Y [Pi(o)log(P,? (¢)) + (1 - P;(c))log(1 - P,¥ ()], (17)
i g ¢ € Classes



where M is the number of classes, P; (¢) is the class score of
the detection network decision, and P,%" (c) represents class
score of the ground truth.

By improving the structure of the pulmonary tuber-
culosis detection model and the selection of the loss
function, the tuberculosis detection model developed in this
paper is named MIP-MY (MobileNet with Inverted re-
siduals and Pyramid pooling - Multiple receptive fields of
YOLO). The model creates a lightweight trunk extractor
MIP based on the basis of YOLOv4 and uses the MRFB
module to replace the ordinary convolution layer that
enhances the partial redundancy of the feature extractor,
which only takes up less memory to enhance the ability to
obtain multiple receptive field features. Finally, the inte-
grated loss function is aimed at completing the regression
and classification of pulmonary tuberculosis lesion infor-
mation at the model training.

The overall structure of the improved pulmonary tu-
berculosis detection model MIP-MY is shown in Figure 7.

3.4. Evaluation Method. The evaluation of the pulmonary
tuberculosis detection model is mainly determined by the
number of parameters, detection time of per CT, Preci-
sion, Recall, miss detection rate, and mean Average
Precision (mAP) [26]. The Precision Fp, is as shown in
formula (18).

TP

Fp=—— 18
Pr=Tp + FP (18)

where TP is the true positive of the sample, FP is the false
positive, and the sum of them is the prediction result of the
model. The recall rate Fp, is shown in formula (19).

TP

Fp=— 19
Re " Fp + EN (19)

where the FN is false negative, and the sum of FP and FN is
the total amount of the real box. In this study, the miss
detection rate is mapped from the average miss detection
rate of pulmonary tuberculosis CT in the test set 2 to the
logarithmic space, and its mathematical definition is as
shown in formula (20).

mr; =1- 7TPi
T TP, +FP;
(20)
Q
1Q Z log (max (mr;, €))
FLamr =€ =1 >

where mr; represents the miss rate of a single CT slice and
Q represents the total number of CT slices. Besides, log(0)
has no mathematical meaning, a smaller value ¢ is set to
prevent the independent variable of the logarithmic function
from being zero.

The IOU by a threshold of 0.5 is set to determine the TP
and FP of the sample, and the P-R curve of the detection
model is constructed with Precision and Recall as horizontal
and vertical coordinates, respectively. The mAP is equal to
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the mean area under the P-R curve of all categories. The
mathematical definition of the mAP is shown in formula
(21), where n is the total number of categories.

Zg _[ Epr “E,eq (Ere). (21)
n

mAP =

4. Experimental Setting and Analysis

The operating system for this experiment is Windows 10,
and the processors are Intel Core i7 and RTX 2060. Take
PyCharm as the integrated development environment and
utilize the deep learning framework of Keras based on
Python3.8. To adapt to model training, the initial learning
rate is set at 1.0 x 10-4. Adam optimizer and 1000 iterative
training are also selected. Finally, the cosine annealing al-
gorithm is used so that the pulmonary tuberculosis detection
model can adaptively adjust the learning rate according to
the number of iterations.

4.1. Ablation Experiment. For the sake of investigating the
contribution of the integrated loss function and different
components (MIP and MRFB) to improve the accuracy of
detection model MIP-MY, we selected test set 1 to carry out
two groups of ablation experiments.

The first group verifies the influence of different sub-
losses (regression loss Ly, class loss L, and confidence
loss L) in the integrated loss function on the detection
performance of the model, and then compares them with the
traditional cross-entropy loss.

The quantitative comparison of performance on each
loss function is shown in Table 1. Any single sub-loss can not
optimize the detection accuracy of the model, and it is
accompanied by a huge miss detection rate. Similarly, the
combination of any two sub-losses has no obvious im-
provement on the detection accuracy and miss detection
rate. The experimental results show that the coordinate
location, class, and confidence score of pulmonary tuber-
culosis lesions are indispensable factors and only by com-
bining these three seed losses can we effectively improve the
overall performance of MIP-MY. Compared with traditional
loss of the cross-entropy loss function, integrated loss can
obtain better training results.

