
Vol.:(0123456789)1 3

Sleep and Breathing 
https://doi.org/10.1007/s11325-022-02641-y

SLEEP BREATHING PHYSIOLOGY AND DISORDERS • ORIGINAL ARTICLE

Association of hypoglossal nerve stimulator response with machine 
learning identified negative effort dependence patterns

Becky Lou1 · Sam Rusk2 · Yoav N. Nygate2 · Luis Quintero1 · Oki Ishikawa1  · Mark Shikowitz3 · Harly Greenberg1

Received: 13 January 2022 / Revised: 15 April 2022 / Accepted: 17 May 2022 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
Background Hypoglossal nerve stimulator (HGNS) is a therapeutic option for moderate to severe obstructive sleep apnea 
(OSA). Improved patient selection criteria are needed to target those most likely to benefit. We hypothesized that the pattern 
of negative effort dependence (NED) on inspiratory flow limited waveforms recorded during sleep, which has been corre-
lated with the site of upper airway collapse, would contribute to the prediction of HGNS outcome. We developed a machine 
learning (ML) algorithm to identify NED patterns in pre-treatment sleep studies. We hypothesized that the predominant 
NED pattern would differ between HGNS responders and non-responders.
Methods An ML algorithm to identify NED patterns on the inspiratory portion of the nasal pressure waveform was derived 
from 5 development set polysomnograms. The algorithm was applied to pre-treatment sleep studies of subjects who under-
went HGNS implantation to determine the percentage of each NED pattern. HGNS response was defined by STAR trial cri-
teria for success (apnea–hypopnea index (AHI) reduced by > 50% and < 20/h) as well as by a change in AHI and oxygenation 
metrics. The predominant NED pattern in HGNS responders and non-responders was determined. Other variables including 
demographics and oxygenation metrics were also assessed between responders and non-responders.
Results Of 45 subjects, 4 were excluded due to technically inadequate polysomnograms. In the remaining 41 subjects, ML 
accurately distinguished three NED patterns (minimal, non-discontinuous, and discontinuous). The percentage of NED 
minimal breaths was significantly greater in responders compared with non-responders (p = 0.01) when the response was 
defined based on STAR trial criteria, change in AHI, and oxygenation metrics.
Conclusion ML can accurately identify NED patterns in pre-treatment sleep studies. There was a statistically significant 
difference in the predominant NED pattern between HGNS responders and non-responders with a greater NED minimal 
pattern in responders. Prospective studies incorporating NED patterns into predictive modeling of factors determining HGNS 
outcomes are needed.

Keywords Hypoglossal nerve stimulator · Artificial intelligence · Machine learning · Inspiratory flow · Negative effort 
dependence · Obstructive sleep apnea

Introduction

The hypoglossal nerve stimulator (HGNS), Inspire®, is a 
therapeutic option for patients with moderate to severe 
obstructive sleep apnea (OSA) who are intolerant of positive 
airway pressure therapy (PAP). However, HGNS requires 
surgical implantation and is associated with considerable 
cost. Thus, patient selection criteria to target therapy to those 
most likely to benefit are important.

Currently, patient selection is based on inclusion cri-
teria developed for the STAR trial, the investigation that 
led to FDA approval of Inspire® HGNS [1]. These crite-
ria include age > 18 years, body mass index (BMI) < 32 kg/
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m2 (increased to < 35 kg/m2 for some insurance carriers), 
and moderate to severe OSA defined as an apnea–hypopnea 
index (AHI) between 15 and 65 events/h. Subsequently, 
drug-induced sleep endoscopy (DISE), which assesses the 
site and type of airway obstruction, is performed for further 
phenotyping [2].

The pattern of airway obstruction on DISE has been 
associated with HGNS outcome. Anterior–posterior rather 
than concentric collapse at the level of the velopharynx 
is associated with better response [3, 4]. However, other 
studies concluded that DISE may not be a reliable indi-
cator of therapeutic efficacy [5]. Current clinical and 
DISE selection criteria remain suboptimal as successful 
improvement of the apnea–hypopnea index (AHI) with 
HGNS is achieved in only 60–70% of patients according 
to international registry data [1, 6, 7]. Additionally, DISE 
is invasive and requires conscious sedation.

