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Abstract

Heat stress is one of the major abiotic stresses that impair plant growth and crop productivity.

Plant growth-promoting endophytic bacteria (PGPEB) and humic acid (HA) are used as bio-

stimulants and ecofriendly approaches to improve agriculture crop production and counteract

the negative effects of heat stress. Current study aimed to analyze the effect of thermotolerant

SA1 an isolate of Bacillus cereus and HA on tomato seedlings. The results showed that com-

bine application of SA1+HA significantly improved the biomass and chlorophyll fluorescence

of tomato plants under normal and heat stress conditions. Heat stress increased abscisic acid

(ABA) and reduced salicylic acid (SA) content; however, combined application of SA1+HA

markedly reduced ABA and increased SA. Antioxidant enzymes activities revealed that SA1

and HA treated plants exhibited increased levels of ascorbate peroxidase (APX), superoxide

dismutase (SOD), and reduced glutathione (GSH). In addition, heat stress markedly reduced

the amino acid contents; however, the amino acids were increased with co-application of SA1

+HA. Similarly, inductively-coupled plasma mass-spectrometry results showed that plants

treated with SA1+HA exhibited significantly higher iron (Fe+), phosphorus (P), and potassium

(K+) uptake during heat stress. Heat stress increased the relative expression of SlWRKY33b

and autophagy-related (SlATG5) genes, whereas co-application of SA1+HA augmented the

heat stress response and reduced SlWRKY33b and SlATG5 expression. The heat stress-

responsive transcription factor (SlHsfA1a) and high-affinity potassium transporter (SlHKT1)

were upregulated in SA1+HA-treated plants. In conclusion, current findings suggest that co-

application with SA1+HA can be used for the mitigation of heat stress damage in tomato

plants and can be commercialized as a biofertilizer.

1. Introduction

Temperature plays a vital role in plant growth and development [1]. However, a rise in temper-

ature beyond a threshold level causes irreversible damages to plant growth and development

[1,2]. High temperatures affect all developmental stages of plants such as germination,
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vegetative growth, and gamete, seed and fruit development, resulting in crop yield reduction

[3,4]. Lobell et al. [5] reported that high temperatures reduce grain yield per plant by 70% for

each 1˚C increase in temperature, resulting in 4–14% yield loss in rice. Similarly, You et al. [6]

reported a 10% decrease in wheat yield with a 1˚C increase in temperature. Furthermore,

Intergovernmental Panel on Climate Change (IPCC) reported that India would likely suffer

from a 10–40% loss in crop production by 2080–2100 due to heat stress [7].

Heat stress causes various physiological, biochemical, morphological and molecular

changes that adversely affect plant growth, biomass, productivity and yield production either

individually or in combination with other abiotic stresses [1,2,8]. Leaves and stem scorching,

leaf abscission and senescence, root inhibition, shoot development and fruit damage are the

physiological injuries observed with an increase in temperature [9,10]. Among the physiologi-

cal processes, photosynthesis is more sensitive to heat stress and inhabit Photosystem II (PSII),

which leads to a decrease in chlorophyll florescence, altering the photosynthetic pigment, foliar

expansion and leaf senescence [11–13]. Biochemical changes that can occur in plants include

the fluidity of membranes, organization of cellular structure, the structure of amino acids, an

increase or decrease in the concentration of metabolites and osmolytes, a decrease in the syn-

thesis of normal proteins, an increase in stress hormones like abscisic acid (ABA), a decrease

in defense hormones like salicylic acid (SA), and the production of injurious reactive oxygen

species (ROS) and antioxidants. Heat stress often leads to the accumulation of ROS such as

superoxide radicals and hydrogen peroxide, which cause oxidative damage and disrupt meta-

bolic homeostasis in plants [14–16]. However, plants activate antioxidant complex systems

such as reduced glutathione (GSH), superoxide dismutase (SOD) and other macromolecules

(proline, carbohydrates) that protect them from oxidative damages and scavenge excess ROS

[14,17]. Molecular changes include the alteration of genes involved in the protection from heat

stress. These genes are responsible for the expression of osmoprotectants, detoxifying enzymes

and transporters and increases in the regulation of proteins called heat shock proteins (HSPs),
heat stress transcription factors (HSFs), stress-induced proteins or stress proteins that are

expressed and play key roles in conferring stress tolerance when plants are exposed to any

stressors [18–20].

Heat stress tolerance is also achieved through genetic engineering, breeding programs, tis-

sue culture, maturation and chemical fertilizer application, which are time consuming, costly

and have adverse effect on the environment [20–23]. One alternative and ecofriendly approach

for the improvement of agricultural crop production to ameliorate the negative effects of high

temperature is the use of plant growth-promoting bacteria and chemicals such as humic sub-

stances. This biological technique is extremely popular and is broadly accepted all over the

world [24–29]. Humic acid (HA) is a heterogeneous mixture of many compounds that

enhance plant growth under normal and abiotic stress conditions [28–31]. The use of plant

growth promoting bacteria is another approach for ameliorating the negative effects of abiotic

stress (21–24). In the last couple of decades, a number of different researchers reported the use

of plant growth-promoting bacteria (PGPB) for enhancing tolerance to heat stress in plants

such as sorghum [26], chick pea [32], wheat [27,33], tomato [34], and potato [35]. Further-

more, PGPBs have the ability to produce phytohormones that help make plants tolerant

against heat stresses by enhancing biofilm formation as well as reducing ABA level and HSP

accumulation [24,26,27,32,33,36]. Previous reports indicated that significant changes in the

root architecture in non-leguminous plants induced by humic substances may favor the fitness

of bacteria-plant interactions, thus resulting in a significant increase in bacteria attachment

and survival on plant surfaces as well as endophytic colonization [37–39]. Regarding the

mutual interactions between plant roots and microorganisms, previous studies [39–41]

reported that heat stress is a key factor in determining soil fertility as a candidate vehicle for
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PGPB and co-inoculation could be an excellent approach. Other studies [40,42,43] indicated a

further benefit of the interaction between microorganisms and organic matter through biolog-

ical substrate enrichment.