The second group verifies the effectiveness of the im-
proved components in this paper, that is, we observe the
effects of the addition and deletion of MIP module and
MRFB module on the mAP, the number of parameters, miss
detection rate and detection time. And compared with the
lightweight model in reference [11].To facilitate differenti-
ation, we named the lightweight model introduced by Model
1 in reference [11] as MobileNetv3-YOLOv4, the model that
uses only MIP is called Model 2 and the model that uses only
MREFB is called Model 3. MIP-MY integrates all the im-
proved modules.

The results of the ablation experiment are shown in
Table 2. From these data, it can be inferred that, compared
with Model 1, the number of parameters of Model 2 is only
increased by 0.93 M, but the mAP is increased by 2.64%, and
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FiGure 7: The overall structure of MIP-MY (a) Backbone extractor MIP; (b) MRFB enhanced feature extractor with MRFB; (c) boundary

box generator and decoder.

TaBLE 1: The quantitative comparison of performance on each loss function.

Method mAP (%) Miss detection rate (%)
Leioy 79.47 20
LClass 78.81 20
Leont 76.15 21
Lerou * Lotass 87.41 14
Leiou + Leont 85.06 17
LClass + LConf 84.29 18
Cross-entropy loss 90.36 11
Integrated loss 95.59 6

TaBLE 2: The influence of each improved module on the pulmonary tuberculosis detection model.

Model mAP (%) Parameters (M) Miss detection rate (%) Detection time (s)
Model 1 85.86 38.64 16 6.95
Model 2 88.50 39.57 13 7.87
Model 3 91.92 58.29 10 8.86
MIP-MY 95.59 33.91 6 5.88

the miss detection rate is reduced by 3%. Model 3 only uses
MREFB to improve its mAP to 91.92%, but because it does not
adopt the lightweight module MIP, the number of param-
eters is still high and with lower detection efficiency. MIP-
MY combines the advantages of two improved modules to
make the structure lightweight with the expansion of the
receptive field feature mapping. Its mAP jumps to 95.59%,
9.73% higher than model 1, and the miss detection rate
decreases by 10%. Meanwhile, the number of parameters
decreases by 4.73M, and the detection time of 1.07s is
shortened.

4.2. Comparative Experiment of Mainstream Models.
Generally, the tuberculosis detection model is highly effi-
cient, highly precise and low memory consumption and easy
to apply to clinical diagnosis. To further verify the reliability
of the MIP-MY model, we use the test set 2 to compare with
several mainstream target detection models. The test set 2
contains 347 cavity samples and 539 tree-in-bud pattern
samples. These CT samples are used to evaluate the per-
formance of different detection models.

The P-R curve of the cavity of pulmonary tuberculosis
cavity and the tree-in-bud pattern detected by different
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FIGURE 8: P-R curves of different detection models. (a) P-R curves of Cavity; (b) P-R curves of Tree-in-bud pattern.
TaBLE 3: Evaluation results of each detection model on test set 2.
Model Precision (%) Recall (%) mAP (%) Miss detection rate (%) Parameters (M) Detection time (s)
U-net [6] 92.20 81.87 88.79 12 96.32 10.36
YOLOV3 (8] 89.14 76.08 74.92 22 61.53 9.63
Faster-RCNN [10] 94.96 83.66 92.40 8 136.65 11.62
YOLOv4 [12] 91.37 81.03 87.21 14 63.94 8.81
MIP-MY 96.59 85.50 95.32 6 33.91 5.72
= = Cavity
: 1
Ground $
Truth A
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F1GURE 9: Detection of cavity detection results by YOLOv3 and YOLOv4.
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FIGURE 11: Detection of the tree-in-bud pattern by YOLOv3 and YOLOv4.

models is shown in Figure 8. As can be seen from the graph,
compared to other mainstream detection models, the scope
surrounded by the P-R curve of MIP-MY is the largest.
Especially in Figure 8(b), the optimization effect of MIP-MY
on the P-R curve for detecting the tree-in-bud pattern is the
most obvious, indicating that this model is easier to capture
the clustered tree-in-bud pattern.