Consequently, there is a paucity of reliable, non-invasive 
predictors of response to HGNS. The Mallampati and Fried-
man scores have limited predictive value [5]. Imaging of the 
upper airway (UA) using computed tomography and other 
modalities is also an inadequate indicator of response [8, 
9]. Some studies have shown that higher baseline AHI may 
be associated with a better response [10] while others have 
reported the opposite [6]. Additionally, neck circumference, 
age, and sex are also unreliable predictors of response [6]. 
A more consistent finding is that lower pre-operative and 
intra-operative PAP required for airway opening [11, 12] is 
associated with a greater reduction in the AHI with HGNS. 
The association of lower airway opening pressures with 
HGNS efficacy suggests that responders have more compli-
ant airways, particularly at the level of the soft palate, which 
may be more amenable to airway opening with HGNS. 
Therefore, it is reasonable to hypothesize that HGNS effi-
cacy may be dependent, at least in part, on the predominant 
site of UA obstruction. A non-invasive means to identify the 
pattern and primary site of UA obstruction during sleep may 
be useful to better select patients for HGNS.

Polysomnographic (PSG) signals can identify features of 
OSA that may lead to a personalized approach to therapy 
[13]. In this regard, different patterns of inspiratory flow 
limitation have been observed in the nasal pressure signal, a 
surrogate for airflow typically recorded during sleep studies. 
Negative effort dependence (NED) is present when inspira-
tory airflow decreases despite increasing driving pressure. 
This results in distinct patterns of inspiratory flow limita-
tion that have been associated with different anatomic levels 
of UA collapse [14] (Fig. 1). Building on the relationship 
between NED pattern and level of UA collapse [14, 15], 
we hypothesized that the predominant pattern of inspiratory 
flow limitation on the nasal pressure signal in pre-operative 
sleep studies could contribute to the characterization of OSA 
phenotypes associated with HGNS response.

However, manually identifying and quantifying NED pat-
terns on a breath-by-breath basis on overnight sleep studies 
is impractical. Artificial intelligence and machine learning 
(ML) have been utilized to assist with PSG/HST scoring 
and approach “human-level” accuracy [16]. Furthermore, 
ML has been suggested as an efficient high-dimensional tool 
to assess physiological waveforms to define OSA subtypes 
[17–20]. In this research, we trained an ML model to iden-
tify NED patterns on the nasal pressure signal of diagnostic 
sleep studies. We then retrospectively applied the model to 
a separate test data set to assess the association of NED 
pattern predominance for HGNS therapy responders and 
non-responders.

Methods

Dataset

All patients (n = 50) were evaluated and treated for OSA 
with the Inspire® HGNS at the Northwell Health Sleep 
Disorders Center as per standard clinical practice. Surgical 
implantation of Inspire® was performed by one otolaryn-
gologist (MS). The Northwell Health Institutional Review 
Board approved this study. This analysis is a retrospective 
assessment of preimplantation diagnostic sleep studies as 
well as post-implantation sleep studies performed after 
optimization of HGNS settings. All sleep studies were 
scored per AASM guidelines. Hypopneas were defined 

Fig. 1  NED patterns. Signals obtained from the nasal pressure signal 
(surrogate for airflow) of a sleep study (PSG and HST) demonstrat-
ing A non-flow limited inspiratory pattern, B NED minimal, which 
is defined by a less than 34% reduction from the peak to the plateau 
of the inspiratory flow signal, C NED non-discontinuous pattern 
defined as more than a 34% decrease from the peak to the plateau of 
the inspiratory flow signal, and D NED discontinuous which also has 
more than a 34% decrease from peak to plateau of the inspiratory sig-
nal as well as an abrupt disruption in flow
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as a 30% reduction in nasal flow accompanied by a ≥ 4% 
decrease in  SpO2.

