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Abstract

Background: Evolutionary studies are complicated by discordance between gene trees and the species tree in
which they evolved. Dealing with discordant trees often relies on comparison costs between gene and species
trees, including the well-established Robinson-Foulds, gene duplication, and deep coalescence costs. While these
costs have provided credible results for binary rooted gene trees, corresponding cost definitions for non-binary
unrooted gene trees, which are frequently occurring in practice, are challenged by biological realism.

Result: We propose a natural extension of the well-established costs for comparing unrooted and non-binary gene
trees with rooted binary species trees using a binary refinement model. For the duplication cost we describe an
efficient algorithm that is based on a linear time reduction and also computes an optimal rooted binary
refinement of the given gene tree. Finally, we show that similar reductions lead to solutions for computing the
deep coalescence and the Robinson-Foulds costs.

Conclusion: Our binary refinement of Robinson-Foulds, gene duplication, and deep coalescence costs for
unrooted and non-binary gene trees together with the linear time reductions provided here for computing these
costs significantly extends the range of trees that can be incorporated into approaches dealing with discordance.

Introduction
Gene trees represent estimates of evolutionary histories
of gene families, and are fundamental for evolutionary
biological research [1,2]. Often gene trees are assumed
to reflect the evolutionary history of species, or species
tree, from which their sequences were sampled, present-
ing a common approach of species tree inference [3-7].
Gene trees can also provide fundamental information to
study the evolution of biochemical function in gene
families [8].
Gene trees can be inferred from multiple sequence

alignments of sequences culled from a gene family. The
number of these sequences as well as their evolutionary
complexity has expanded on an unprecedented scale in
recent years [9], prompting the estimation of ever larger
and more credible gene trees. Despite these potentials,
evolutionary biologists have long recognized the poten-
tial for substantial discordance among the gene trees as

well as among the gene trees and the species tree in which
they evolve [10-14], challenging traditional phylogenetic
gene tree and species tree estimation. Discordance can be
caused by error as well as major evolutionary processes,
such as the duplication of genes or deep coalescence.
Complicating matters further such error and evolutionary
processes can occur on a staggering scale [15,16]. For
example simulations with realistic parameters suggested
that analyzes individual avian genes frequently resulted in
trees with substantial error [17], and evolutionary pro-
cesses cause discordance among evolutionary relationships
of major avian groups [18]. Consequently, phylogenetic
approaches are challenged to deal with error as well as
complex histories of evolutionary processes in order to
explain discordance in gene trees [19-21].
A common approach to deal with discordance in gene

trees is by representing them with an estimate of the spe-
cies tree that is thought to be the median tree of the gene
trees under a particular (topological comparison) cost from
a gene tree to a species tree, which is often referred to as a
supertree [22]. A median tree S for a given cost and a col-
lection of trees minimizes the sum of the pairwise costs
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from every gene tree to S. While varies costs have been
proposed [23-26], here we are concerned with the well-
researched Robinson-Foulds, duplication, and deep coales-
cence costs. The Robinson-Foulds cost is measuring quan-
titative dissimilarities between two trees without relying
on an evolutionary model, and is therefore well suited to
address discordance caused by error [27,28]. In difference,
the costs for the evolutionary events gene duplication and
deep coalescence are both based on an evolutionary parsi-
mony model allowing to resolve discord based on such
events [29,30].
However, the presented costs are not well adapted to

biological realism [31,32]. In practice gene trees are fre-
quently inferred from sequences that do not permit reli-
able estimations of rootings or bifurcations [33], and
therefore are unrooted and non-binary. The original evo-
lutionary costs for gene duplication and deep coalescence
can not be applied to such trees, since they are only
defined for rooted and binary gene trees. In contrast the
Robinson-Foulds distance is formally defined for unrooted
and non-binary trees, but multifurcations in phylogenetic
trees are interpreted as true evolutionary multifurcations
(hard multifurcations). However, non-binary relationships
in gene trees represent uncertainties about the correct bin-
ary relationships (soft multifurcations), rather than hard
multifurcations which are rare [34]. Consequently, all of
the the presented costs are not applicable to a large num-
ber of gene trees in practice.
More recently, a binary refinement model for the dupli-

cation cost [35] and the deep coalescence cost [36,37] for
rooted gene trees that are non-binary were introduced.
Here we propose a natural extension of this model for
our costs to compare unrooted and non-binary gene
trees with rooted binary species trees, and describe linear
time reductions to compute these costs.