Tomato is one of the most popular and widely consumed vegetables grown worldwide. It is

the second most popular vegetable after potato and is considered a good source of dietary min-

erals, vitamins, lycopenes and other essential nutrients [44,45]. Although tomato has the

potential to be cultivated in every location throughout the world, high temperatures above its

optimum temperature decrease growth, biomass and yield. According to Abdellatif et al. [46],

high temperature affects all stages of tomato plants from the germination to reproductive

phases and affects several physiological and biochemical processes dealing with final yield

reduction. Canellas and Olivares [47] reported the combined application of PGPB and HA on

several crops. Similarly, Busato et al. [48] applied a microbial suspension and a humic sub-

stance to plant substrates to promote seedling adaptation to stressful environments. Pishchik

et al. [49] reported the impact of combined application of microbes and HA on tomato plants.

However, least information are available on the combined effects of PGPB specifically endo-

phytes and HA on tomato seedlings under heat stress conditions. Hence, in the present study,

it was aimed to understand the combined effects of thermotolerant SA1 an isolate of Bacillus
cereus and HA on tomato seedling’s growth and physiological changes at the biochemical, and

molecular levels under heat stress.

2. Materials and methods

2.1. Isolation and screening of bacterial strains

Four plant samples (Artemisia princeps Pamp, Chenopodium ficifolium Smith, Oenothera bien-
nis L. and Echinochloa crus-galli) were collected for the isolation of endophytic bacteria from

the sand dunes at Pohang beach (latitude 36˚7056.200N, longitude 129˚ 23055.100E) in the

Republic of Korea. The method described by khan et al [50,51] was used for the isolation

and screening of bacterial endophytes from the roots of the above mentioned plants.

Prior to bioassay assessment and molecular identification, pure cultures of the selected iso-

lates were screened for the production of indole-3-acetic acid (IAA), siderophores and phos-

phate solubilization potential. Salkowski reagents were used for the initial confirmation of IAA

production according to the protocol developed by Patten and Glick [52]. The detailed method

described by Katznelson and Bose [53] and Khan et al [51] was assessed for phosphate solubili-

zation potential. For siderophore production, the commonly used method introduced by

Schwyn and Neilands [54] was followed. For bioassay assessment, bacterial isolates that

revealed prominent plant growth-promoting traits in the initial screening were also screened

on Waito-C (gibberellin [GA]-deficient) rice seedlings.

2.2. Molecular identification and screening for thermotolerant bacteria

Two different methods were used for the identification of thermotolerant bacteria. In the first

method, multiple plant growth-promoting traits-producing bacteria were streaked on Luria-

Bertani (LB) agar plates and kept at 30, 35, and 40˚C for 6 days. The growth of the selected iso-

lates was checked on a daily basis. In the second method, isolates were grown in LB broth

media for 6 days consecutively. The culture was grown on a rotatory shaker at 35, 40, and

45˚C. The growth of all the isolates was recorded using a spectrophotometer at 600 nm for 6

days. For molecular identification, rRNA was isolated using the detailed method presented by

Sambrook and Russell [55]. Specific primers for 16S rDNA, 1492 Reverse (50-CGG (T/C)
TA CCT TGT TAC GAC TT-30) and 27 Forward (50-AGA GTT TGA TC (C/A) TGG
CTC AG-30) were used and amplified according to the protocol described by Khan et al. [50].
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For the determination of nucleotide sequence homology for the selected isolates, the BLAST

NCBI tool was used, while MEGA 6.1 was used for phylogenetic analysis as suggested by

Tamura et al. [56].

2.3. In-vitro IAA, GA and organic acid quantification of isolate SA1

For the quantification of IAA, GA and organic acids, isolate SA1 was grown on LB media for 3

days and centrifuged at 5000Xg for 15 min. Following the method developed by Khan et al.

[57], the culture broths of selected isolates were analyzed for IAA production. Similarly, for

the extraction and quantification of the GA content, the method described by Khan et al [58]

was followed and the data was calculated in nano-grams per milliliter. Organic acids were

determined using Kang et al.’s method [59]. In brief, the culture broth of the bacterial isolate

was centrifuged and the supernatant was filtered through 0.22-μm SmartPor Syringe Filter (P/

N SPU0213-1). A total of 10 μL of the filtrate sample was injected into a high-performance liq-

uid chromatography system (HPLC; Waters 600, Milford, MA, USA). For determination of

the organic acids, the retention time and peak areas were compared with standards from

Sigma-Aldrich, USA. All of the samples were analyzed in triplicate.

2.4. Plant-microbe growth and heat stress conditions

Vir Yegwang tomato seeds were purchased from Danong Co and surface sterilize with 70%

EtoH followed by 2.5% NaOH and rinsed with deionized distilled water [60]. After surface ster-

ilization, the seeds were germinated in an incubator (28˚C). After 20 days of germination in the

trays, uniform seedlings were selected for further processing. Plastic pots (440×270×195mm)

were filled with three-time autoclaved field soil (M2 greenhouse at Kyungpook National Uni-

versity) and used for the growth of tomato. After 1 week of transplantation, 1L of freshly diluted

bacterial culture(109 CFU/mL) was inoculated to each pot; this was repeated further two time

after 5 days, similarly 500mg/L of humic acid was used [61,62], while autoclaved double dis-

tilled water were used for control tomato plants. At V3 stage plants were exposed to heat stress

and plants sample were collected at 15 days. The experimental design was as follows: (a) Con-

trol (normal tomato), (b) Tomato with Isolate SA1, (c) Tomato with HA, (d) Tomato with SA1

