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Accurate prediction of cellular co-translational
folding indicates proteins can switch from
post- to co-translational folding
Daniel A. Nissley1, Ajeet K. Sharma1, Nabeel Ahmed2, Ulrike A. Friedrich3,4, Günter Kramer3,4, Bernd Bukau3,4

& Edward P. O’Brien1,2

The rates at which domains fold and codons are translated are important factors in

determining whether a nascent protein will co-translationally fold and function or misfold and

malfunction. Here we develop a chemical kinetic model that calculates a protein domain’s

co-translational folding curve during synthesis using only the domain’s bulk folding and

unfolding rates and codon translation rates. We show that this model accurately predicts the

course of co-translational folding measured in vivo for four different protein molecules. We

then make predictions for a number of different proteins in yeast and find that synonymous

codon substitutions, which change translation-elongation rates, can switch some protein

domains from folding post-translationally to folding co-translationally—a result consistent

with previous experimental studies. Our approach explains essential features of co-transla-

tional folding curves and predicts how varying the translation rate at different codon positions

along a transcript’s coding sequence affects this self-assembly process.
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P
rotein folding, the assembly of a protein molecule or
domain into a tertiary structure, can occur as a protein is
being synthesized by the ribosome in a process referred to

as co-translational folding1–3. In vitro4,5 and in vivo6 studies in
which ribosomes were arrested at different nascent chain lengths
have identified a number of proteins that can co-translationally
fold. A convincing demonstration that co-translational folding
occurs inside cells during continuous translation comes from
pulse-chase experiments in which the synthesis of the cytosolic
Semliki Forest virus protein (SFVP) was monitored in Chinese
hamster ovarian (CHO) cells7. SFVP is composed of four distinct
protein segments (Fig. 1a), including an N-terminal protease
segment (referred to as ‘C protein’) that auto-catalytically cleaves
itself from the SFVP molecule once folded (Fig. 1b). Pulse-chase
experiments revealed that cleaved C protein appears before
synthesis of full-length SFVP is complete, demonstrating that
C protein does indeed fold co-translationally in vivo. In this
study, we develop a chemical kinetic model that predicts the
course of such co-translational folding and compare the results to
experimentally-measured co-translational folding curves reported
in the literature.

Pulse-chase experiments use the incorporation of radiolabelled
amino acids into nascent proteins to resolve the time course of
protein synthesis (Fig. 1c). In the ‘pulse’ phase of the experiment,
cells in culture are supplied with media containing radiolabelled
amino acids, such as 35S-Met and 35S-Cys, for a prescribed period
of time. These radiolabelled amino acids begin being incorporated
into nascent chains 10 s after their addition to the cell culture8.
This delay is due to the fact that the amino acids must be taken
up by the cells and covalently attached to tRNA. Immediately
following the pulse, a ‘chase’ is initiated by supplying the
cells with media containing unlabelled amino acids, which,

following another 10 s delay after their addition to the cell
culture8, inhibits the incorporation of labelled amino acids
into the elongating nascent chain without hindering the
translation process. Radiolabelled nascent protein is then
tracked at different time points by a combination of SDS–
polyacrylamide gel electrophoresis (for separation by protein size)
and phosphorimaging (for quantification of protein levels),
allowing the amount of each protein in a sample to be
monitored as a function of time since the start of the pulse or
chase.

The SFVP is a 1,257-residue polyprotein; the last three
segments are collectively referred to as p97 (Fig. 1a)7. C protein
(Fig. 1b) is composed of the 267 N-terminal residues of SFVP and
contains a non-sequential catalytic triad (H145, D167 and S219)
that, upon folding, allows C protein to rapidly cleave itself from
the rest of the polyprotein. Both folding and auto-catalytic
cleavage of C protein occur co-translationally7. Once cleaved, it
has been suggested that C protein is incapable of cleaving C
protein off of other nascent proteins9. In pulse-chase
experiments, the fraction of C protein cleaved since the start of
the chase period is monitored. These data correspond to C
protein’s co-translational folding curve, which equals the
probability of C protein being folded as a function of time.
Time-dependent co-translational folding was measured for two
different constructs of SFVP, the wild-type (WT) and a deletion
mutant, termed DC. This mutant lacks the 112 most-N-terminal
residues, which are intrinsically disordered, resulting in a 1,145-
amino acid long protein with a truncated C-protein segment that
retains its catalytic activity.

Recently, we introduced a kinetic model that accurately
predicts the results of co-translational folding from molecular
dynamic simulations10. Here we examine if this approach can be
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Figure 1 | Illustration of the pulse-chase experiment. (a) A schematic representation of the relevant protein segments of WT SFVP. Residues 1–267

correspond to the segment known as C protein. The other three protein domains are collectively referred to as p97. (b) The crystal structures of the three

protein segments for which co-translational folding curves were predicted in this study. In each case, the co-translational folding domain whose behaviour

is predicted is coloured blue. Top left, C protein of SFVP63. Bottom left, the FRB domain64. Right, HA1 (ref. 65), for which the co-translational folding of

residues 53–275 was experimentally monitored. (c) Pulse-chase experiments proceed in a step-wise manner as described in the main text. Ribosomes

(grey circles) engaged in the translation of an mRNA (light green line) incorporate radiolabelled (red dots) and unlabelled (blue dots) amino acids into

nascent proteins. Only those nascent chains that contain labelled amino acids (red segments) can be experimentally observed.
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extended to predict in vivo co-translational folding curves. The
resulting model’s predictions show excellent agreement with
measured co-translational folding curves for four different
proteins. We use this model to make novel predictions
concerning a small subset of proteins in yeast, finding that
some can switch between post- and co-translational folding
mechanisms due to synonymous codon substitutions that
alter translation-elongation rates. Thus, our model provides a
rapid and accurate means to anticipate how small protein
domains co-translationally behave in vivo, and the capability to
explore the consequences of variable codon translation rates
arising from synonymous mutations on this process.

Results
Derivation of the model. Our goal is to develop a kinetic model
that can predict co-translational folding curves measured by pulse-
chase experiments. As a starting point, we note that only radi-
olabelled nascent chains are visible to these experiments, with
unlabelled nascent chains making no contribution to the co-trans-
lational folding curve. Thus, only translation-initiation and elonga-
tion events that occur during the period of radiolabel incorporation
contribute to the measured co-translational folding curve, as these
events generate chains that are radiolabelled, while such translation
events that occur outside the incorporation period do not.