Related work
Here we provide definitions as well as computational
and applicability results, first for the Robinson-Foulds
cost, and then for the duplication and deep coalescence
costs.
The Robinson-Foulds cost is an elementary tool for esti-

mating quantitative dissimilarities between phylogenetic
trees [38-40]. This cost is defined for two trees to be the
cardinality of the symmetric difference of their split pre-
sentations for unrooted trees, and of their cluster presen-
tations for rooted trees. The split-presentation of an
unrooted tree is the set of all bipartitions, called splits, of
the trees’ taxon set induced by the removal of an edge
[39,41]. Analogously, the cluster presentation of a rooted
tree is the set of all taxon sets of its full subtrees [39]. The
Robinson-Foulds cost for two trees, both either unrooted
or rooted, satisfies the metric properties [38], and can be

computed in linear time [42]. A randomized approxima-
tion scheme computes, in sublinear time and with high
probability, a (1 + ∈) approximation of the Robinson-
Foulds cost [43]. More recently, the Robinson-Foulds cost
between an unrooted tree and a rooted tree was intro-
duced in [44] to be the minimum cost under all pairs con-
sisting of a rooting of the unrooted tree and the rooted
tree. In fact, this cost is still computable in linear time
[44]. Moreover, the distribution of the Robinson-Foulds
distance relative to a fixed tree can be computed in linear
time [45]. Note, the skewed distribution of the Robinson-
Foulds metric suggests that it is only of use when the trees
to be compared are quite similar [46]. While the Robin-
son-Foulds cost is wide-spread for the comparative analy-
sis of phylogenetic trees, it does not rely on a biological
model explaining the difference between trees. Therefore,
the Robinson-Foulds cost is generally applicable to any
type of trees, e.g. linguistic trees [47] and trees represent-
ing dominance hierarchies [48].
In contrast, the duplication and the deep coalescence

costs rely on a biological model explaining the discor-
dance between a gene tree and a species tree based on
evolutionary events. For a gene and a species tree, both
rooted and binary, the duplication cost and the deep coa-
lescence cost are defined to be the minimum number of
gene duplications and coalescences, respectively, required
to reconcile the gene tree with the species tree [49,50].
While theses costs are not symmetric, they are computa-
ble in linear time [51,52], and allow to infer credible spe-
cies trees [53-57]. Furthermore, gene trees that are
reconciled by the minimum number of evolutionary
events allow studying complex histories of evolutionary
events [54,58]. The gene duplication and deep coales-
cence costs can also be defined for binary unrooted gene
trees and binary rooted species trees as the minimum
cost under all rootings of the gene tree and computed in
linear time [32,59,60]. However, often gene trees are
unrooted and non-binary in practice. While existing defi-
nitions for such gene trees and rooted binary species
trees are linear time computable [31,32], they are not
well adapted to biological realism. More recently, cost
definitions for such trees were introduced that are based
on a binary refinement model, by choosing the minimum
cost between every binary refinement of a rooted gene
tree and a rooted binary species tree, which are polyno-
mial time computable [35,61]. In contrast, finding the
minimum cost between a rooted binary gene tree and all
binary refinements of a rooted non-binary species tree is
NP hard [37]. However, costs under a binary refinement
model for unrooted and non-binary gene trees have not
been addressed in the literature. For a detailed overview
about gene tree reconciliation the interested reader is
referred to [62].
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Contributions
Here, we define the Robinson-Foulds, duplication, and
deep coalescence costs for unrooted and non-binary gene
trees and a rooted binary species tree under the binary
refinement model. To compute the duplication cost we
describe a linear time reduction from the problem of
computing optimal binary refinements of unrooted gene
trees to the problem of computing such refinements for
rooted gene trees. The latter problem can be solved in
linear time [37]. Then, based on the theory of unrooted
tree reconciliation [32,44,63,59], we prove that the dupli-
cation cost has similar properties to the deep coalescence
and Robinson-Foulds costs when comparing unrooted
and non-binary gene trees with rooted species trees.
From this follows that we can prove linear time reduc-
tions for the deep coalescence and the Robinson-Foulds
costs that are similar to our reduction for the duplication
cost. Since our reductions require only linear time, the
runtime to compute the optimal binary refinements of
unrooted gene trees is bound by the time complexity of
computing optimal binary refinement for rooted binary
gene trees.

Basic definitions and preliminaries
An unrooted tree T is an acyclic, connected, and undir-
ected graph that has no degree-two nodes, and every
degree-one node is labeled with a species name. The
degree-one nodes are called leaves; and the remaining
nodes are called internal nodes. A tree is binary if every
internal node has degree three. A rooted tree is defined
similar to an unrooted tree, with the difference that it
has a distinguished node, called root. A contraction of
an edge e of an (un)rooted tree T removes e from T and
merges both ends of e into a single node. A binary
refinement of an unrooted or rooted tree T is a binary
tree that can be transformed into T by contractions. By
L(T ) we denote the set of all leaf labels in T .
A rooted tree S with a unique leaf labeling is called a

species tree. For two nodes a, b of S, a ⊕ b is the least
common ancestor of a and b in S. Let T and be a rooted
tree (called rooted gene tree) such that L(T ) ⊆ L(S). By
M : T ® S we denote the least common ancestor (lca)
mapping between the nodes of T and S that preserves
the labeling of the leaves. The duplication cost between
T and S, is defined by: D(T, S) := |{M (g) = M (c) : c is a
child of an internal node g ∈ T }|.
Let G = 〈VG, EG〉 be an unrooted tree (called unrooted

gene tree). A rooting of G is defined by choosing an
edge e from G on which the root is to placed. Such a
rooted tree will be denoted by Ge. Note that Ge has one
more node (the root) that G. A rooted binary refinement
of an unrooted gene tree G, is a binary refinement of a
rooting of G.