The development dataset contained 5 patients encompass-
ing 5 pre-therapy PSG sleep studies acquired with Natus 
Sleepworks. PSG’s that contained a representation of all 3 
NED patterns were chosen for the development set. The test 
dataset contained a total of N = 45 patients encompassing 
90 sleep studies, consisting of 45 pre-therapy studies and 45 
post-therapy studies. All 45 pre-therapy studies were manu-
ally reviewed for technical adequacy resulting in the exclu-
sion of 4 studies. The remaining test dataset N = 41 consisted 
of 5 PSG recordings acquired with Natus Sleepworks and 
36 HSATs acquired with Noxturnal T3. Both Natus Sleep-
works and Noxturnal T3 incorporate clinically equivalent 
nasal pressure transducers. Forty-five post-therapy studies 
included 6 in-laboratory PSGs and 39 HSATs. Post-therapy 
HSATs were performed on a single HGNS voltage through-
out the night. Post-therapy PSGs were performed as titration 
studies with AHI and oxygenation data taken from the seg-
ment of the study with the therapeutic voltage that resulted 
in the lowest AHI. Respiratory indices were calculated using 
total recording time (TRT) defined as the time from “lights 
out” to “lights on” for both PSGs and HSATs so that indices 
derived from both study types would be comparable. Post-
implantation adjustments were made according to the stand-
ard Inspire® post-implantation pathway [21]. Pre-therapy 
and post-therapy HSATs were performed instead of PSG in 
some patients because of insurance reasons, patient prefer-
ence, and COVID-19 restrictions.

Negative effort dependence (NED) analysis

NED definition

As described by Genta et al. [14], three NED patterns were 
identified and were characterized by the percent reduction 
from the peak to the plateau of the inspiratory portion of the 
nasal pressure waveform. The NED minimal pattern was 
characterized by < 34% reduction, NED non-discontinu-
ous > 34% decrease, and NED discontinuous > 34% decrease 
with abrupt disruptions in flow (Fig. 1). These three NED 
patterns were used to characterize breaths in 5 pre-therapy 
PSG sleep studies, which in turn were used to develop the 
NED identification model.

NED dataset

A total of 2690 NED events across 5 PSGs used for the 
development set were manually classified by two experi-
enced sleep physicians into one of the three NED patterns 
based on the NED pattern criteria described above. Over-
all, 953/2690 (35.4%) were annotated as NED minimal; 

744/2690 (27.7%) as NED discontinuous; and 993/2690 
(36.9%) as NED non-discontinuous.

NED modeling

This characterization of NED events was used to train a 
15-layer convolutional neural network (CNN) model. The 
model was trained to classify each manually annotated NED 
event into one of the three patterns. The input to the CNN 
was a 30-s window of the nasal pressure flow signal cen-
tered at the end of each annotated NED event (supplemental 
Fig. 1). Leave-one-patient-out (LOPO) cross-validation was 
used to evaluate the CNN model.

HGNS response analysis

Response definition

A successful HGNS response was initially defined by 
criteria used in the STAR trial as a 50% decrease of the 
AHI and a post-therapy AHI < 20/h [1]. In addition to 
AHI, other oxygenation indices were analyzed as HGNS 
response endpoints including both ≥ 3% and ≥ 4% desatu-
ration criteria (ODI3, ODI4), percent of study time with 
SpO2 below 90% (T90), and the hypoxic burden index 
(HBI) defined by the area under the desaturation events 
with associated respiratory events [22]. These indices were 
analyzed as a decrease of greater than or equal to 50% 
between the pre-therapy and post-therapy sleep study as 
additional endpoints of HGNS response denoted as ΔAHI, 
ΔODI3, ΔODI4, ΔT90, and ΔHBI.

NED variables

The NED event model was leveraged to generate three NED 
pattern variables for each patient in the HGNS response sta-
tistical analysis (Fig. 2). The NED model was evaluated on 
all breaths of the test set during the total recording time. 
A signal processing-based method was used to detect each 
breath and the input window was centered at the inspira-
tory portion of each individual breath flow waveform. The 
3 resulting NED variables represent the proportion of each 
predicted NED event type as a ratio of all analyzed breaths 
for each patient.