+HA, (e) heat stress (37˚C), (f) heat stress with SA1, (g) heat stress with HA, (h) heat stress

with SA1+HA in a growth chamber. Normal tomato plants were subjected to a 24-hour cycle at

28˚C for 14 hours and 25˚C for 10 hours with a relative humidity of 60 to 70% while the heat

stress group was subjected to a 24-hour cycle at 37˚C for 14 hours and 30˚C for 10 hours with a

relative humidity of 60 to 70%. Upon stress completion, growth attributes such as root/shoot

length, biomass (fresh and dry weight) were recorded. The plants (shoot) were immediately

harvested in liquid nitrogen and stored at -80 ˚C until further biochemical analyses. For chloro-

phyll estimation, a chlorophyll fluorometer (FIM 1500, ADC Bioscientific Ltd, UK) was used to

measure chlorophyll fluorescence. The collected data were used for photosystem II (Fv/Fm)

calculation as reported by Genty et al. [63].

2.5. Plant endogenous phytohormone quantification

The plant samples were subjected to endogenous phytohormone analysis and quantification

under a controlled environment. Endogenous ABA was quantified according to the detailed

method described by Asaf et al. [64] and Khan et al [65]. The pulverized shoot plant samples

were treated with 30 mL of extraction solution containing 95% isopropanol, 5% glacial acetic

acid, and 20 ng of [(±)– 3,5,5,7,7,7–d6]–ABA. The extracts were dried and methylated by add-

ing diazomethane for GC-MS SIM (6890 N network GC system, and 5973 network mass-selec-

tive detector; Agilent Technologies, Palo Alto, CA, USA) analysis. On the other hand, SA was
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quantified following the method of Jan et al. [66]. Freeze-dried aerial parts were quantified

using a HPLC system equipped with a fluorescence detector (excitation and emission at 3005

and 365 nm, respectively; Shimadzu RF-10AXL; Shimadzu, Kyoto, Japan) and fitted with a

C18 reverse phase HPLC column (particle size 5 m, pore size 120 Å; HP Hypersil ODS; Waters

Co., Milford, MA, USA) at a defined flow rate (1.0 ml/min).

2.6. Antioxidant analysis

LPO was analyzed according to the method of Bilal et al. [67]. Plant shoots were ground with

liquid nitrogen, and 10 mM phosphate buffer (pH 7) was added. The reaction mixture was pre-

pared by adding 0.2 ml of 8.1% sodium dodecyl sulfate, 1.5 ml of 20% acetic acid (pH 3.5), and

1.5 ml of 0.81% thiobarbituric acid to the supernatant, heating in boiling water for 60 min, and

immediately cooling on ice to room temperature. Then, 5 ml of butanol:pyridine solution

(15:1 v/v) was added. The upper layer was removed, and the resulting pink color was measured

at 532 nm using a spectrophotometer. APX activity was measured following the method of

Kim et al [68]. The plant sample was added to the reaction mixture (50 mM potassium phos-

phate pH 7, 0.5 mM ascorbate, 0.1 mM hydrogen peroxide, and 0.1 mM EDTA), and the

decrease in absorbance was measured from 10 to 30 s at 290 nm using a spectrophotometer.

The method of Khan et al. [69] was adapted for SOD activity assay. In brief, leaf samples (100

mg) were homogenized with 0.01 M phosphate buffer at pH 7.0 and centrifuged (17,000 × g
for 15 min at 4˚C). The supernatant was used as a crude enzyme extract and passed through a

reaction mixture containing Tris-HCl buffer (2 ml) pH 8.2, double-distilled water (2 ml), and

2 mM pyrogallol (0.5 ml). The absorption of the assay mixture and blank (lacking pyrogallol

or tissue homogenate) was measured at 470 nm using a spectrophotometer (Shimadzu, Kyoto,

Japan) at 180 s intervals. The data are expressed as units/mg of protein. To determine the

reduction in GSH concentration, each sample (500 mg) was treated with 2 ml of 10% trichloro-

acetic acid and centrifuged at 10,000 rpm for 15 min at 4˚C. The resulting supernatant (1 ml)

was combined with 0.5 ml of Ellman’s reagent and 3 ml of 15 mM sodium phosphate buffer

(pH 7.4) and incubated for 5 min at 30˚C. The absorbance was measured at 412 nm using a

spectrophotometer [70,71]. All experiments were performed three times.

2.7. RNA extraction, cDNA synthesis, and qRT-PCR analysis

The protocol developed by Chan et al. [72] was adopted with some modifications. The total

RNA was extracted from the crushed leaves using TRIzol™ reagent. The quality of RNA was

examined by nanodrop. cDNA was synthesized using qPCRBIO cDNA Synthesis Kit from

PCRBIOSYSTEMS. Quantitative real-time RT-PCR (qRT-PCR) was performed using qPCRBIO

SYBR Green Kit from PCRBIOSYSTEM, using synthesized (1μl) cDNAs as templates and the

gene-specific primers [73]. To normalize the level of relative expression of each gene, actin was

used for each reaction and the expression level was calculated in control plants relatively with

other treated plants. The reaction was performed in a 20μl volume containing 7μl ddH2O, 1μl

primer, 10μl SYBR green and 1μl cDNA and the reaction was repeated trice (S1 Table). A total

sample volume of 50 μl was subjected to the following conditions: initial denaturation at 94˚C

for 5 min, 40 cycles of denaturation at 94˚C for 30 s, annealing at 58˚C for 30 s, extension at

72˚C for 1 min, and final extension at 72˚C for 5 min.

2.8. Amino acid quantification

For amino acid analysis, the detailed method developed by Kang et al. [60] was followed.