The unrooted duplication (urD) cost between an
unrooted gene tree G and a species tree S is defined as

urD (G, S) := min{D (G!, S) : G! is a rooting of G}.
The edges with minimal cost will be called optimal. In

the remainder of this work we show first how to com-
pute urD in linear time and space, and then solve the
following problem. Observe, that in contrast to our pre-
vious study [44,32,64], here, for the first time, we extend
the notion of rooting by incorporating rooting at nodes.
Problem 1 For a given unrooted gene tree G and a

binary species tree S, find the binary refinement of under
all rootings of G that minimizes the duplication cost.
A similar problem for rooted gene trees was solved in

[35]. In the remaining section we show how to reduce
Problem 1 to the rooted problem in linear time.

Unrooted reconciliation
First we provide definitions introducing the basics of
unrooted reconciliation. This approach is partially based
on our previous papers [32,44,63,59]. However, for the
first time, we prove properties of urD for trees with multi-
furcations. We assume that G is an unrooted gene tree
and S is a species tree. We transform G into a directed
graph Ĝ, by replacing each edge {v, w} by a pair of directed
edges 〈v, w〉 and 〈w, v〉. We label the edges of Ĝ by the
nodes of S as follows. If v ∈ G is a leaf labeled by a, then
the edge {v, w} in Ĝ is labeled by the node in S whose
label is a. Let v ∈ G have exactly k siblings w1, w2, . . . , wk.
If ai and bi are the labels of 〈v, wi〉 and 〈wi, v〉, respectively,

then ai = ⊕j=k
j=1, j�=i bj. Let ⊤ be the root of S. Each internal

node v ∈ G defines a star with the center v as indicated in
Figure 1a. We refer to the undirected edge {v, wi} as ei, for
all i = 1, 2, . . . k.
There is a limited number of star types in gene trees

[44]. Let K be a star with center v and k siblings as indi-
cated in Figure 1a. Let a denote the number of edges
satisfying ai = ⊤. Similarly, we define b for bi’s. Then, K
has type: M1 if a = 1 and b = k − 1 and all edges
labeled by ⊤ are connected to the k siblings of v, M2 if
a = 0 and b = k − 1, M3 if a = 1 and b = k, M4 if a =
b = k, M5 if 1 < a < b = k and M6 if a = 0 and b = k.
Proposition 1 For a given unrooted gene tree G and a

species tree S a gene tree G can have any number of
stars M1. For the remaining stars we have three
mutually exclusive cases: (i) G has an empty edge, (ii) G
has a double edge or (iii) G has only single edges.
Proof The proof follows easily from the properties of

stars. See also Lemma 2 from [44]. □
Observe that in case (i) G has one or two stars M2, in

case (ii) G has a star of type M3-M5 and in (iii) G has
exactly one star of type M6.
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The next propositions states a crucial difference
between binary and general trees. For the proof please
refer to [44].
Proposition 2 If both an unrooted gene tree G and a

species S are binary then G has at least one empty or
double edge.

Results
Polytomies and the duplication cost
The next two proposition shows how the cost changes
when we move a position of the root in G.
Proposition 3 Under the notation from Figure 1. If for

some i ∈ {1, 2, . . . , k} one of the following conditions
are true:

• If the star type is M1 or M3 and bi = ⊤.
• If the star type is M2 and ai ≠ ⊤ ≠ bi.

then D(Gei , S) ≤ D(Gej , S)for every j = 1, 2, . . . , k.
Proof All rootings of G share the same subtrees

attached to w1, w2, . . . wk. Therefore, all costs share the
same component c coming from the partial duplication
cost for these subtrees. The remainder follows in from
the definition of the duplication cost and Figure 1 and
Figure 2. For l ∈ {1, 2, . . . k} let Ml be the lca-mapping
from Gei to S. In the case of stars M1 or M3 we have Mj

(v) = Mj (wi) = ⊤. Therefore, both nodes, w and the root
of Gei, are duplication nodes; that is, D(Gej , S) = c + 2 .
However, in Gei, v can be a non-duplication node, thus
c + 1 ≤ D(Gei , S) ≤ D(Gej , S) = c + 2 .
In the case of M2, we haveMi(wi) ≠ ⊤ ≠ Mi(v) and Mi(wi)

⊕ Mi(v) = ⊤, thus the root of Gi is a non-duplication node.
On the other hand,Mj(v) = ⊤ and the root of Gj is a duplica-
tion node. We conclude c ≤ D(Gei , S) ≤ c + 1 ≤ D(Gej , S) . □
Proposition 4 Using the notation from Proposition 3.