Demographic, clinical, and sleep study variables

Demographic, clinical, and sleep study variables were evalu-
ated in the statistical analysis for HGNS response in addition 
to NED variables. Demographic variables included gender 
and age; clinical variables included pre-therapy BMI and 
Epworth Sleepiness Scale (ESS) scores; sleep study varia-
bles included pre-therapy AHI, ODI3, ODI4, T90, and HBI.
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Statistical analysis

A two-sided t-test was used to evaluate all NED, demo-
graphic, clinical, and sleep study variables for HGNS 
response. All variables were evaluated with endpoints 
defined by STAR Trial, ΔAHI, ΔODI3, ΔODI4, ΔT90, and 
ΔHBI. Statistical significance was determined at p < 0.05.

Results

NED event results

The NED classification model showed a classification 
accuracy of 84% among 2690 NED events (Fig. 3). The 
high agreement between the model and manual anno-
tation suggests that the annotators were consistent in 
manual classification and that different NED subclasses 
contained distinct flow patterns that could be discerned 
by the machine learning model. Furthermore, there was 
a low level of disagreement in the model between NED 

discontinuous and NED minimal with only 25/1727 (1.4%) 
events being misclassified as the other class suggesting 
a strong phenotypic differentiation between these NED 
subclasses.

HGNS effect of therapy

The STAR Trial’s definition of response is based solely 
on a specific change in AHI. However, a link between the 
severity of nocturnal oxygen desaturation and cardiovascu-
lar consequences has been demonstrated [22, 23]. As such, 
we hypothesized that expanding the definition of therapy 
response to include nocturnal oxygenation metrics may 
yield a more robust and relevant assessment of HGNS out-
come. Therefore, metrics describing sleep-related oxygen-
ation including T90, ODI, and HBI were also incorporated 
into the response definition. The effect of HGNS on AHI, 
ODI3, ODI4, T90, and HBI was assessed by Wilcoxon 
signed-rank test. All indices showed statistically signifi-
cant improvement with HGNS (Table 1).

Fig. 2  Dataset description. Description of the datasets used in the 
study as well as the NED pattern classification and HGNS response 
modeling. A dataset of 50 patients was split into two sub-datasets. 
The first (N = 5) is used for the development of a NED pattern clas-
sification model which is trained and validated using a leave-one-
patient-out (LOPO) cross-validation methodology. The second 

(N = 45) is used to generate HGNS response variables consisting of a 
combination of NED-based variables (calculated utilizing the trained 
NED classification model), demographics, and sleep study indices. A 
p-value is then calculated for each feature to determine the statistical 
significance associated with HGNS response
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HGNS results

The test dataset consisted of 35 men and 6 women. Other 
demographic information with standard deviations includes 
age 61.5 ± 11.8 years, BMI 29.9 ± 3.4 kg/m2, pre-treatment 
AHI 36.6 ± 14.9/h, and ESS 10.6 ± 5.8. We classified 
patients as HGNS responders or non-responders based 
on the STAR Trial definition of success, ΔAHI, ΔODI3, 
ΔODI4, ΔT90, and ΔHBI. Comparison of responders and 
non-responders revealed no statistically significant differ-
ences in image, gender, BMI, pre-treatment ESS, AHI, 
ODI3, ODI4, HBI, or percentage of NED discontinuous and 
NED non-discontinuous patterns for the majority of end-
points (Table 2). However, the percentage of NED minimal 

pattern across endpoints defined by STAR Trial (p = 0.01), 
ΔAHI (p = 0.01), ΔODI3 (p = 0.01), ΔODI4 (p = 0.01), and 
ΔT90 (p = 0.02) differed significantly between responders 
and non-responders (Table 1). Overall pre-therapy charac-
teristics that appear to define responders are those with a 
greater amount of NED minimal pattern. Specifically for 
the STAR trial criteria, responders exhibited an 18% higher 
proportion of NED minimal breaths (48% vs. 30%).