Freeze-dried plant samples (100 mg) were hydrolyzed under vacuum in 6 N HCl in an ampulla

tube for 24 h at 110˚C followed by 80˚C for 24 h. The solid residue was homogenized in 0.02 N
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HCl and filtered with a 0.45-m filter membrane. The amino acids were analyzed using an

atomic amino acid analyzer (L-8900, Hitachi, Japan). The concentrations were measured by

comparing with specific standards.

2.9. Statistical analysis

The experiments were performed in triplicate and the resulting products were used for further

analysis. The differences among the mean values were compared with Duncan Multiple Range

Test (DMRT) using the SAS (9.2, Cary, NC, USA) statistical software program. Graphical pre-

sentation was performed in Graph Pad Prism.

3. Results

3.1. Isolation, screening for indole-3-acetic acid, phosphate solubilization,

siderophore production and bioassay assessment

From the roots of O. biennis, C. ficifolium, A. princeps and E. crus-galli, a total of 59 endophytic

strains were isolated (S2 Table). These isolates were screened for different plant growth-pro-

moting traits (PGP); i.e. IAA, GA, phosphate solubilization and siderophore production. Only

13 isolates showed multiple plant growth promoting (PGP) traits (S2 Table). These isolates

were subsequently applied to Wito-C (gibberellin [GA]-deficient) rice and only eight isolates

induced a significant increase in the growth attributes (root and shoot) compared to the other

isolates and control plants.

3.2. Identification of thermotolerant bacteria

All the selected isolates were examined for their ability to grow at 25˚C, 30˚C, 35˚C, 40˚C and

45˚C on both solid and liquid broth media. The results showed that the isolates grew at 40˚C

on solid as well as on broth medium. However, increasing the temperature to 45˚C inhibited

the growth of all isolates, and only SA1 showed tolerance to heat stress (S1 and S2 Figs). There-

fore, isolate SA1 was selected for further investigation. For molecular identification and phylo-

genetic analysis of isolate SA1, 16S rRNA was amplified, sequenced and compared to the

database of known 16S rRNA genes. Our results revealed that SA1 exhibited a high level of 16S

sequence identity (99%) with B. cereus. The SA1 16S rRNA sequence was submitted to NCBI

with GenBank accession no MH032605 (S3 Fig).

3.3. In-vitro IAA, GA and organic acid production of the bacterial isolates

The culture filtrate (CF) of isolate SA1 was quantified for phytohormones (IAA and GAs)

using GC/MS and for organic acids using HPLC. The selected isolate SA1 produced significant

amounts of IAA and GA (bioactive and non-bioactive) (Fig 1A and 1B). Organic acid analysis

revealed that the CF of SA1 contained lactic acid, butyric acid, formic acid and succinic acid

(Fig 1C).

3.4. Ameliorative effects of isolate SA1 and HA against heat stress

Heat stress adversely affected the growth attributes of tomato; however, application of isolate

SA1 and HA promoted the growth and biochemical parameters of tomato plants and signifi-

cantly enhanced their thermotolerance. Under normal growth conditions, the application of

HA, isolate SA1 and combined SA1+HA application significantly enhanced the shoot length

by 22, 27 and 41% and the root length by 9, 6 and 19%, as well as the fresh weight (80–93%)

and dry weight (61%-67%) when compared with normal control tomato plants (Table 1; Fig

2). Similar significant increases were observed in the root fresh and dry weight compared to
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Fig 1. Quantification of indole-3-acetic acid (IAA), gibberellins (GAs) and organic acids produced by SA1 an

isolate of Bacillus cereus. (A) IAA content was detected in culture broth (CB) of SA1, grown at 28˚C and 40˚C,

through Gas chromatography–mass spectrometry (GC/MS-SIM) (B) GC/MS-SIM analysis and quantification of

different GAs in CB of SA1 and its comparison with the internal standard. (C) Organic acid content analysis, detection

and quantification through high-performance liquid chromatography system (HPLC) in relation to their respective

standards. Each data is the mean of three replicates. Error bars represent standard errors. The bars presented with

different letters are significantly different from each other as evaluated by Duncan’s Multiple Range Test (DMRT)

analysis.

https://doi.org/10.1371/journal.pone.0232228.g001
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the control plants (Table 1). However, when tomato plants were subjected to heat stress, com-

bined application of SA1+HA significantly mitigated the adverse effects, with significantly

higher growth attributes compared with sole SA and sole HA-inoculated plants and the control

(stressed) plants (Fig 2). Heat stress significantly reduced the root and shoot lengths by 36 and

Table 1. Effect of SA1 an isolate of B. cereus, humic acid (HA) and SA1+HA on tomato plants under normal and

heat stress.

Control SA1 HA HA+SA1

Normal Temperature

SL (cm) 32.66±1.7c 40.33±1.3b 41.83±3.7b 46.5±5.3a

RL (cm) 14.4.±1.5c 15.7±1.5b 15.3±1.6bc 17.3±1.7a

SFW (g) 23.96±1.7b 43.26±2.3a 44.66±3.3a 46.33±2.3a

SDW (g) 2.7±0.9b 4.36±0.9a 4.41±0.7a 4.53±0.6a

RFW(g) 16.80±1.1c 21.19±1.9b 22.26±2.1b 30.08±1.6a

RDW(g) 2.88±0.3c 3.03±0.1bc 3.54±0.4b 4.23±0.3a

CF (Fv/Fm) 0.81±0.02a 0.81±0.03a 0.82±0.04a 0.84±0.04a

Heat stress

SL (cm) 21.16±1.7b 26.66±2.5a 26.33±1.7a 28.5±3a

RL (cm) 9.2±1.4c 10.3±2.1b 10.8±1.4b 11.5±2.1a

SFW (g) 12.3±1.1c 22.33±1.8b 21.13±1.6b 29.06±1.7a

SDW (g) 1.54±0.2c 2.61±0.3b 2.32±0.4ab 2.96±0.2a

RFW(g) 11.83±1.6b 14.39±0.8ab 12.47±1.3ab 15.0±1.6a

RDW(g) 1.1±0.2c 1.5±0.2b 1.7±0.1ab 1.9±0.1a

CF (Fv/Fm) 0.6±0.02c 0.68±0.104b 0.73±0.05b 0.77±0.08a

SL = Shoot length, SFW = shoot fresh weight, SDW = shoot dry weight, RL = root length, RFW = root fresh weight,