If the star type is M4 − M6 then D(Gei , S) = D(Gej , S)
for all i and j.
Proof Similarly to the proof of the previous proposi-

tion, it is easy to show that the root of Gei is is a dupli-
cation node while v is a duplication node, if and only if,
the star is of type M4 or M5. Therefore, for every i,

D(Gei , S) = c + 2 if the star type is M6 and
D(Gei , S) = c + 2. Otherwise, where c is defined in the
proof of Proposition 3. □
We conclude from Propositions 1-4:
Theorem 1 For an unrooted gene tree G and a species

tree S. If e is an edge of G that is either empty, double or
an element of a star M6, then e is optimal.
This observation leads to a linear time and space

reduction for urD computation similar to algorithms
from [32,44]. Now we reduce Problem 1, to the problem
where gene trees are rooted. In the special case of star
M6, we need to root a tree at a node instead of edge.
For a non-leaf node v ∈ VG by Gv we denote the tree
rooted at v. We refer to the algorithm for refining
rooted gene trees from [65] by Bin(T, S), where T is a
rooted tree and S is a binary species tree. It is known
that Bin(T, S) runs in O(|T ||S|) time [65].
Theorem 2 Algorithm 1 infers a rooted binary refine-

ment G* of an unrooted gene tree G such that D(G*, S)
= min {urD(G’, S) : G’ is a binary refinement of G}.
Proof The correctness of Algorithm 1 follows from the

property that the refinement operation will not change
the labels of an existing edge in Ĝ and properties of
stars for binary trees [63]. We analyze the cases from
Proposition 1. (i) If G has a double edge e, then in every
(unrooted) binary refinement of G e is a double edge.
Thus, by Proposition 1 e is optimal in every binary
refinement of G. We conclude that rooting G at e and
removing polytomies from Ge by applying the solution
for rooted trees will infer an optimal rooted refinement
of G. (ii) The same result applies when G has an empty
edge. (iii) When G has only single edges, then the ele-
ments of the unique star M6 in G are optimal edges in
G. Similarly, to previous cases these single edges will be
present in any (unrooted) binary refinement of G (see
Figures 3, 4, 5 for example). However, by Proposition 2
and Proposition 1 they are not necessarily optimal in
such refinements. To address this problem, observe that
any binary unrooted refinement of G will have either
empty or double edges “surrounded” by the edges pre-
viously present in the star of type M6. Thus, we can

Figure 1 Star transformation. (a) A star with the center v in Ĝ and k ≥ 3 edges. Here ei = {v, wi} for i = 1, 2, . . . , k. (b) A simplified
representation of edges (empty, single and double) that will be used through the rest of this work. The notation ≠ ⊤ denotes that the label is a
non-root node from S.
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simply root G at the center of the star M6 and then
proceed with the refinement procedure for rooted trees.
Clearly, the refinement procedure, will infer a rooted
gene tree T such that its unrooted variant is a binary
refinement of G with the minimal duplication cost. An
example of a gene tree with star M6 with all binary
refinements is depicted in Figure 5.
In summary, it is sufficient to identify an optimal edge

in G, and then proceed accordingly with the refinement
procedure. In steps 3-5 the algorithm is evaluating labels
of edges from Ĝ. The optimal edge is found in the loop
present in steps 6-7. Finally, the refinement procedure is
called in steps 9-10 depending on the type of the star. □
Theorem 3 Algorithm 1 requires O(|G||S|) time, while

the reduction (steps 1-7) can be completed in O(|G| + |S|)
time and space.
Proof As desired, the result follows from [44] and [37].

Algorithm 1 Resolving polytomies in unrooted gene
trees
1: Input A binary species tree S, an unrooted gene

tree G with at least three leaves L(G) ⊆ L(S).
2: Output The rooted binary refinement of G with the

minimal duplication cost.
3: Let mx,y be the label (a node from S) of 〈x, y〉 in Ĝ.

// can be computed in O(|G|) steps [44].
4: Let v be a node from VG.
5: Let ⊤ := mv,w ⊕ mw,v for some edge 〈v, w〉 in G.
6: While there exists a node w adjacent with v such

that mw,v = ⊤ ≠ I= mv,w

7: do: set v := w (star M1).
8: f v is incident with a empty/double edge 〈v, w〉, that

is, mv,w = ⊤ = mw,v or mv,w ≠ ⊤≠ mw,v

9: then return Bin(G〈v,w〉, S) (optimal edge found in
star M2-M5)
10: else return Bin(Gv, S) (v is the center of star M6).

Figure 2 Stars. Star topologies that can be present in gene trees. On the right side of stars there are at least 2 edges. M5 has at least two
double edges and at least one single edge.

Figure 3 Gene tree and species trees. An example of an unrooted gene tree G with three multifurcations and a species tree S. The gene tree
G is depicted with a star topology, and it has one star of type M2 and three stars of type M1. Every edge e of G is decorated with the
duplication cost D(Ge, S) (note that the rooting Ge is not refined). Observe, that the optimal edge (empty edge) is adjacent to a leaf labelled by
a. Rooting at this edge yields the duplication cost 0.
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Examples of (unrooted) binary refinements with costs
of all rootings of an unrooted gene tree with multifurca-
tions are depicted in Figures 3, 4 and 5.