From these considerations, it follows that in the calculation
of the experimentally-measured co-translational folding curve
(PF(t)) we must account for (1) contributions from both
ribosome-bound and ribosome-released radiolabelled nascent
chains; (2) that at different time points during the experiment,
the ribosome-bound population can contain sub-populations
of nascent chains of different lengths; and (3) that the
ribosome-released population can contain nascent chains that
were released from the ribosome at different time points. The
contribution to the co-translational folding curve from the
ribosome-bound nascent chain population is proportional to
the fraction of nascent chains that are both radiolabelled and
folded at a nascent chain length of i, while the contribution from
the ribosome-released nascent chains is proportional to the
fraction of radiolabelled released nascent chains and the time
since their release. We can express these ideas mathematically as:

PFðtÞ ¼
XM

i¼1

PF;BðiÞfL;Bði; tÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Contribution from
ribosome-bound and labelled
nascent chains

þ
Xt

t0¼0

PF;Rðt; t0ÞfL;Rðt; t0Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Contribution from
ribosome-released and labelled
nascent chains

ð1Þ

The first summation term in equation (1) represents the
contribution of ribosome-bound, labelled chains to the co-
translational folding curve, and the second term is the
contribution from released, labelled chains. In equation (1),
PF,B(i) is the probability that the nascent chain segment of interest
(that is, the segment whose folding is being monitored) is folded
(F) and bound (B) to the ribosome at a nascent chain length of i.
The nascent chain segment of interest for SFVP is C protein
(Fig. 1a). fL,B(i, t) is the fraction of ribosome-bound (B) nascent
chain segments of interest that are at codon position i and contain
a radioactive label (L) at time t. A nascent chain segment is
considered radiolabelled if at least one residue in the segment of
interest is labelled. Although the absolute intensity of the
phosphorimaging signal is directly proportional to the number
of radioactive amino acids in a peptide, Helenius and co-workers
normalized the experimental data by dividing by the maximum
observed intensity7. This normalization procedure removes the
signal’s dependence on the absolute number of radiolabelled
amino acids and absolute number of labelled protein molecules,

yielding the co-translational folding probability. PF,R(t, t0) is the
probability that at time t the nascent chain segment of interest is
folded (F) for those nascent chains released (R) from the
ribosome at time t0, where 0 r t0 r t. fL,R(t, t0) is the fraction of
labelled (L) nascent chains at time t that were released (R) from
the ribosome at time t0. The first summation in equation (1) is
over the different nascent chain lengths (from codon i¼ 1 to
i¼M, the stop codon) and the second summation is over the
different time points during the experiment.

To determine mathematical expressions for each of the terms
in equation (1) we make the following assumptions:

A1. That steady-state translation kinetics occur throughout
the time course of the experiment, which requires that the
number of ribosomes initiating translation is equal to the
number of ribosomes terminating translation at all times
during the experiment. Consistent with this assumption, we
performed Ribo-seq experiments on yeast and found that, for
genes that have good coverage, stationary ribosome profile
distributions occur between biological replicates
(Supplementary Figs 1 and 2). Furthermore, the constant rate
of accumulation of full-length SFVP during the pulse-chase
experiment (Supplementary Fig. 3) means that the rate of
protein synthesis is constant; this can only be the case if
translation is occurring at steady state.

A2. That the co- and post-translational folding of the nascent
chain segment of interest occurs in a two-state manner (Fig. 2),
with rates kU,i and kF,i at nascent chain length i, and rates kU

and kF for ribosome-released nascent chains. Two-state folding
indicates that the nascent chain segment does not populate any
intermediate states, which is a reasonable assumption for small,
cooperative folding domains. C protein has been shown to fold
in a manner consistent with this two-state assumption9.

A3. That the dwell time of the ribosome at a particular codon
position is exponentially distributed, with the rate of
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Figure 2 | The co- and post-translational protein folding reaction scheme

that equation (2) solves. Initiation of translation of a transcript occurs at a

rate kint. At each codon position i the probability that the nascent chain

segment of interest folds depends on the rates of folding, unfolding and

codon translation. At short nascent chain lengths a domain within the

nascent chain is not sterically permitted to fold due to the confining

environment of the ribosome exit tunnel, and therefore at these lengths the

rates of folding and unfolding are defined to be zero. When the domain has

emerged from the exit tunnel it can fold and unfold with rates kF,i and kU,i.

Once the nascent chain has been released from the ribsome it will fold and

unfold post-translationally with the bulk folding and unfolding rates kF and

kU. Note well that this picture does not convey that equation (2) accounts

for the time-dependent fraction of radiolabelled nascent chains at codon i.
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translation of codon i denoted kA,i. This assumption allows for
the derivation of an analytical model11,12, but there is
experimental evidence that ribosome dwell times are best
described by the difference of two exponential terms13. We
show below, however, that the predictions using either dwell-
time distribution are highly similar.

These assumptions are, of course, not valid for all proteins or
translation systems. For example, if a protein is known to fold via a
pathway that includes an intermediate state then assumption A2 is
not valid and our model will make inaccurate predictions. Under
these assumptions, and with the introduction of discretization of t
into time points of duration sdt, equation (1) can be rewritten as
(see Supplementary Note 1 for a full derivation)

PF tðsÞð Þ ¼ 1PM
i¼1 NL;B i; t sð Þð Þþ

Ps
n¼0 NL;R t sð Þ; t0 nð Þð ÞXM

i¼1
NL;B i; t sð Þð ÞPF;BðiÞ

h
þ
Xs

n¼0
NL;R tðsÞ; t0ðnÞð Þ

PF;B Mð Þ� kF

kFþ kU

� �
e� kF þ kU½ � tðsÞ� t0ðnÞ½ � þ kF

kFþ kU

� ��
;

ð2Þ

which expresses PF(t(s)) purely as a function of the underlying rates
of folding, unfolding and codon translation. To illustrate how the
quantities NL,B and NL,R, the relative numbers of ribosome-bound
and ribosome-released nascent chains, can change with time
during the experiment and how PF(t(s)) is calculated in practice, we
provide a simple but tractable example in Supplementary Fig. 4.
We tested the validity of assumptions A1 and A3 and determined
that our model can be applied even when there are small deviations
from steady state (see Supplementary Note 2, Supplementary Fig. 5
and Methods section) and that the predictions using either the
single-exponential or the difference of two exponential dwell-time
distribution (see Supplementary Note 3, Supplementary Fig. 6 and
Methods section) are highly similar.

We provide computer code as a Supplementary File to carry
out these calculations; it is the same code used to make the
predictions displayed in Figs 3 and 5–7. For a typical protein
domain, making a prediction with equation (2) requires between
1 and 3 min of computer time on a typical computer.

Constructing a fully constrained model. A concern with any
model that aims to predict experimentally-measured
quantities is that it will be under constrained. In such situations
it is common to introduce additional assumptions to reduce
the number of free parameters. Equation (2), with only
assumptions A1, A2 and A3, is an under-constrained model for
predicting SFVP’s behaviour, as 3,771 rates are needed.
These rates are the 1,257-codon translation rates in the CDS,
and C protein’s folding and unfolding rate at each of the
1,257-nascent chain lengths. However, introducing three
additional assumptions results in a fully constrained model; these
assumptions are:

A4. That each codon translates at the average codon translation
rate. There is experimental evidence that this is a reasonable
approximation for some proteins. While it is almost certainly
the case that translation rates can vary from one codon to the
next, it has been shown in mouse stem cells that no matter the
length or type of protein being translated, all proteins are
translated with an average codon translation rate of 5.6 AA
per second14. On heuristic grounds, we expect that this
experimental observation likely arises from the Central Limit
Theorem, meaning that the most-probable codon translation
rate will be the average codon translation rate provided that
these rates are randomly distributed across the CDS.