RDW = root dry weight and CF = Chlorophyll fluorescence. Each data point is the mean of three replicates. Error

bars represent standard errors. The bars presented with different letters are significantly different from each other as

evaluated by Duncan’s Multiple Range Test (DMRT) analysis

https://doi.org/10.1371/journal.pone.0232228.t001

Fig 2. Effects of selected SA1 an isolate of Bacillus cereus (SA1), humic acid (HA) and combined SA1+HA application on the growth of tomato plants

under normal and heat stress.

https://doi.org/10.1371/journal.pone.0232228.g002
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35% in control (heat stressed) plants, whereas combined application of HA+SA1 significantly

enhanced the lengths up to 34 and 25% compared with sole SA1 and HA-treated plants. On

exposure to heat stress, combined SA1+HA-treated plants displayed a significant restoration

of fresh weight (1.5 fold) and dry weight (single fold) (Table 1). Similarly, chlorophyll fluores-

cence results showed a significant increase in SA1+HA-treated plants compared with control

(stressed) plants (Table 1).

3.5. Quantification of plant endogenous phytohormones

A significant increase in ABA content and a decrease in SA content were observed after expo-

sure to heat stress. The endogenous ABA content showed a significant increase up to three-

fold compared to control tomato plants (Fig 3A). In contrast, application with thermotolerant

isolate SA1, HA and combined SA1+HA remarkably reduced the ABA content (1.5–2 fold).

Similarly, both unstressed (normal temperature) and stressed (heat stressed) tomato plants

were subjected to SA analysis. The results showed that in contrast to the endogenous ABA

level, a decrease in SA content was observed in tomato plants exposed to heat stress. The

endogenous SA content was significantly reduced from 48%; however, inoculation with SA1,

HA and combined SA1+HA mitigated the heat stress and increased the SA content from 26.1

to 58.2% (Fig 3B).

3.6. Modulation of tomato antioxidant system under heat stress

To assess the extent of lipid peroxidation in tomato due to heat stress-induced oxidative stress,

the malondialdehyde (MDA) content was investigated (Fig 4). Heat stress activates MDA pro-

duction, which in turn leads to the induction of lipid peroxidation. In the current study, not

significant difference was observed in MDA content in the sole SA1, HA and SA1+HA treated

tomato leaf tissues under normal temperatures (Fig 4A). However, when the tomato plants

were exposed to heat stress, an increase in the MDA levels (385%) was observed compared to

the combined application of SA1+HA (245%) and sole application of SA1 (285%) and HA

(187%). The MDA content in HA-treated plants was significantly reduced under heat stress

conditions relative to the MDA contents of the sole SA1-inoculated plants and combined SA1

+HA-treated tomato plants. To further elucidate the oxidative stress mitigation, the GSH con-

tent in plants was examined. Under normal temperatures, SA1, HA and combined SA1+HA-

treated plants showed significantly higher GSH content (90%-187%) compared with the con-

trol tomato plants (Fig 4B). Heat stress induced an increase in GSH content; however, a signifi-

cantly higher amount of reduced GSH was generated in SA1 (607%), HA (695%) and

combined SA1+HA-treated (740%) plants compared to the heat stressed control tomato plants

(461%). In terms of SOD activity, the results indicated that sole application of SA1, HA and

combined SA1+HA differentially regulated the SOD activities under normal and heat stress

conditions. Under the normal temperature, no significant difference was observed in sole SA1

(469%), HA (450%) and combined SA1+HA-treated (523%) tomato plants. However, under

heat stress, significant enhancement in the SOD activity of the combined SA1+HA-treated

tomato plants was observed compared with the sole SA1 and HA-treated tomato plants and

heat stress control (307%) plants (Fig 4C). Ascorbate peroxidase results showed a significant

difference in tomato plants treated with sole or combined SA1+HA (41–49%) compared with

control plants. However, under heat stress, significant enhancement in APX was observed in

the combined SA1+HA-treated (608%) tomato plants compared with the sole SA1 (492%) and

HA (470%) treated tomato plants and heat stressed control plants (283%) (Fig 4D).
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Fig 3. (A) Endogenous abscisic acid (ABA) and (B) salicylic acid (SA) quantification in tomato plants inoculated with SA1 an isolate of

Bacillus cereus (SA1), humic acid (HA) and combined SA1+HA application. Each data point is the mean of at least three replicates. Error

bars represent standard errors. The bars presented with different letters are significantly different from each other as evaluated by Duncan’s

Multiple Range Test (DMRT).

https://doi.org/10.1371/journal.pone.0232228.g003
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3.7. Role of SA1 and HA in ion uptake during heat stress

Inductively-coupled plasma mass spectrometry (ICP) results showed that under control condi-

tions, SA1, HA and combined SA1+HA-treated plants had significantly higher amounts of

iron (Fe+), phosphorus (P) and potassium (K) content compared to the control tomato plants

under normal and heat stress conditions (Fig 5). Fe+ content revealed a significant difference

in tomato plants treated with sole SA1 (28%), HA (6%) and combined SA1+HA (105%) under

normal temperature. Heat stress significantly decreased the Fe+ content (63%); however, plants

treated with SA1 (153%), HA (126%) and combined SA1+HA (158%) had a significantly

higher content of Fe+ (Fig 5A). Furthermore, P and K content were significantly decreased in

heat stressed control plants (49% and 43%). However, bacterial inoculation and HA mitigated

heat stress and enhanced the content of P (45–67%) and K (11–34%) (Fig 5B and 5C).