Table 3 shows the evaluation results of different
pulmonary tuberculosis detection models on test set 2.
Through quantitative analysis, the performance of the
single-stage detection model of YOLOV3 in reference [8]

and YOLOV4 in reference [12] is not up to the mark. The
reason is that there are many small cavities and clusters of
tree-in-bud pattern in test set 2, which can easily be
confused with normal bronchi in the lung region,
resulting in a high rate of missed detection in both
models. In contrast, the U-Net in reference [6] and the
two-stage detection model Faster-RCNN in reference
[10] have adequate mAP and low miss detection rate, but
these two models have a large number of parameters, so
they may not be suitable for equipment with general
computing power, and the detection time is slightly
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FIGURE 12: Detection of tree-in-bud pattern by U-Net, Faster-RCNN, and MIP-MY.

longer, so it is difficult to achieve the requirements of high
efficiency.

The MIP-MY model proposed in this paper has a re-
markable performance in test set 2. Compared with the
YOLOV4 model, the precision is increased by 5.22%, recall is
increased by 4.47%, mAP is increased by 8.11%, the number
of parameters is reduced by about 47%, and the error de-
tection rate is reduced by 8%. Furthermore, MIP-MY also
has a higher detection efficiency, the detection time of a
single pulmonary tuberculosis image is shortened by 5.9s
compared to the Faster-RCNN.

From the numerical analysis of the evaluation results,
MIP-MY can meet the target of high detection accuracy, and
its model parameters take up less space, further reinforces
the degree of lightweight.

In this paper, the pulmonary tuberculosis detection effect
of the proposed MIP-MY model MIP-MY proposed needs to
be shown more intuitively. The detection results of cavity in
each model are shown in Figures 9 and 10, and the detection
results of tree-in-bud pattern are shown in Figures 11 and
12. Ground Truth is the real label prescribed by the imaging
doctors, the pulmonary tuberculosis cavity is marked as
“cavity” in the bounding box, the tree-in-bud pattern is
marked as “tree-in-bud” in the bounding box, and the
corresponding confidence score is attached to the bounding
boxes, which reflects the credibility of these lesions identity.

Through the analysis of the detection results of YOLOV3
and YOLOv4, it is found that the confidence score of
YOLOV3 detection cavity and tree-in-bud pattern is low,
which may be due to the underutilization of multiscale
feature information by YOLOv3. Although YOLOv4 has a
high confidence score, it fails to detect small lesions because
the down sampling scale of the backbone extractor is too

large and the spatial and pixel information of some small
lesions is ignored in the layer-by-layer feature extraction.
However, if the down sampling scale is reduced, the de-
tection accuracy of other targets cannot be guaranteed. In
Figure 10, it shows that U-Net makes miss detection in a tiny
cavity, compared with the ability of Faster-RCNN to ac-
curately capture cavities of various sizes. But in the example
in Figure 12, U-Net and Faster-RCNN also omitted the
detection in some inconspicuous tree-in-bud pattern.

MRFB module can effectively solve these problems of
missed detection about lesions. MIP-MY was observed to
capture small cavities and clusters of tree-in-bud patterns
that are difficult to identify, indicating that the multiple-
receptive field information collection ability of the MRFB
module produces a marked effect and avoids the risk of small
targets being missed. At the same time, the pulmonary
tuberculosis lesion detected by MIP-MY has a high-level
confidence score, which provides a reliable digital expla-
nation for the automatic diagnosis ability of the detection
model.

5. Conclusions

In this paper, a lightweight detection model MIP-MY with
multiple receptive fields is developed for the automatic
detection of pulmonary tuberculosis. Through ablation ex-
periments, the contribution of MIP module in model
lightweight is verified, and the superior performance of
MRFB module and integrated loss function in improving
model detection accuracy is also verified. Comparative ex-
periments with other references show that MIP-MY has a
lower number of parameters, better detection efficiency and
accuracy, and its multiple receptive field characteristics
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strengthen the attention to small lesions and greatly reduce
the possibility of misdetection. To sum up, the improved
model MIP-MY achieves higher detection accuracy, realizes
the automatic detection of pulmonary tuberculosis cavity
and tree-in-bud pattern with lower calculation cost, and has
excellent imaging diagnostic potential of pulmonary tu-
berculosis. In subsequent studies, more effective data en-
hancement techniques can be used to enrich the diversity of
pulmonary tuberculosis CT data, such as generating game
networks (GAN) to generate more samples. In addition, the
generality of the model will be studied to make MIP-MY
model suitable for the detection of common lung diseases,
including lung cancer and pneumonia.
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