A5. That the nascent chain segment of interest is only sterically
permitted to fold once it emerges from the ribosome exit
tunnel. This assumption is supported by structural15,
proteolysis16, single molecule17 and coarse-grained simulation
studies18 that demonstrate that protein domains need linker
lengths of between 24 and 40 residues to fold, as the exit tunnel
is too narrow to allow large domains to fold19.

A6. That once C protein is sterically permitted to fold and
unfold it does so at its bulk folding and unfolding rates. Coarse-
grained simulations of protein-G folding on the ribosome found
it attained its bulk folding and unfolding rates just three residues
beyond the nascent chain length at which it could form a
thermodynamically-stable folded structure18. A single-molecule
experiment17 suggests that T4 lysozyme attains its bulk folding
and unfolding rates at a linker length of 80 residues, B40
residues after it has emerged from the exit tunnel. Consider that
C protein is sterically permitted to fold starting at 297 residues
in length, such that at nascent chain lengths between 297 and
337 residues its kF and kU may differ from their bulk values.
From 337 to 1,257 residues in length, however, C protein has
most likely attained its bulk kF and kU values. Thus, for only 40
out of 920 (¼ 1,257–337) nascent chain lengths are the kF and
kU of C protein potentially different than its bulk values, or only
4% of the nascent chain lengths at which C protein is sterically
permitted to fold. This assumption is therefore reasonable for
the proteins investigated in this paper.

Assumption A4 reduces the number of required translation
rates from 1,257 to 1, reducing the number of required
parameters by 1,256. Assumption A5 reduces the number of free
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Figure 3 | Comparison between the predicted and experimentally

measured SFVP co-translational folding curves. Probabilities of

co-translational folding calculated using equation (2) (red triangles) and

experimentally measured using pulse-chase labelling7 (open blue squares)

for the WT (a) and DC mutant (b) of SFVP. Error bars for the experimental

results were not reported7, and so error bars were estimated as the

average s.d. from the mean from three independent pulse-chase

experiments carried out under similar experimental conditions (see

Methods section). To match the convention used in the experiment7, the

predicted co-translational folding curve was shifted such that the start of

the chase is at t¼0. WT: R2¼0.96, P¼0.0001; DC mutant: R2¼0.99

P¼ 1� 10� 6.
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parameters by 592 (¼ 2� 296), because the kU,i and kF,i values
for ir296 residues can be set to 0 s� 1. Assumption A6
reduces the number of free parameters by 1,920 (¼ 2�
(1,256–296)), as for all nascent chain lengths at which
folding and unfolding are permitted the bulk kF and kU values
are used. Thus, with these assumptions, we only require three
parameters to make predictions using equation (2): the bulk kF

and kU values and average kA. Therefore, our predictions are
made based on a model that is fully constrained by literature-
reported values.

As more experimental information becomes available the
number of assumptions required to make predictions using
equation (2) can be reduced. For example, ribosome profiling20

holds out the promise that it may be possible to directly measure
the kA,i values for a transcript21–24. In such a situation,
assumption A4 is not necessary.

Prediction of pulse-chase co-translational folding curves.
Using as input parameters the experimentally-determined
values of kF, kU and kA (see Table 1 and Methods section)
for C protein in CHO cells and the experimental values of
a 45-s pulse period and a 360-s chase period7, with a 10-s delay
in the start of the incorporation period as is observed to
occur in CHO cells8, we find that equation (2) accurately
predicts the experimentally measured co-translational folding
curves for both the WT and DC SFVP constructs (Fig. 3;
SFVP WT: R2¼ 0.96, P¼ 0.0001; SFVP DC: R2¼ 0.99,
P¼ 1� 10� 6).

Prediction of FactSeq co-translational folding curves. As
a further test of our approach, we also modelled in vivo
co-translational folding curves for the 99-amino acid
FKBP12-rapamycin-binding domain of a Flag-FRB-GFP con-
struct (Fig. 1b) and the 290 structured residues of the viral protein
HA1 from influenza A/PR8 (Fig. 1b). These co-translational
folding curves have been measured using the experimental
technique known as folding-associated co-translational
sequencing (FactSeq)25. FactSeq is a Next-Gen sequencing
technique that uses substrate or antibody binding to monitor
the co-translational folding status of a protein segment as a
function of the nascent chain length rather than as a function
of time as in pulse-chase measurements. Thus, Supplementary
equation (1) (described in Supplementary Note 1) and not
equation (2) is appropriate for predicting these co-translational
folding curves. For FRB and HA1, we used the kF and kU values
reported in Table 1. The typical range of translation rates in
eukaryotic cells is 3.2–5.6 AA per second7,14. Using this range of
kA values we find Supplementary equation (1) predicts very
similar in vivo co-translational folding trends as are observed
experimentally for FRB and HA1; the results when a kA of 3.9 AA
per second is used are displayed here in Fig. 4.

The FactSeq data exhibit large variances in their signal from
one codon position to the next, non-zero probabilities within the
first fifty codons where folding cannot take place owing to the
steric effect of the ribosome exit tunnel19, and probabilities 41.0
that arise from a numerator and denominator that are
measured in two different experiments. Owing to these poor
experimental statistics it is inappropriate to compare the
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Figure 4 | Comparison between the predicted and experimentally-measured FRB and HA1 co-translational folding curves. (a) The co-translational

folding probability calculated with Supplementary equation (1) (black line) and the experimentally-measured fraction folded using FactSeq25 (blue circles) for

(a) FRB, HA1 using antibody binding epitope (b) H28-E23 and (c) Y8-10C2 are shown. Regions I, II and III, as described in the main text, are indicated,

respectively, by the shaded regions in green, blue and red. (d) The median values of the FactSeq-measured PF,B(i) in Regions I, II and III are shown with

bootstrapped error bars for FRB, H28-E23 and Y8-10C2.The statistical significance of the PF,B(i) values was determined using the Mann–Whitney U-Test.

Region I versus Region II: FRB: P¼0.078, H28-E23: P¼0.1933 and Y8-10C2: P¼0.4471. Region III versus Region I: FRB: P¼ 5.04� 10� 11, H28-E23:

P¼ 2.56� 10� 11 and Y8-10C2: P¼ 9.11� 10� 8. Region III versus Region II FRB: P¼ 3.2� 10� 9, H28-E23: P¼ 2.75� 10� 15 and Y8-10C2: P¼8.98� 10� 11.