3.8. Effect of isolate SA1 and HA on gene expression

In response to heat stress, the transcriptional levels of SlHSFs, SlHSPs, high affinity potassium

transporter (SlHAKT1), and SlWRKY33b were evaluated (Fig 6). SlHAKT1 gene expression

was significantly upregulated in the combined HA and SA1-inoculated tomato plants (10%)

compared to the control and sole HA (1.5%) and SA1-treated (9%) plants under normal condi-

tions. Heat stress significantly reduced the expression level of SlHKT1 (5 fold) in control

plants. However, SA1 inoculation and HA mitigated heat stress and enhanced SlHKT1 gene

Fig 4. Effect of SA1 an isolate of Bacillus cereus (SA1), humic acid (HA) and combined SA1+HA application on different antioxidants; (A) Lipid

peroxidation (MDA), (B) Reduced glutathione (GSH), (C) Superoxide dismutase (SOD) and (D) Ascorbic peroxidase (APX) contents in tomato

plants under normal and heat stress. Each data point is the mean of three replicates. Error bars represent standard errors. The bars presented with

different letters are significantly different from each other as evaluated by Duncan’s Multiple Range Test (DMRT) analysis.

https://doi.org/10.1371/journal.pone.0232228.g004
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Fig 5. Effect of SA1 an isolate of Bacillus cereus (SA1), humic acid (HA) and combined SA1+HA application on

ion content; (A) iron (Fe+), (B) phosphorus (P), and (C) potassium (K+) content in tomato plants under normal

and heat stress. Each data point is the mean of three replicates. Error bars represent standard errors. The bars

presented with different letters are significantly different from each other as evaluated by Duncan’s Multiple Range

Test (DMRT) analysis.

https://doi.org/10.1371/journal.pone.0232228.g005
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expression up to 2.5 and 3 fold (Fig 6A). SlHsfA1a is one of the master regulators required for

induction of the heat stress response. SlHsfA1a expression results showed few differences in

tomato plants under normal temperature, whereas the SlHsfA1a genes were upregulated

(2.9-fold). However, combined application of SA1 and HA significantly enhanced the expres-

sion of SlHsfA1a (2.8 fold) compared to sole SA1 (1.4 fold) and HA (0.3 fold) application and

control heat stressed plants (Fig 6B). Furthermore, heat stress-induced autophagy-related

genes (ATGs) in the control plants were highly upregulated (1.2 fold) compared to the levels in

the control plants. Co-application of SA1 and HA significantly reduced the expression of the

SlATG5 gene (1.15 fold) (Fig 6C). The SlWRKY33b transcriptional factor plays a key role in

plant stress responses. Our results showed that under normal growth conditions, there is a

slight increase in the expression of SlWRKY33b genes in control and treated plants. When

tomato plants were subjected to heat stress, the overexpression of SlWRKY33b genes was

observed (13 fold) in control heat stressed plants. However, the application of SA1, HA and

combined SA1 and HA significantly mitigated heat stress tolerance and the induced the down-

regulation of the SlWRKY33b genes (2.3–4 fold) (Fig 6D).

3.9. Amino acid quantification

Amino acid contents were determined to elucidate the regulation of physiological function

with the inoculation of SA1, HA and combined application of SA1+HA in tomato plants

under normal and heat stress conditions (Table 2). Under normal conditions, a slight

increase was observed in aspartic acid, glutamic acid, alanine, phenylalanine, arginine and

Fig 6. Relative expression of genes in tomato plants treated with SA1, humic acid (HA) and combined SA1+HA under normal and heat stress. (A)

SlHKT1, (B) SlHsfA1a, (C) SlWRKYY33b and (D) SlATG5. The values were calculated relative to those of actin gene expression and are the means of three

replicates. Error bars represent standard errors. The bars presented with different letters are significantly different from each other as evaluated by DMRT

analysis.

https://doi.org/10.1371/journal.pone.0232228.g006
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proline contents in SA1, HA and combined SA1+HA-treated plants compared with the lev-

els in control plants. Under heat stress, the contents of aspartic acid (59%), glutamic acid

(89%), arginine (113%) and proline (67%) were increased, while decreases were observed in

alanine (33%) and phenylalanine (28%) contents. However, sole SA1, HA and combined

SA1+HA application increased the content of aspartic acid (6, 12 and 10.57%), glutamic acid

(18, 14 and 24%), arginine (31, 36 and 89%), alanine (4, 11 and 31%), phenylalanine (6, 28

and 49%) and proline (7, 13 and 3.24%) compared to the levels in un-inoculated tomato

plants under heat stress (Table 2). Total amino acid results showed that heat stress markedly

decreased the amino acid content up to 48% as compared to the levels in control plants.

However, with the application of SA1, HA and SA1+HA, a significant increase in the total

amino acid content was observed (85, 12 and 4.34%).

4. Discussion

Tomato is heat-sensitive and its growth, yield and quality are highly influenced by heat stress.

High temperatures cause anatomical, physiological, morphological, and molecular changes in

tomato plants, which affect plant growth and consequently affect plant yield. Presently, tomato

is widely consumed raw or industrially processed and is considered a good source of nutri-

tional properties and its different beneficial pigment constituents have paved the way for

increased demand all over the world. Therefore, there is a need to boost tomato production

under heat stress conditions. Consequently, substantial efforts have been extended to the use

of physiochemical and ecofriendly biological approaches, which are currently being applied to

alleviate plant heat stress. Recently, the co-administration of HA and the Bacillus genus as

important plant bio-stimulants that improve the growth and productivity in different crops

[41,49] while reducing the dependency on chemical fertilizers has begun to gain importance.