Polytomies and other cost functions
Similarly to the gene duplication cost we show results
for other cost functions that are related to the duplica-
tion cost [63]. Here, we introduce for the first time a

Figure 4 Binary refinements and unrooted reconciliation. All 27 unrooted binary refinements of the gene tree G from Figure 3 shown in
star-like topology. Observe, that the edge adjacent to a leaf labelled by a is optimal in every refinement of G, and it has the same type as in G
(i.e., it is an empty edge). The optimal duplication cost equals 1. The optimal edges with this cost are marked in gene trees G19, G23 and G25. The
bottom-right part of this figure depicts the embedding of the optimal rooting of G25 into the species tree S from Figure 3.
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general approach, similar to [32,44], for the case where
both trees, i.e., a gene tree and a species tree can be
non-binary.
Costs can be defined for rooted trees as follows:

ρK(T, S) =
∑

g∈I(T)
ξK(g),

where T is a rooted gene tree and S is a species tree
such that L(T ) ⊆ L(S), I(T ) is the set of all internal
nodes of T , K is a cost name and ξK : I(T ) ® R is a
contribution function that for an internal node v of T
defines a contribution of v to the cost K when compar-
ing T and S. For a node v in a rooted tree, by c(v) we

denote the cluster of v defined as the set of all leaf
labels visible from v. The contribution functions for
standard costs are defined as follows. Let g be an inter-
nal node of T and M be the lca-mapping from T to S.

• Gene duplication (D) cost function: ξD (g) = 1 if g
has a child c such that M (g) =M (c), and ξD (g) = 0
otherwise.
• Deep coalescence (DC): ξD(g) =

∑
g′, is a child of g

||lM (g), M (g!)||, where ||x, y|| is the number of edges
on the shortest path connecting nodes x and y in S.
• Robinson-Foulds cost (RF): ξRF (g) = 1 if c(g) ≠ c(M
(g)) and ξRF (g) = 0 otherwise.

Figure 5 Star M6 and binary refinements. The special case of a refinement when the star M6 is present in a gene tree. An optimal edge can
be found after rooting at the center node of star M6 and then applying the refinement procedure for rooted gene trees (see Algorithm 1). An
optimal edge of every binary refinement of G is “surrounded” by the edges related to the star M6 present in G. For example, the candidates are
two internal edges of Gi for each i. The optimal binary refinement of G has the gene duplication cost equal to 0 and it is obtained by rooting G7
at the left internal edge. See also bottom part of this figure. Clearly, it has the same topology as the species tree. Similarly to Figure 3, each
edge e of the gene tree G is decorated with the duplication cost D(Ge, S), where Ge is a (not refined) rooting of G.

Górecki and Eulenstein BMC Bioinformatics 2014, 15(Suppl 13):S3
http://www.biomedcentral.com/1471-2105/15/S13/S3

Page 7 of 10



Note that the classical Robinson-Foulds distance can be
obtained by RF (T, S) = |I(S)| + 2 * rRF (T, S) − |I(T )|.
Additionally, we have to assume that for the RF distance
T is bijectively labelled by the labels present in L(S). For
more details and discussion please refer to [44,63].
For an unrooted gene tree G, a species tree S, the

unrooted cost is defined by:

�(G, S, f ) = min
e∈EG

f (e),

where f : EG ® R is a cost function usually defined for a
cost K by f(e) = rK (Ge, S). Assume that fS(e) = D(Ge, S),
then it can be proved that ur D(G, S) = Δ(G, S, fS).
In the previous section we described the solution to

Problem 1 defined for the duplication cost by reducing
the unrooted problem to a rooted one in linear time
and space. Here, we show that the same kind reduction
can by applied for the DC and RF cost functions.
Problem 2 (Unrooted refinement under DC cost) For

a given unrooted gene tree G and a binary species tree S,
find a binary refinement under all rootings of G that
minimizes the DC cost.
Problem 3 (Unrooted refinement under RF cost) For

a given unrooted gene tree G and a binary species tree S,
find a binary refinement under all rootings of G that
minimizes the RF cost.
The result for the DC and the RF cost follows from [32]

(Proposition 1 and Proposition 2) and [44] (Proposition 1
and Proposition 2), respectively. We conclude, that the
statement from Theorem 1 also holds for the DC and RF
cost functions. Therefore, Algorithm 1 can be used for
locating an optimal edge or star M6 in an unrooted gene
tree with multifurcations. Then after such a rooting is
identified, one can apply the solution that removes poly-
tomies from rooted gene trees. Clearly this reduction can
be performed in linear time and space for both cost
functions.
Problem 4 (Rooted refinement under DC cost) For a

given rooted gene tree G and a binary species tree S, find
a binary refinement under all rootings of G that mini-
mizes the DC cost.
Problem 5 (Rooted refinement under RF cost) For a

given rooted gene tree G and a binary species tree S, find
a binary refinement under all rootings of G that mini-
mizes the RF cost.
According to our knowledge Problem 4 and Problem 5

are open, with the exception that Problem 4 can be
solved in quadratic time for the case when the gene tree
has a bijective leaf labelling [36]. We conjecture that
these two problems can be solved in polynomial time
similarly to the problem under the duplication cost [35]
(see Bin(Ge, S) in Algorithm 1). Our reduction shows
that Problem 2 and Problem 3 have the same time com-
plexity as the rooted ones.