Hence, the experimental data from FactSeq are consistent with the predicted co-translational folding curves in panels a, b, and c of this figure.
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measurements to the detailed, codon-specific predictions of our
model. Instead it is justified—as was done in the original FactSeq
publication25—to interpret the experimental data in terms of
unfolded and folded regions along the transcript. Therefore, we
broke the FactSeq data and our predictions into three regions.
Region I corresponds to the first 50 codons of the transcript, and
is used as a baseline where any signal from this region must
correspond to unfolded protein. We then used the boundaries
identified by Qian and colleagues25 in the original FactSeq paper
for Regions II and III (see Methods section).

If Region II corresponds to an unfolded protein domain then
the median FactSeq signal in this region should be statistically
indistinguishable from the median value in Region I.
We therefore tested the null hypothesis that the median values
in Regions I and II are the same. We applied the Mann–Whitney
U-test to this hypothesis and found that Regions I and II are
statistically the same (Fig. 4d, Region I versus Region II: FRB:
P¼ 0.078, H28-E23: P¼ 0.1933 and Y8-10C2: P¼ 0.4471). We
also used the Mann–Whitney U-test to determine that Region III
is statistically different from Regions I and II (Fig. 4d, Region III
versus Region I; FRB: P¼ 5.04� 10� 11, H28-E23: P¼ 2.56�
10� 11 and Y8-10C2: P¼ 9.11� 10� 8. Region III versus Region
II; FRB: P¼ 3.2� 10� 9, H28-E23: p ¼ 2.75� 10� 15 and
Y8-10C2: P¼ 8.98� 10� 11). Thus, the experimental data are
consistent with the FRB and HA1 folding domains being
unfolded in Regions I and II and folded in Region III. These
trends in the FactSeq data and our predictions are consistent.
These results lend further support to the accuracy of our
modelling approach, as Supplementary equation (1) is an integral
part of equation (2).

Sensitivity of predictions to parameter variation. To test the
sensitivity of our model’s predictions, we varied the parameters
kF,i kU,i and kA,i several fold for each protein. The predicted
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folding curves for the proteins HA1 and yeast proteins DHOM,
DPP3, SBA1, and EF2 (see below) are sensitive to one order of
magnitude changes in kF,i (Supplementary Figs 7 and 8). On the
other hand, the folding curves predicted for DC SFVP (Fig. 5a),
WT SFVP (Supplementary Fig. 8) and FRB (Supplementary
Fig. 7) only visibly shift after a two order of magnitude change in
kF,i. By varying kU,i by an order of magnitude we determined that
the predicted folding curves for all the proteins are insensitive to
this variation in the respective unfolding rates (Fig. 5b and
Supplementary Figs 7 and 8). We also determined that, for all
proteins in this study, except FRB, a twofold change in the global
kA,i substantially shifts the co-translational folding curves (Fig. 5d
and Supplementary Figs 7 and 8).

In the case of DC SFVP, we used trial and error to determine
the kF and kU values needed for equation (2) to make inaccurate
predictions. We find that the kF and kU values must change by
factors of 103 and 106, respectively, for the predictions to fall
outside the error bars (Fig. 5a, b). We also tested how the number
of residues that could fit in the ribosome exit tunnel affected the
results for DC SFVP and found that our predictions are robust to
changes to this value (Fig. 5c). We emphasize that not all proteins
exhibit such robust results and elaborate on this point further in
the Discussion section.

Model sensitivity to variable codon translation rates. The
efficiency of co-translational folding can be influenced by
the variability in translation rates from one codon position to the
next along an mRNA molecule26–28. Our previous predictions
(Fig. 3) were based on a uniform translation rate (assumption A4)
and we therefore wished to test how sensitive our predictions are
to variable rates. Individual codon translation rates in CHO cells,
however, have not been measured. There have been at least five
different estimates of codon translation rates in other organisms
extracted from ribosome profiling data21–23 or calculated from
theory24. These estimated codon translation rates do not correlate
with each other, even when calculated for the same organism

(Supplementary Fig. 9). Settling the controversy of which data set
is most accurate is outside the scope of this study. Therefore, we
used each of the five codon translation rate sets to test the
sensitivity of our predictions. To apply these rates to CHO cells
we scaled them such that the average codon translation rate
across the DC SFVP transcript matched the experimentally-
measured 3.9 AA per second value (Supplementary Table 1).
Using these individual codon translation rates in equation (2), we
find that for four out of the five translation rate sets the
predictions are essentially the same as when the average
translation rate is used at every codon position (Fig. 6). These
results indicate that our predictions for DC SFVP are not highly
sensitive to variable codon translation rates and that assumption
A4 is reasonable for this protein.

The Fluitt–Viljoen translation rate estimates are the only ones
to result in predicted values that are statistically different from
experiment. We also noticed that the Fluitt–Viljoen rates have the
largest variance in translation rates compared with the other rate
estimates (Supplementary Table 1). Therefore, we hypothesized
that either the fastest- or slowest-translating codons in the set of
rates predicted by Fluitt and Viljoen were the greatest
contributors to the deviations from experiment. To test this
hypothesis we created two new translation rate data sets. For the
first (denoted ‘Slow Set’) the six slowest-translating sense codons
were assigned their Fluitt–Viljoen values and the other 58 codon
types were assigned the average rate of 3.9 AA per second. The
other set (denoted ‘Fast Set’) used the six fastest-translating sense
codons. Using these new translation-rate estimates in
equation (2), we find that the fast set better reproduces the
experimental values, while the slow set yields a deviation in the
same direction as that observed when the full Fluitt–Viljoen
translation rate set is used (Supplementary Fig. 10). This
test indicates the greatest contributor to the deviation from
experiment is the slowest codon translation rates estimated by
Fluitt and Viljoen. It also suggests that, at least for DC SFVP
synthesis in CHO cells, Fluitt and Viljoen’s estimated rates may
have too great a variance.
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Figure 7 | Synonymous codon substitutions can switch some yeast protein domains from post- to co-translational folding according to equation (2).