Previous reports demonstrated that humic substances may favor bacteria-plant interactions

and enhance the bacterial attachment and colonization [47,74]. Olivares et al. [40] and Canel-

las et al. [75] recently reported the beneficial effects of combined application of heat stress and

PGPB on various crops like maize and tomato. These findings were consistent with the present

results that tomato plants treated with isolate SA1+HA enhance root/shoot length, biomass

and chlorophyll content under normal and heat stress condition (Table 1; Fig 2). Among the

physiological activities of plants, photosynthesis is the most sensitive to heat stress because in

the chloroplast, the stroma is severely affected by increased temperature [11–13,76–78]. Many

Table 2. Amino acids quantification in tomato plants inoculated with SA1 an isolate of B. cereus, humic acid (HA) and SA1+HA under normal and heat stress.

Aspartic acid Glutamic acid Alanine Phenylalanine Arginine Proline

Normal Temperature

Control 7.22±0.6b 9.55±1.0b 8.55±1.1c 8.08±1.2c 3.51±0.3b 7.32±1.1c

SA1 10.34±1.2a 10.46±2.0a 9.98±1.0b 9.02±0.9bc 4.57±0.4a 9.78±0.8ab

HA 10.34±1.1a 10.37±1.2a 11.21±1.1a 10.78±1.3b 4.72±0.5a 9.09±1.1b

HA+SA1 10.22±1.8a 10.12±1.0a 11.68±1.2a 12.13±2.0a 4.99±0.6a 10.22±1.3a

Heat Stress

Control 11.54±1.9c 18.11±2.1d 5.73±0.8c 5.77±0.5d 7.49±1.0d 12.26±1.3c

SA1 12.31±1.4b 19.63±2.3c 6.0±0.8b 6.13±0.7c 9.82±1.1c 13.23±1.8b

HA 12.98±1.1b 20.67±1.9b 6.37±0.9b 7.40±1.0b 10.21±1.3b 13.92±1.7b

HA+SA1 13.89±1.8a 22.48±3.2a 7.51±1.1a 8.65±1.3a 14.20±1.5a 15.10±1.2a

Each data point is the mean of at least three replicates. Error bars represent standard errors. The bars presented with different letters are significantly different from each

other as evaluated by Duncan’s Multiple Range Test (DMRT) analysis.

https://doi.org/10.1371/journal.pone.0232228.t002
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plants species have evolved several mechanisms to guard the photosynthetic apparatus against

heat stress damages by encoding for the production of HSPs that binds to thylakoid mem-

branes and protect PSII and the electron transport chain [76,78–80]. However, under severe

heat stress, these protective mechanisms may be inadequate to ensure plant viability. Our find-

ings showed that an increase of chlorophyll florescence in treated tomato plants occurred

under normal and heat stress conditions compared to un-inoculated tomato plants (Table 1).

Similar results were also observed by other researchers [26,81], who reported that the use of

thermotolerant agents increased total chlorophyll content in wheat and canola plants under

heat stress. Enhanced chlorophyll content may also be the result of increased photosynthetic

leaf area due to the application of microbes and HA compared to the control (stressed) plants

[26,27]. This increase in chlorophyll content is probably due to enhanced moisture retention

and the improvement of nutrient supply in the root zone. Canellas et al. [75] reported that co-

application of PGPB and heat stress increased the net photosynthetic rate and nutrient uptake,

which ultimately led to vigorous and healthy crop growth and productivity.

K, P and Fe+ are important elements required for plant growth and function regulation in

several biochemical processes like protein synthesis, enzymatic activity and hormonal regula-

tion [82–86]. Several physiological processes depend on Fe, K and P such as photosynthesis,

stomatal regulation and abiotic stress tolerance. Under abiotic stress, K helps to maintain ion

homeostasis, regulate osmatic balance and stomatal opening and enhance the antioxidant

defense system in plants [87,88]. Baldotto et al. [89] revealed that pineapple plant growth was

affected by Burkholderia strain inoculation and HAs increased the root and shoot growth, bio-

mass and nutrient contents (nitrogen [N] 132%, P 131% and K 80%) compared to un-inocu-

lated plants. These results are consistent with findings in the present study that tomato plants

treated with SA1+HA exhibited enhanced P, K and Fe content under normal and heat stress

condition (Fig 5). Previously, Schoebitz et al. [90] reported that combined administration of

PGP microbes and HA increased N and K uptake and growth in blueberry plants compared to

the control plants.

Phytohormones greatly respond to changing environmental conditions by regulating plant

growth and are actively involved in the response to heat stress [91–93]. IAA is a key phytohor-

mone that plays a key role in the growth, development and tolerance of plants to heat stress

through the activation of antioxidant enzymes, regulation of gene expression, synthesis of

osmoprotectants (proline), and enhanced accumulation of photosynthetic pigments [94]. It

has been reported that IAA-producing bacteria increase the length and root surface of plants,

helping the plants get better access to nutrients available in the soil [24,95]. Our bacterial iso-

late (SA1) was also capable of producing IAA and GAs (Fig 1A and 1B) and greatly mitigated

the adverse effects of heat stress on tomato plants. Additionally, GAs play a prominent role in

the alleviation of abiotic stress [96,97]. Stavang et al. [98] reported that GAs play a vital role in

alleviating heat stress and enhanced growth in Arabdopasis and pea. Microbes that produced

GAs are important for promoting plant growth and mitigating the adverse effects of heat stress

[24,98,99]. Despite the existence of several forms of GA, biologically active GA is limited in dif-

ferent microorganisms [100,101]. The microbes used in our study produce bioactive GAs (Fig