Conclusion
To deal with discordance in practice we introduced a
binary refinement model for the well-studied Robinson-
Foulds, duplication, and deep coalescence costs. To
compute these costs we described novel linear time
reductions, from which quadratic time algorithms follow
for the duplication cost and for the deep coalescence
cost when constrained to bijective labelings. Our binary
refinement model together with the efficient algorithms
allows the exploitation of the full range of available gene
trees. Finally, our algorithms not only compute optimal
binary refinement costs efficiently, but also simulta-
neously root and refine gene trees optimally. However,
the time complexity of the Robinson-Foulds cost for
unrooted and non-binary gene trees will depend on the
time complexity of computing this cost for rooted non-
binary gene trees, which is unknown to the best knowl-
edge of the authors.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
PG and OE contributed equally to the writing of the paper. Both authors
read and approved the final manuscript.

Acknowledgements
We would like to thank the two reviewers for their detailed comments that
allowed us to improve our paper. Furthermore, we would also like to thank
Nadia El-Mabrouk for helpful discussions.

Declarations
This work was conducted as a part of the Gene Tree Reconciliation Working
Group at the National Institute for Mathematical and Biological Synthesis,
sponsored by the U.S. National Science Foundation, the U.S. Department of
Homeland Security, and the U.S. Department of Agriculture through NSF
Award #EF-0832858, with additional support from The University of
Tennessee, Knoxville. Partial support was provided to OE by the NSF
(#0830012 and #106029), and to PG and OE by NCN #2011/01/B/ST6/02777.
This article has been published as part of BMC Bioinformatics Volume 15
Supplement 13, 2014: Selected articles from the 9th International
Symposium on Bioinformatics Research and Applications (ISBRA’13):
Bioinformatics. The full contents of the supplement are available online at
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S13.

Authors’ details
1Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw,
Poland. 2Department of Computer Science, Iowa State University, Atanasoff
Hall 212, 50011 Ames, USA.

Published: 13 November 2014

References
1. Avise JC: Molecular Markers, Natural History, and Evolution. Sinauer

Associates, Sunderland, MA;, 2 2004.
2. Felsenstein J: Inferring Phylogenies. Sinauer Associates, Sunderland, MA;

2004.
3. Arnason U, Adegoke JA, Bodin K, Born EW, Esa YB, Gullberg A, Nilsson M,

Short RV, Xu X, Janke A: Mammalian mitogenomic relationships and the
root of the eutherian tree. Proc Natl Acad Sci USA 2002, 99(12):8151-6.

4. Ishiguro NB, Miya M, Nishida M: Basal euteleostean relationships: a
mitogenomic perspective on the phylogenetic reality of the
“protacanthopterygii”. Mol Phylogenet Evol 2003, 27(3):476-88.

Górecki and Eulenstein BMC Bioinformatics 2014, 15(Suppl 13):S3
http://www.biomedcentral.com/1471-2105/15/S13/S3

Page 8 of 10

http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S13
http://www.ncbi.nlm.nih.gov/pubmed/12034869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12034869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12742752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12742752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12742752?dopt=Abstract


5. Phillips MJ, Penny D: The root of the mammalian tree inferred from
whole mitochondrial genomes. Mol Phylogenet Evol 2003, 28(2):171-85.

6. Douglas DA, Gower DJ: Snake mitochondrial genomes: phylogenetic
relationships and implications of extended taxon sampling for
interpretations of mitogenomic evolution. BMC Genomics 2010, 11(14).

7. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B,
Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A,
Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K,
Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C,
Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Ku¨es U, Kumar TKA,
Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S,
Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C,
Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Duenãs FJ,
Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St John F, Stenlid J,
Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A,
Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS: The paleozoic
origin of enzymatic lignin decomposition reconstructed from 31 fungal
genomes. Science 2012, 336(6089):1715-9.

8. Sjölander K: Phylogenomic inference of protein molecular function:
advances and challenges. Bioinformatics 2004, 20(2):170-9.

9. McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT: Applications
of next-generation sequencing to phylogeography and phylogenetics.
Mol Phylogenet Evol 2013, 66(2):526-38.

10. Pamilo P, Nei M: Relationships between gene trees and species trees.
Molecular biology and evolution 1988, 5(5):568-583.

11. Doyle JJ: Gene trees and species trees: molecular systematics as one-
character taxonomy. Systematic Botany 1992, 144-163.

12. Maddison WP: Gene trees in species trees. Systematic biology 1997,
46(3):523-536.

13. Ballard JWO, Rand DM: The population biology of mitochondrial dna and
its phylogenetic implications. Annual Review of Ecology, Evolution, and
Systematics 2005, 621-642.

14. Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M,
Wörheide G, Baurain D: Resolving difficult phylogenetic questions: why
more sequences are not enough. PLoS Biol 2011, 9(3):1000602.