(a) Top panel. The probability of folding as a function of the chase time for domain 1 of DHOM predicted using equation (2). Calculations were performed

for both the WT transcript (red solid line) and the transcript in which all codon positions were substituted with their slowest-translating synonymous codon

(solid blue line). In the same panel is plotted the time-dependent fraction of full-length protein (see Methods section) synthesized from the WT (red

dashed line) or the slow-translating (blue dashed line) transcript. (a) Bottom panel. The fraction of DHOM molecules whose first domain folds co-

translationally when synthesized from the WT (red) or slowest-translating (blue) transcript. (b) Same as a but for domain 1 of SBA1. (c) Additional

probabilities of co-translational folding for domain 6 of EF2 (top) and domain 2 of DPP3 (bottom) for their WT and slowest-translating transcripts. Dashed

grey lines separate the co- and post-translational folding classes.
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Domains can switch from post- to co-translational folding.
Synonymous codon substitutions can radically alter nascent
protein behaviour by modifying the translation-elongation
kinetics of a transcript29,30 and thereby changing the timing and
efficiency of co-translational processes. Previously, it was
demonstrated that the co-translational folding of a domain in
the Escherichia coli protein SufI can be abolished by the
introduction of fast-translating synonymous codon substitutions
in a normally slow-translating region31. In light of this, we sought
to determine if synonymous codon substitutions can alter the
most fundamental classification of nascent protein folding in
yeast in the opposite manner. That is, can synonymous codon
substitutions be used to cause a yeast protein domain that
folds post-translationally when translated from the WT transcript
to fold co-translationally in the case of the synonymous variant?
Experimental and simulation studies have found that slowing
down translation-elongation tends to increase the probability
that a domain will co-translationally fold10,28. Therefore, we
hypothesized that introducing slow-translating codon
substitutions into transcripts might be sufficient to switch some
yeast domains from post- to co-translational folding. To test this
hypothesis we examined 10 randomly-selected cytosolic, multi-
domain proteins in yeast and predicted their pulse-chase folding
curves using their WT mRNA sequence and also predicted their
folding curves when all the codon positions were substituted with
their slowest-translating synonymous codon. To make these
predictions the Fluitt–Viljoen yeast translation rates were used
(Supplementary Table 1), and, as in the experiments with SFVP, a
pulse period of 45 s was used. We find that four of the yeast
proteins we examined contain at least one domain that switches
from post- to co-translational folding in our model. The pulse-
chase time courses for two of these proteins (Fig. 7a, b, top
panels) show that for the WT CDSs the appearance of the full-
length protein precedes folding, indicating that these proteins fold
predominantly post-translationally; the situation is reversed for
the mutated, slowest-translating CDSs, indicating the same
domains fold predominantly co-translationally in this case. This
change from post- to co-translational folding is also evidenced by
an increase in the time-independent probability that the protein

domain folds co-translationally (PF,Co–T, see Methods section) for
the slowest-translating CDSs (Fig. 7a, b bottom panel, c). Thus,
our model predicts that, for some proteins in yeast, a fundamental
change in nascent protein folding mechanisms can occur owing
to synonymous codon substitutions.

Discussion
The study of protein folding in vitro over the past several decades
has led to models that can accurately predict the time course of
folding for small proteins32. More recently, it has been
demonstrated that the tertiary folding of protein domains can
begin during their synthesis by the ribosome7,15,19,31. Translation
introduces an additional process that can influence nascent
protein folding; hence, the kinetic equations describing protein
folding have recently been expanded to account for the impact of
codon translation rates10,26. These new models, while successfully
tested against results from molecular dynamics simulations10,
have not previously been validated against experimental data. The
results of our study are the first to do so, and they demonstrate
that our chemical kinetic modelling approach (equation (2)) can
make accurate predictions of nascent protein folding in vivo. The
model calculates the predicted folding probability as a continuous
rather than a discrete variable, which means the model is
deterministic rather than stochastic33. This is a reasonable
approximation for ensemble experiments, such as pulse chase,
where the signal is averaged over a large number of nascent
protein molecules. Importantly, the model only requires as input
the domain-of-interest’s bulk folding and unfolding rates, and the
average translation rate in the cell. If assumption A4 is discarded
then the model requires all 64 codon translation rates. Such rate
information has been reported in the literature for a number of
different proteins32 and cell types8,14,34,35, suggesting this
theoretical approach can be applied to a wide variety of
proteins in different organisms.

Our model explains the molecular origin of three features of
the experimentally measured pulse-chase co-translational folding
curves of SFVP (Fig. 3). First, the non-zero folding probability at
the start of the chase period is a result of the pulse’s duration

Table 1 | Model parameters for SFVP, FRB, HA1 and yeast proteins.

Protein Total codons encoding
protein

Codons encoding
co-translational
folding domain

Length of observable
domain

kF,i (s� 1) kU,i (s� 1) kA,i

(AA per second)

SFVP WT 1,257 1–267 (ref. 7) 255 (ref. 62) 0 for i¼ 1–296
20 for i¼ 297–1,257

(ref. 9)

4.34� 10� 5

(ref. 9)
3.9

SFVP DC 1,145 1–155 (ref. 7) 143 (ref. 62)* 0 for i¼ 1–184
20 for i¼ 185–1,145

(ref. 9)

4.34� 10� 5

(ref. 9)
3.9 and See

Supplementary Table 1

Flag-FRB-GFP 379 11–99 (ref. 25) 99 0 for i¼ 1–128
15.93 for i¼ 129–379

(ref. 32)

0.72 (ref. 32) 3.9

HA1 565 53–275 (ref. 53) 222 0 for i¼ 1–304
0.1378 for i¼ 305–565

(ref. 32)

7.58� 10� 5

(ref. 32)
3.9

DHOM 359 1–161 (ref. 53) 161 0 for i¼ 1–190
0.0240 for i¼ 191–359

(ref. 32)

2.48� 10� 8

(ref. 32)
See Supplementary

Table 1

SBA1 216 1–135 (ref. 66) 135 0 for i¼ 1–164
0.0721 for i¼ 165–216

(ref. 32)

5.40� 10�6

(ref. 32)
See Supplementary

Table 1

EF2 842 570–721 (ref. 53) 151 0 for i¼ 1–750
0.0501 for i¼ 751–842

(ref. 32)

1.03� 10� 7

(ref. 32)
See Supplementary

Table 1

DPP3 711 431–671 (ref. 66) 240 0 for i¼ 1–700
0.1811 for i¼ 701–711

(ref. 32)

4.33� 10� 9

(ref. 32)
See Supplementary

Table 1

*The last radiolabelled position in SFVP WT is i¼ 255; the length of the observable domain for SFVP DC is therefore 143 (¼ 255–112).
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being long enough to allow some labelled nascent C protein to
complete synthesis, fold and cleave itself from the incomplete
nascent protein before the chase period starts. Second, the
measured WT and DC PF(t) curves increase linearly (R2 values of
0.94 for WT and 0.99 for DC SFVP) between the end of the
incorporation period and the time point at which all labelled
nascent C proteins achieve their equilibrium folding probability
(that is, between times 0 and 100 s, in Fig. 3). This linear regime
arises because a constant number of labelled C proteins reach the
folded state at each time point during this period. Finally, the
plateau of the co-translational folding curve, from t¼ 100 to
360 s, arises because in this range all labelled C protein molecules
have achieved their equilibrium folding probability. Thus,
equation (2) not only provides accurate predictions but also
offers explanations for the features of co-translational folding
curves.