Among these various metrics, the percentage of breaths 
with a NED minimal pattern of inspiratory flow limitation 
was consistently significantly different between respond-
ers and non-responders regardless of whether we defined 
success based on reduction in AHI, ODI3, ODI4, or T90. 
Thus, NED minimal pattern emerged as a significant factor 

Fig. 3  NED classification. A 
machine learning model was 
trained to distinguish between 
different NED patterns: NED 
minimal, NED non-discontin-
uous, and NED discontinuous. 
There was a high agreement 
between the model and manual 
annotation with an accuracy of 
84%

Table 1  Effect of HGNS 
therapy

Effect of HGNS therapy on our patient cohort was compared using Wilcoxon signed-rank test and included 
AHI as well as metrics of nocturnal oxygen saturation (ODI, T90, and HBI). There is a statistically signifi-
cant (p < 0.001) difference in this patient cohort in AHI, ODI3, ODI4, T90, and HBI

Baseline Mean Baseline 
0.25  
quartile

Baseline 
0.75  
quartile

HGNS Mean HGNS 
0.25 
quartile

HGNS 
0.75 
quartile

p-value

Endpoint
  AHI 36.0 23.7 45.6 17.05 6.8 22.1 p < 0.001
  ODI3 40.1 30.7 53.1 26.9 13.7 37.0 p < 0.001
  ODI4 31.0 20.3 42.0 17.6 7.8 25.4 p < 0.001
  T90 0.17 0.06 0.23 0.11 0.03 0.13 p < 0.001
  HBI 1.49 0.69 1.86 0.67 0.15 0.83 p < 0.001
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distinguishing responders and non-responders with more 
NED minimal pattern breaths in the responders.

Discussion

Current patient selection criteria for Inspire® HGNS are 
associated with successful outcomes in 60–70% of cases 
using the STAR trial definition of success [7]. More precise 
selection criteria may increase success rates. We hypoth-
esized that the pattern of inspiratory flow limitation seen on 
the nasal pressure signal of pre-operative sleep studies could 
contribute to the prediction of response to HGNS therapy. 
Negative effort dependence (NED) develops during inspir-
atory flow limitation when inspiratory airflow decreases 
despite increasing driving pressure. This results in distinct 
patterns of inspiratory flow limitation which have previously 
been described as NED minimal, NED non-discontinuous, 
and NED discontinuous. As these NED patterns have been 
associated with different anatomic levels of UA collapse, 
they may have value in predicting response to HGNS therapy 
[14]. We developed an ML model to detect these different 
NED patterns on pre-therapy sleep studies in a develop-
ment set. We then applied this model to a subsequent test 
data set and evaluated the association of the predominant 
NED pattern on the pre-therapy sleep study with response 
to HGNS therapy. Our data revealed a greater percentage 

of NED minimal pattern of inspiratory flow limitation dur-
ing pre-operative sleep studies in responders compared with 
non-responders to HGNS therapy.

A prior study assessed the relationship of various NED 
patterns with the level of upper airway collapse determined 
by endoscopic visualization as well as pharyngeal flow 
and pressure measurements. The NED minimal pattern 
of inspiratory flow limitation has been shown to indicate 
that the retroglossal region is a major site of UA collapse. 
The non-discontinuous pattern may reflect palatal or lateral 
pharyngeal wall collapse. While abrupt discontinuities in the 
NED pattern (NED discontinuous) has been associated with 
an epiglottic site of collapse [14]. While these associations 
may not rule out collapse in other segments of the UA, they 
suggest that the NED pattern may reflect the predominant 
site of airway collapse. Our study is novel in that it demon-
strated the accuracy of ML in identifying NED patterns on 
sleep studies, a task that is impractical to perform manually. 
Furthermore, all signals analyzed by the ML model are those 
already in PSG or HST recording montages, making it easy 
to implement clinically. All indices were calculated with 
TRT as the denominator, which eliminates differences in 
the calculation of indices between PSG and HST. Our data 
demonstrated that the percentage of inspiratory flow limited 
breaths demonstrating the NED minimal pattern was greater 
in HGNS responders. While this does not rule out collapse 
in other regions of the UA, it suggests that the retroglossal 

Table 2  Test set feature analysis (STAR Trial Responder vs. non-responder characteristics)

Responders and non-responders from the test set were identified by the STAR trial definition (AHI reduction by 50% and AHI < 20 events/hr). 
A two-sided t-test was used to analyze differences in demographic, clinical, sleep study, and NED variables distinguishing responders from 
non-responders. Other endpoints include reduction by > 50% in AHI (but not fulfilling < 20 events/hr), ODI3, ODI4, T90, and HBI are listed. 
p-values are listed for each variable associated with each metric. Aside from gender, numbers in parentheses are the mean value (responders, 
non-responders)