15. Ohno S: Evolution by Gene Duplication. Springer, Berlin; 1970.
16. Lynch M, Conery JS: The evolutionary fate and consequences of

duplicate genes. Science 2000, 290(5494):1151-5.
17. Chojnowski JL, Kimball RT, Braun EL: Introns outperform exons in analyses

of basal avian phylogeny using clathrin heavy chain genes. Gene 2008,
410(1):89-96.

18. Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ,
Chojnowski JL, Cox WA, Han KL, Harshman J, Huddleston CJ, Marks BD,
Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T: A
phylogenomic study of birds reveals their evolutionary history. Science
2008, 320(5884):1763-8.

19. Page RDM, Charleston MA: Reconciled trees and incongruent gene and
species trees. DIMACS Series in Discrete Mathematics and Theoretical
Computer Sciences 1997, 37.

20. Maddison WP: Reconstructing character evolution on polytomous
cladograms. Cladistics - The International Journal of the Willi Hennig Society
1989, 5(4):365-377.

21. Górecki P, Burleigh JG, Eulenstein O: Maximum likelihood models and
algorithms for gene tree evolution with duplications and losses. BMC
Bioinformatics 2011, 12(Suppl 1):15.

22. Bininda-Emonds ORP: Phylogenetic Supertrees. Springer, Berlin; 2004.
23. Bryant D, Tsang J, Kearney PE, Li M: Computing the quartet distance

between evolutionary trees. Symposium on Discrete Algorithms 2000,
285-286.

24. Strimmer K, von Haeseler A: Quartet puzzling: A quartet maximum
likelihood method for reconstructing tree topologies. Molecular Biology
and Evolution 1996, 13:964-969.

25. DasGupta B, He X, Jiang T, Li M, Tromp J, Zhang L: On distances between
phylogenetic trees. SODA 1997, 427-436.

26. Bordewich M, Semple C: On the computational complexity of the rooted
subtree prune and regraft distance. Annals of Combinatorics 2004,
8:409-423.

27. Zheng Y, Zhang L: Are the duplication cost and the robinson-foulds
distance equivalent? J Comput Biol , (accepted).

28. Wu YC, Rasmussen MD, Bansal MS, Kellis M: Treefix: statistically informed
gene tree error correction using species trees. Syst Biol 2013, 62(1):110-20.

29. Gordon JB, Bansal MS, Eulenstein O, Vision TJ: Inferring species trees from
gene duplication episodes. In BCB. ACM, New York, NY, USA;Zhang, A.,
Borodovsky, M., Özsoyoglu, G., Mikler, A.R. 2010:198-203.

30. Sanderson MJ, McMahon MM: Inferring angiosperm phylogeny from EST
data with widespread gene duplication. BMC Evolutionary Biology 2007,
7(Suppl 1):S3.

31. Eulenstein O: Predictions of gene-duplications and their phylogenetic
development. PhD thesis, University of Bonn, Germany; 1998, GMD
Research Series No. 20 / 1998, ISSN: 1435-2699.

32. Górecki P, Eulenstein O: Deep coalescence reconciliation with unrooted
gene trees: Linear time algorithms. LNCS 2012, 7434:531-542.

33. Bansal AK, Meyer TE: Evolutionary analysis by whole-genome
comparisons. Journal of Bacteriology 2002, 184(8):2260-2272.

34. Page RDM, Holmes EC: Molecular Evolution: a Phylogenetic Approach.
Blackwell Science 1998.

35. Lafond M, Swenson KM, El-Mabrouk N: An optimal reconciliation
algorithm for gene trees with polytomies. WABI 2012, LNCS/LNBI 2012,
7534:106-122.

36. Yu Y, Warnow T, Nakhleh L: Algorithms for mdc-based multi-locus
phylogeny inference: beyond rooted binary gene trees on single alleles.
J Comput Biol 2011, 18(11):1543-59.

37. Zheng Y, Wu T, Louxin Z: Reconciliation of gene and species trees with
polytomies. 2012, eprint arXiv:1201.3995v2 [q-bio.PE].

38. Robinson DF, Foulds LR: Comparison of phylogenetic trees. Mathematical
Biosciences 1981, 53:131-147.

39. Semple C, Steel MA: Phylogenetics. Oxford Lecture Series in Mathematics
and Its Applications. Oxford University Press, USA; 2003, (Book 24).

40. Felsenstein J: Inferring Phylogenies. Sinauer Associates, Sunderland, Mass;
2004.

41. Mecham CA: Theoretical and computational considerations of the
compatibility of qualitative taxonomic characters. Springer, Berlin;
Felsenstein, J. 1983:1:304-314, NATO ASI Series.

42. Day WHE: Optimal algorithms for comparing trees with labeled leaves.
Journal of Classification 1985, 2(1):7-28.

43. Pattengale ND, Gottlieb EJ, Moret BME: Efficiently computing the
robinson-foulds metric. J Comput Biol 2007, 14(6):724-35.

44. Górecki P, Eulenstein O: A Robinson-Foulds measure to compare
unrooted trees with rooted trees. LNCS 2012, 7292:102-114.