A subtle, but important technical point is that radiolabelling in
pulse-chase experiments is typically preceded by a period of
amino acid starvation, and this was indeed the case in the SFVP
experiments that we modelled (Fig. 3). This can potentially lead
to deviations from steady state, which would violate assumption
A1 of equation (2). The deviations from steady-state behaviour
during Helenius’s pulse-chase experiments, however, appear to be
minimal, as evidenced by the linear time dependence of the
accumulation of C protein during the chase (WT: R2¼ 0.94,
P¼ 0.02; DC mutant R2¼ 0.99, P¼ 0.004; Fig. 1c, d in ref. 7,
respectively). This can only occur if the rate of protein synthesis is
constant, which can only be the case if translation is occurring at
steady state. Thus, the assumption of steady-state translation is
reasonable for this experimental data set. There can be
experiments where steady state is not achieved36 (see Fig. 7b in
ref. 36, bottom panel; linear regression analysis of those data:
R2¼ 0.61, P¼ 0.07). We therefore suggest that experimentalists
who wish the steady-state approximation to be upheld follow the
protocol of Helenius and co-workers.

We were only able to test our model predictions for four
proteins owing to the scarcity of in vivo experimentally-measured
co-translational folding curves. As protein biophysicists continue
to shift their research efforts from in vitro to in vivo protein
behaviour, we expect that more data will become available. Even
without such data we can identify scenarios where the model
could make inaccurate predictions. The current model assumes
that domains fold in a two-state manner (assumption A2).
Therefore, domains that populate long-lived intermediates or
misfolded structures are unlikely to be accurately described by
our model. This limitation can be overcome by using previously-
reported mathematical expressions for the PF,B(i) (ref. 26) and
PF,R(t, t0) (ref. 37) terms in equation (1) that describe co-
translational folding mechanisms involving three states. In
addition, co-translational folding can be influenced by chaper-
ones2,38,39 and other cellular factors40. As a first approximation,
equation (2) can implicitly account for the effects of these other
molecules on the co-translational folding process by accounting
for their effect on nascent protein folding and unfolding rates. For
example, trigger factor is a molecular chaperone in E. coli that has
been shown to slow down the co-translational folding of b-
galactosidase38 through a number of potential molecular
mechanisms41. Our model can implicitly account for this effect
by appropriately decreasing the kF,i values.

A biologically fundamental prediction from our model is
that some yeast proteins can be shifted from a post- to a
co-translational folding mechanism by substituting codon
positions in the WT CDS with their slowest-translating
synonymous codon. Experimentalists have found that the
introduction of presumably slow-translating synonymous
substitutions often increases the extent of co-translational protein

folding as reflected by the enzymatic activity42 or resistance to
proteases31 of nascent proteins. For example, a domain in SufI
lost resistance to protease degradation when two rare codons
were replaced with common codons, suggesting faster elongation
kinetics in the mutant transcript provide that domain insufficient
time to co-translationally fold31. Similarly, it was found that
optimizing codon usage in the N-terminal 164 codons of the
Neurospora clock protein frequency (FRQ) was sufficient to
decrease its ability to associate with the protein WC-2 by 60%43.
If this 60% decrease is due to a decrease in co-translational
folding efficiency, it would suggest that FRQ’s folding mechanism
switched from predominantly co- to post-translational. These
experimental studies highlight the challenge of determining the
relative contributions of co- and post-translational folding to the
observed signals. Our model, which can reproduce experimental
co-translational folding curves, allows the contributions from
co- and post-translational folding to be separately quantified.
Thus, our prediction that some yeast proteins can transition from
a predominantly post- to a predominantly co-translational
folding mechanism suggests that this phenomenon can occur in
organisms other than the two already identified. Our results,
however, say nothing about how common or uncommon it is for
yeast proteins to be able to switch from post- to co-translational
folding, as only 10 proteins were examined. In future, it would be
interesting to address this issue by applying our model to the
entire yeast proteome.

There are a number of proteins reported in the literature44,45

for which only a few synonymous codon substitutions can alter
nascent protein folding. Yet, for SFVP, we found that altered
codon translation rates have minimal to moderate effects on its
co-translational folding curve (Fig. 5), and that for some yeast
proteins (Fig. 7) synonymous substitutions at all codon positions
were necessary to shift the protein from post- to co-translational
folding. Should the co-translational folding of all proteins be able
to be significantly affected by just a few synonymous codons?
Recent theoretical papers3,10,26 demonstrate that the complex
interplay of timescales of folding and translation-elongation
influences whether a protein’s co-translational folding
curve is robust or sensitive to changes in codon translation
rates. Furthermore, if a domain can populate off-pathway
intermediates, synonymous codons can have an even greater
impact3. For example, if a domain folds extremely slowly or
quickly relative to the possible codon translation times then
introducing a synonymous mutation will have negligible effect on
its co-translational folding. However, if the folding and codon
translation times are similar, perturbations to a codon’s
translation time can shift the folding curve. In the case of
SFVP, its bulk folding time is 50 ms9, fivefold faster than the
256 ms codon translation time in CHO cells7. Thus, unless a
synonymous codon substitution in SFVP’s transcript speeds up
translation greater than fivefold, the substitution is unlikely to
have a significant effect on its folding curve.

The preceding discussion of the importance of time scales of
codon translation and folding also explains, in part, why the
predictions for some protein domains are robust to folding-rate
variation (Fig. 5) and sensitive for others (Supplementary Figs 7
and 8). Take, for example, the very different effects that varying
kF by the same amount can have on the folding curves for HA1
and FRB. The rates of folding for HA1 and FRB are 0.1378 s� 1

and 15.93 s� 1, respectively. Increasing the folding rate of HA1 by
an order of magnitude to 1.378 s� 1 significantly alters its folding
curve (Supplementary Fig. 7, left column, data for HA1), but
decreasing the folding rate of FRB by an order of magnitude to
1.593 s� 1 does not significantly alter its folding curve
(Supplementary Fig. 7, left column, data for FRB). Why is one
of these changes significant and the other insignificant? This is an
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example of how the interplay of timescales in non-equilibrium
systems affects sensitivity, and is best understood in light of
timescale ratios. Increasing HA1’s folding rate to 1.378 s� 1

changes the time required for its folding from 7,300 to 730 ms,
a difference of 6,600 ms; this 6,600 ms difference provides
enough time for roughly 26 additional codons to be translated

ffi 6;600ms
256 ms

codon

� �
in CHO cells, significantly perturbing the

co-translational folding curve. In the case of FRB, however, the
order of magnitude decrease in kF increases the mean time
required for folding by only 570 ms, such that only two additional
codons are translated before folding occurs. These differences in
sensitivity can be observed in the co-translational folding curves
for HA1 and FRB. Thus, the apparent robustness of our model’s
predictions is a function of the separation of timescales.

In summary, we have derived an equation that can accurately
predict the probability that particular segments of a nascent chain
co-translationally fold in vivo as a function of time on the basis of
their bulk folding and unfolding rates and the average codon
translation rate. The application of our assumptions (A1 through
A6) to equation (2) is sufficient to fully constrain it with
experimental rate information, leaving no free parameters. This
equation is general for pulse-chase experiments of any duration,
and, by discarding assumption A4, can account for the effects of
variable codon translation rates. We have used equation (2) to
show that synonymous codons can switch yeast proteins between
post- and co-translational folding mechanisms. Such quantitative
modelling of co-translational folding opens up new opportunities
to understand differential codon usage in organisms31,46, the
influence of co-translational folding on mRNA sequence
evolution47, and can form the basis for the rational design of
mRNA sequences to manipulate nascent protein behaviour48.