1B). These biologically active GAs promote plant growth through reducing stress hormones

like ABA [102–104]. When plants perceive stressful conditions, they regulate stress hormones

like ABA through active chemical signals, which induce extreme sensitivity to stomatal con-

ductance [104,105]. The prolific role of plant microbe interaction lies in mitigating the adverse

effects of abiotic stress by reducing ABA content [24,25,106]. Similar results were observed in

our study in which application of isolate SA1 and HA caused a decrease in ABA content and

an increase in plant growth parameters (Fig 3A). Salicylic acid (SA) is another plant hormone

that plays an important role in various physiological processes and biochemical reactions
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[107]. According to Zhang et al. [108] and Khan et al [107], in mutualistic plant-microbe inter-

actions, SA induces systemic resistance in plants. Wang et al. [109] and Khan et al [107] sug-

gested that SA can ameliorate abiotic stress by inducing ROS generation. The accumulation of

SA has also been implicated in heat stress tolerance in various plants including Kentucky Blue-

grass [23], grapevine [110], potato [111], bean and tomato [112], Arabidopsis [113] and grape

plants [114]. Isolate SA1+HA application greatly enhanced the endogenous SA level in tomato

plants under heat stress and normal conditions (Fig 3B). Our findings are in agreement with

previous reports in which the ability of bacterial inoculum enhanced the endogenous levels of

SA and contributed to the growth and development of plants under abiotic stress conditions

[115,116].

When plants are subjected to environmental stress including heat stress, a variety of ROS

are generated [117,118]. These ROS interfere with different organic molecules, resulting in the

reduction of photosynthesis and subsequently reduced plant growth [117,119]. Under heat

stress, plants are capable of counteracting ROS generation by the production of different anti-

oxidant molecules (enzymatic and non-enzymatic) [117,118]. The key antioxidant enzymes

that play an effective role in scavenging ROS are SOD, catalase (CAT), and peroxidase

[120,121]. The activities of these enzymes usually increase under stress conditions [85,86,122–

125]. Tomato plants treated with isolate SA1 and HA produced less ROS and showed an

increase in antioxidant activities like SOD, MDA, GSH, and APX compared with un-inocu-

lated plants under heat stress (Fig 4). Similar results were reported in previous studies

[24,27,33,121,126], where PGPB enhanced the activity of different ROS scavenging enzymes

under heat stress. Amino acids play a prominent role in the physiological and biochemical

functions of plants such as the modulation of membrane permeability, osmolytes, ion uptake,

enzymatic activity and tolerance to abiotic stress [127,128]. Amino acids also act as bio-stimu-

lants for the growth attributes of plants and significantly mitigate injuries caused by abiotic

stresses [121]. The co-application of SA1+HA exhibited a rescue effect and significantly

enhanced the important endogenous amino acid content under heat stress compared with

control heat stressed plants (Table 2). Several previous reports indicated that an increase in

amino acid content increases tolerance to abiotic stress following inoculation with plant

growth-promoting bacteria [120,129–133]. Heat stress reduced the accumulation of proline,

but proline levels were enhanced in SA1+HA treated plants under control and heat stress con-

ditions (Table 2). Similarly, proline accumulation is considered an adaptive mechanism under

heat stress [134–137].

Plants contain several heat-stress-dependent genes such as HSFs and HSPs that enhance

tolerance and protect the function of proteins under heat stress conditions. HSFs are essential

for maintaining and restoring protein structure as well as stabilizing the condition of plants

under heat stress [19,138,139]. Fragkostefanakis et al. [140] reported the upregulation of HSF

level in bacteria-inoculated wheat seedlings during heat stress as well as a decrease in the HSP

transcript levels. Similar SlHsfA1a transcriptional levels were observed in sole SA1, HA and

combined SA1+HA application in tomato plants under heat stress (Fig 6). The induction of

HSPs is usually accompanied by tolerance to heat and other stresses. Previous studies revealed

that HSFs act as “molecular chaperones” and the over-expression of these genes and proteins

is well established to enhance thermotolerance [18,20,141]. Similarly, SlWRKY33b, SlHAKT1
and SlATG5 proteins and play critical roles in tomato heat tolerance. HKT1 plays a crucial role

and higher cellular K concentration during stress is critical for normal plant function [142].

We observed higher expression of the SlHKT1 gene in sole SA1, HA and combined SA1+HA-

treated plants under normal and heat stress conditions. Ali et al. [143], Fairbairn [144] and

Almeida [142] reported that higher expression of the SlHKT1 gene enhances stress tolerance

and the accumulation of K content. Furthermore, based on previous reports, we evaluated the
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expression of SlWRKY33b and SlATG5 and found that both genes were highly expressed in

plants grown under heat stress (37˚C), indicating that both of these genes are highly correlated

with heat stress. However, plants treated with bacteria and HA under the same degree of heat

stress showed comparatively less regulation of both genes, suggesting that bacteria and HA

also have key roles in heat tolerance. Our study was in agreement with that of Zhou [145],

who reported that heat stress significantly induced the regulation of the SlATG gene and

SlWRKY33, which physically interacts with the autophagy-related protein. Other reports dem-

onstrated that silencing the SlWRKY33 gene in tomato reduces SlATG gene expression, which

compromises tomato heat tolerance [146].

5. Conclusions

In conclusion, the present study demonstrated that isolate SA1 has the ability to produce bio-

logically active metabolites such as GA, IAA and organic acids. Tomato plants treated with iso-

late SA1 and HA showed significant improvements in their growth attributes and chlorophyll

fluorescence under normal and heat stress conditions. This improvement in plant growth was

coupled with changes in endogenous phytohormones (ABA and SA), antioxidants (APX, SOD,

GSH and LPO), and essential amino acids and the expression of genes such as SlWRKY33b,

SlHKT1 and SlATG5. The stability and increased consistency of the tomato plant response to

bacterial inoculation in the presence of HA indicated a promising co-friendly biological

approach and physicochemical biotechnological tool to improve the growth and development

of tomato under heat stress conditions.
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