45. Bryant D, Steel M: Computing the distribution of a tree metric. IEEE/ACM
Trans Comput Biol Bioinform 2009, 6(3):420-6.

46. Steel MA, Penny D: Distributions of tree comparison metrics - some new
results. Systemtic Biology 1993, 42(2):126-141.

47. Dryer MS, Haspelmath M: The World Atlas of Language Structures Online.
Max Planck Digital Library, Munich; 2011.

48. Alcock J: Animal Behavior: An Evolutionary Approach. Sinauer Associates,
Sunderland, MA; 2005.

49. Goodman M, Czelusniak J, Moore GW, Romero-Herrera AE, Matsuda G:
Fitting the gene lineage into its species lineage. a parsimony strategy
illustrated by cladograms constructed from globin sequences. Systematic
Zoology 1979, 28:132-163.

50. Maddison WP: Gene trees in species trees. Syst Biol 1997, 46:523-536.
51. Zhang L: On a Mirkin-Muchnik-Smith conjecture for comparing

molecular phylogenies. Journal of Computational Biology 1997,
4(2):177-187.

52. Ma B, Li M, Zhang L: On reconstructing species trees from gene trees in
term of duplications and losses. RECOMB 1998, 182-191.

53. Page RDM: Extracting species trees from complex gene trees: reconciled
trees and vertebrate phylogeny. Molecular Phylogenetics and Evolution
2000, 14:89-106.

54. Cotton JA, Page RDM: Going nuclear: gene family evolution and
vertebrate phylogeny reconciled. P Roy Soc Lond B Biol 2002,
269:1555-1561.

55. Martin AP, Burg TM: Perils of paralogy: using hsp70 genes for inferring
organismal phylogenies. Syst Biol 2002, 51(4):570-87.

56. McGowen MR, Clark C, Gatesy J: The vestigial olfactory receptor
subgenome of odontocete whales: phylogenetic congruence between
gene-tree reconciliation and supermatrix methods. Syst Biol 2008,
57(4):574-90.

57. Katz LA, Grant JR, Parfrey LW, Burleigh JG: Turning the crown upside
down: gene tree parsimony roots the eukaryotic tree of life. Syst Biol
2012, 61(4):653-60.

Górecki and Eulenstein BMC Bioinformatics 2014, 15(Suppl 13):S3
http://www.biomedcentral.com/1471-2105/15/S13/S3

Page 9 of 10

http://www.ncbi.nlm.nih.gov/pubmed/12878457?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12878457?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20055998?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20055998?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20055998?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22745431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22745431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22745431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14734307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14734307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22197804?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22197804?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3193878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11073452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11073452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18191344?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18191344?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18583609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18583609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21226895?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21226895?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24988427?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24988427?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22949484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22949484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11914358?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11914358?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22035329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22035329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17691890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17691890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19644170?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9228616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9228616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10631044?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10631044?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12228000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12228000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18686195?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18686195?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18686195?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22334342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22334342?dopt=Abstract


58. Plachetzki DC, Degnan BM, Oakley TH: The origins of novel protein
interactions during animal opsin evolution. PLoS One 2007, 2(10):1054.

59. Górecki P, Tiuryn J: Inferring phylogeny from whole genomes.
Bioinformatics 2007, 23(2):116-122.

60. Chen K, Durand D, Farach-Colton M: NOTUNG: a program for dating gene
duplications and optimizing gene family trees. J Comput Biol 2000,
7(3-4):429-447.

61. Chang WC: Phylogenetic reconciliation under gene tree parsimony. PhD
thesis, Iowa State University 2012.

62. Eulenstein O, Huzurbazar S, Liberles DA: Reconciling Phylogenetic Trees.
Evolution after Gene Duplication John Wiley & Sons, Inc., Hoboken, NJ, USA;
2010.

63. Górecki P, Eulenstein O, Tiuryn J: Unrooted Tree Reconciliation: A Unified
Approach. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 2013, 10(2):522-536.

64. Górecki P, Tiuryn J: DLS-trees: a model of evolutionary scenarios.
Theoretical Computer Science 2006, 359(1-3):378-399.

65. Zheng Y, Wu T, Zhang L: A linear-time algorithm for reconciliation of
non-binary gene tree and binary species tree. Lecture Notes in Computer
Science 2013, 8287:190-201.

doi:10.1186/1471-2105-15-S13-S3
Cite this article as: Górecki and Eulenstein: Refining discordant gene
trees. BMC Bioinformatics 2014 15(Suppl 13):S3.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Górecki and Eulenstein BMC Bioinformatics 2014, 15(Suppl 13):S3
http://www.biomedcentral.com/1471-2105/15/S13/S3

Page 10 of 10

http://www.ncbi.nlm.nih.gov/pubmed/11108472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23929875?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23929875?dopt=Abstract

	Abstract
	Background
	Result
	Conclusion

	Introduction
	Related work
	Contributions

	Basic definitions and preliminaries
	Unrooted reconciliation

	Results
	Polytomies and the duplication cost
	Polytomies and other cost functions

	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