Methods
Selection of model parameters. The co-translational folding curves of four dif-
ferent proteins have been measured in vivo using either pulse-chase7 or FactSeq25

experimental techniques. Equation (2) requires the bulk folding and unfolding rates
for each of these domains along with the average codon translation rate for each
transcript. These rates are listed in Table 1 for the four proteins, as are the lengths
of the proteins and observable segment. In the case of the SFVP constructs, the
observable region is limited by the most C-terminal Met residue within the C
protein domain, Met255, as only Met and Cys residues were radiolabelled in the
experiment. For both the Flag-FRB-GFP and HA1 constructs, all residues within
the segment of interest are experimentally observable.

The rates of folding (kF,i) for the SFVP WT and DC constructs were taken from
the reported experimental values, and the rate of unfolding for the SFVP constructs
was calculated from the experimentally-determined thermodynamic stability of the
native state as kU ¼ kF exp DGUF

RT

	 

. The rates of folding and unfolding for the Flag-

FRB-GFP and HA1 proteins were predicted using a phenomenological model32.
The codon translation rate of 3.9 AA per second in CHO cells was calculated from
Fig. 1d of ref. 7, which displays the results for a pulse-chase experiment in which
the synthesis of the cleavage-negative Dile SFVP construct is observed to be linear
as a function of time. A S219I point mutation in this construct of C protein
disrupts the function of the catalytic triad, preventing it from catalysing its cleavage
from the rest of the protein. Dile SFVP is otherwise identical to DC SFVP. The
experimental data points were extracted using PlotDigitizer (PlotDigitizer.com)
and a linear least squares analysis carried out (Supplementary Fig. 3), resulting in a
line of best fit of y¼ 0.0025tþ 0.26 (R2¼ 0.95, P¼ 0.001). The time at which the
fraction of full-length protein first reaches a value of 1.0 is equal to the amount of
time required to synthesize the entire protein. Dividing the length of the protein,
1,145 amino acids, by this time value, 296 s, yields an average codon translation
rate of 3.9 AA per second for SFVP synthesis in CHO cells.

Calculation of error bars. No error bars were reported for the SFVP experimental
data7 that are displayed in Fig. 3. To better assess how well our calculations agreed
with these experimental results, we performed a literature search for similar
pulse-chase experiments involving 35Cys and 35Met labelling in which error bars
are reported for proteins translating in vivo. The error bars were extracted from the
published graphs of three separate studies49–51 with the program PlotDigitizer
(PlotDigitizer.com) and then converted to a s.d. The individual s.d.’s were then
averaged, yielding an average s.d. (n¼ 33) of 0.151 (in units of probability).
Though the various experiments that were considered in this estimate contain a
different number of measurements, it has been shown that the s.d. is fairly

insensitive to n (ref. 52). The individual data points that were extracted from our
literature search are reported in Supplementary Table 2.

Calculation of test statistics for FactSeq data. The FactSeq data in Fig. 4 were
each broken into three separate regions. The first region was defined as codon
positions 1–50, which represents nascent chain lengths at which the nascent
proteins will be unfolded. The second region was defined to be from codon position
51 to the last codon stated by Han and co-workers25 to be in the unfolded state. For
FRB and both epitopes of HA1 the second region thus consists of codon positions
51–150 and 51–310, respectively. The third region is defined as the codon positions
for which the protein is expected to be folded, which is codon positions 151–379
for FRB and codon positions 310–565 for HA1. The three regions were compared
pairwise and statistical significance was determined with the Mann–Whitney
U-test. The 95% confidence interval of the median values was calculated by
bootstrapping with 100,000 replications. The median values of the three regions
along with the corresponding 95% confidence intervals and statistical significances
are shown in Fig. 4d.

Details of protein domain identification and numbering. We used a previously
reported method of domain identification27 based on the Class Architecture
Topology Homology (CATH) and Domain Parser databases. CATH domains are
identified on the basis of sequence homology53 and thus do not always represent
autonomous folding units. Some CATH domains are composed of non-contiguous
segments of the protein. The method we use here requires that the amino acids that
compose a domain be contiguous and that each autonomous folding unit contain at
least 50 amino acids; we therefore modified some CATH domain definitions such
that domains only consisted of contiguous segments of 450 amino acids.
Renumbering domains in a protein in this way can result in a number of domains
that is larger than the number of domains identified by CATH. For example,
suppose that within a 500 amino-acid protein CATH identifies five domains, with
the fifth domain composed of amino acids 1–100 and 300–400. As the two segments
that compose the CATH domain are non-contiguous, our labelling scheme would
separate them into two unique domains. We would refer to amino acids 1–100 as
domain 5 and amino acids 300–400 as domain 6. Domain details for the four yeast
proteins can be found in Table 1.

Identifying yeast protein domains. We randomly selected 10 multi-domain yeast
proteins that had domain definitions reported in the CATH or Domain Parser
databases. We tested which of these domains could switch from post- to
co-translational folding by applying Supplementary equation (1). To determine the
starting and ending codons for each domain we BLASTED54 its protein sequence
onto yeast reference genome (UCSC: sacCer2). We then used the de Sancho–
Munoz model32 to estimate each domain’s folding and unfolding rates at 303 K,
which were then used in equation (2) to predict its co-translational folding profile
for the WT mRNA sequence and the recoded, slowest-translating mRNA sequence.
The probability that a domain folds co-translationally (PF, Co–T) was taken as the
value of Supplementary equation (1) calculated at the stop codon. Proteins with
PF, Co–T Z0.5 fold predominantly co-translationally, while proteins with PF, Co–T

o0.5 fold predominantly post-translationally. Using these definitions, we predict
that the four yeast proteins listed in Table 1 are capable of switching from post- to
co-translational folding due to synonymous codon substitutions.

The time-dependent fraction of full-length protein. The time-dependent
fraction of full-length protein (Fig. 7) that has been synthesized at time t in the
pulse-chase experiment (fL,R(t)) is equal to the total number of protein molecules
that have been released into the cytosol by time t divided by the total number of
full-length proteins that are synthesized during the entire simulated experiment

fL;RðtÞ ¼
NL;RðtÞ

NL;Rðt ¼ 360 sÞ : ð3Þ

In equation (3), NL,R (t¼ 360 s) is the total number of proteins that will be released
into the cytosol by the final time point in the chase period.