STAR Trial ΔAHI-50% ΔODI3-50% ΔODI4-50% ΔT90-50% ΔHBI-50%

N (# responder, # non-
responder)

26, 15 28, 13 22, 19 18, 23 19, 22 18, 23

Demographic & clinical variables
  Age, yr 0.90 (60.6, 61.1) 0.64 (61.4, 59.5) 1.00 (60.8, 60.8) 0.67 (61.5, 59.9) 0.01 (65.3, 55.6) 0.01 (64.7, 55.8)
  Gender, M:F 0.86 (22:4, 13:2) 0.40 (23:5, 12:1) 0.85 (19:3, 16:3) 0.15 (13:5, 22:1) 0.50 (15:4, 22:2) 0.58 (14:4, 19:2)
  Body mass index, kg/m.2 0.11 (29.4, 31.2) 0.06 (29.3, 31.5) 0.19 (29.2, 30.7) 0.08 (29.2, 31.1) 0.85 (29.9, 30.1) 0.71 (29.8, 30.2)
  Epworth Sleepiness Scale 0.99 (10.3, 10.3) 0.45 (9.89, 11.3) 0.16 (11.6, 9.23) 0.12 (11.5, 8.83) 0.55 (9.86, 10.9) 0.28 (9.52, 11.4)

Sleep study variables
  AHI, events/h 0.84 (35.7, 36.6) 0.91 (36.2, 35.6) 0.83 (36.5, 35.6) 0.85 (36.4, 35.5) 0.51 (37.5, 34.3) 0.61 (37.1, 34.7)
  ODI3, events/h 0.42 (41.7, 37.2) 0.20 (42.4, 35.0) 0.23 (43.5, 37.1) 0.13 (43.6, 35.5) 0.15 (43.6, 36.0) 0.16 (43.4, 35.8)
  ODI4, events/h 0.65 (31.9, 29.3) 0.32 (32.8, 27.1) 0.24 (34.4, 28.0) 0.18 (34.1, 27.0) 0.13 (34.7, 26.6) 0.10 (34.8, 26.1)
  T90, %time 0.05 (0.13, 0.22) 0.16 (0.14, 0.21) 0.05 (0.12, 0.21) 0.01 (0.12, 0.23) 0.54 (0.15, 0.18) 0.65 (0.18, 0.15)
  HBI, (%min)/h 1.00 (89.1, 89.0) 0.20 (100.2, 65.1) 0.69 (94.6, 84.4) 0.77 (92.4, 84.9) 0.22 (103.5, 72.4) 0.02 (114.2, 57.1)

NED variable
  No discontinuous, % 0.41 (41, 45) 0.25 (40, 47) 0.17 (38, 46) 0.19 (39, 46) 0.89 (42, 43) 0.91 (43, 42)
  Discontinuous, % 0.18 (12, 18) 0.56 (13, 16) 0.34 (12, 16) 0.31 (12, 16) 0.03 (10, 19) 0.13 (11, 18)
  Minimal, % 0.01 (48, 30) 0.01 (47, 30) 0.01 (50, 34) 0.01 (49, 32) 0.02 (48, 33) 0.08 (46, 35)
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region is a predominant site of obstruction in responders. 
This finding is consistent with the major effect of HGNS 
which produces anterior movement of the tongue.

We recognize that the definition of “success” is evaluated 
typically in the binary sense, although HGNS “success” may 
be better characterized as a continuous spectrum. We also 
acknowledge that there may be a night to night variation in 
OSA severity and our post-therapy data is derived from a 
single night sleep study. There are several other limitations 
to our study including a small sample size which can limit 
ML performance and accuracy. Furthermore, our metrics 
defining therapeutic success were based on objective meas-
ures from PSG and HST and did not incorporate subjective 
outcomes such as improvement in excessive daytime sleepi-
ness, functional status, or cardiovascular outcomes.

The present findings demonstrate the feasibility of our 
ML-based model to identify predominant NED patterns as 
well as their relevance to HGNS outcomes. Future studies 
are needed to prospectively evaluate the role of NED pattern 
determination, possibly as part of a multivariable endotypic 
and phenotypic model, to predict HGNS outcomes.
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