Testing the applicability of assumptions A1 and A3. The covalent attachment
of amino acids into polypeptides is a many-step process55. However, a
two-exponential fit of the experimentally-measured ribosome dwell-time
distribution indicates only two rate limiting steps13,56. Therefore, to numerically
test if the predicted co-translational folding curve would change significantly when
a dwell-time distribution of the form PðtÞ ¼ k1k2

k2 � k1
exp � k1tð Þ� exp � k2tð Þ½ �, is

used, we assumed that ribosomes stochastically switch between the pre-
translocation and post-translocation states. The post-translocation state transitions
to the pre-translocation step with rate k1, and the transition from the pre-
translocation to post-translocation state occurs with rate k2 and elongates the
nascent chain by one amino acid. We scaled the experimentally-fitted values of k1

and k2 from ref. 13 to keep the mean codon translation rate equal to 3.9 AA
per second, which is SFVP’s average codon translation rate in CHO cells (that is,
1

kA
¼ 1

k1
þ 1

k2
), and used k1¼ 4.7363 s� 1 and k2¼ 22.0649 s� 1.
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We started our virtual experiment from the situation where ribosomes of each
nascent chain length are equally probable. Therefore, a single ribosome is assigned
for each nascent chain length. In the system, a new translation-initiation event
occurs after a variable time interval of t that is exponentially distributed with mean
value of 1/kin. Therefore, the number of labelled proteins increases with time and
then saturates after the end of the pulse period. Using the Gillespie algorithm33, we
simulated the stochastic kinetics of each of these ribosome-nascent chain
complex translating the SFVP DC mRNA. These simulations generated the
trajectories for the time evolution of each of these ribosome-nascent chain complex
in different states. Using these trajectories, the co-translational folding curve was
calculated as

PFðtÞ ¼
P

dtðiÞ
NðtÞ ; ð4Þ

where N(t) is the number of labelled protein domains at time t, and dt(i) equals one
when the ith labelled protein is in folded state at time t.

This virtual experiment was repeated 20 times, generating 20 different co-
translational folding curves, which were then averaged together to give the co-
translational folding curve displayed in Supplementary Fig. 6.

We tested the applicability of equation (2) under non-steady-state conditions by
comparing the predictions made using equation (2) with non-steady-state co-
translational folding curves for DC SFVP generated by the Gillespie algorithm. We
used a sinusoidally varying time-dependent translation-initiation rate
kintðtÞ ¼ kintð0Þ½1þA sinð2pt

tp
Þ� to create a non-steady-state condition in the system

(Supplementary Fig. 5, top panel). The plots shown in Supplementary Fig. 5 were
made with tp¼ 45 s, kint(0)¼ 3.9 AA per s, and A as indicated in the figure. We
generated an exponentially-distributed random number, t1, from an exponential
distribution with mean value 1

kintð0Þ. The first translation-initiation event occurred at
time t1. For the next initiation event, another random number, t2, distributed
exponentially with the mean value 1

kintðt1Þ, was generated, and the second initiation
thus occurred at time t1þ t2. This exponential distribution of time intervals
between successive initiation events ensures that translation initiation is a
Markovian process. New translation initiations were generated by this method until
the end of the pulse period. We simulated the stochastic kinetics of ribosomes
arriving in the system after each initiation event and computed the co-translational
folding curves by using equation (4). The mean co-translational folding curve over
20 of these virtual experiments is displayed in Supplementary Fig. 5.

Scaling codon translation rate estimates for CHO cells. Codon translation
times in yeast were obtained from Stadler and Fire22, Dana and Tuller23, Gardin
et al.21 and Fluitt and Viljoen24. Rates for translation in Caenorhabditis elegans
were also obtained from Dana and Tuller23. For Gardin et al., Stadler and Fire, and
Dana and Tuller the translation times were estimated from ribosome profiling
analysis, and were referred to as the relative residence time score, occupancy and
normalized footprint count, respectively, in the original publications. To map these
rates to CHO cells, each reported set of rates were scaled such that the
average translation rate across the CDS of DC SFVP matched the experimentally-
determined value of 3.9 AA per second. To achieve this, the unscaled translation
times were matched with the corresponding codons in DC SFVP’s sequence. The
inverse of each of the unscaled translation time estimates was then taken to
produce the estimated translation rate. The sum of these estimated translation rates
across the DC SFVP’s CDS was then divided by the length of the CDS (¼ 1,145
codons) to obtain the average unscaled translation rate. Dividing the desired
average translation rate of 3.9 AA per second by the unscaled average translation
rate yields a scaling factor, w, that relates the unscaled values to the correctly scaled
values that reproduce the 3.9 AA per second average in CHO cells. Thus,
multiplying the unscaled codon translation rates by w yields the set of scaled rates
that maintain the desired 3.9 AA per second average. This process is summarized
in equations (5) and (6).

w ¼ 3:9 AA per secondP1;145

i¼1
kunscaled

A;i

1;145

ð5Þ

kscaled
A;i ¼ wkunscaled

A;i ð6Þ

Stadler and Fire only report rates for codons AAC, AAU, AGC, AGU, CAC, CAU,
GAC, GAU, GGC, GGU, UAC, UAU, UGC, UGU, UUC and UUU; Occupancies
of 1.000 were therefore assumed for each codon for which a specific translation
time estimate was not reported. Translation times for stop codons (UAA, UAG and
UGA), which are required by equation (2) to provide the ribosome dwell time at
the last codon position in the CDS, were only reported by the Fluitt–Viljoen model;
where specific translation times for stop codons were not reported, the average
translation time of 256 ms for DC SFVP in CHO cells was used. Scaled and
unscaled rates are reported in Supplementary Table 1.

Ribosome profiling of yeast. Ribosome profiling of yeast S288C cells was per-
formed following the protocol of Ingolia et al.20 with the following modifications:
yeast cells were grown in yeast extract peptone dextrose, at 30 �C to an optical
density (OD600) of 0.5. Cells were collected by fast filtration in the absence of
antibiotics and immediately flash-frozen in liquid nitrogen. Frozen cells were

mechanically lysed for 2 min at 30 Hz using a Retsch MM400 mixer mill and a lysis
buffer composed of 20 mM Tris pH 8.0, 140 mM KCl, 6 mM MgCl2, 0.1% NP-40,
100mg ml� 1 cycloheximide, 200mg ml� 1 heparin, 1 mM PMSF, 20mg ml� 1

leupeptin, 20mg ml� 1 aprotinin, 1 mg ml� 1 AEBSF, 1mg ml� 1 E-64, 40mg ml� 1

bestatin, 12.5 U DNase. Lysates were thawed and exposed parts of mRNAs were
digested with 5 U/A260 RNaseI (Ambion) at 25 �C, 650 r.p.m. for 1 h. Digestion was
stopped by adding 8 U/A260 SUPERase � In (Ambion) and the lysate was cleared of
membranes, organelles and cell debris by centrifugation at 4 �C and 30,000g for
5 min. The supernatant was loaded on a 10–50% sucrose gradient (20 mM Tris pH
8.0, 140 mM KCl, 6 mM MgCl2, 100mg ml� 1 cycloheximide, 1x EDTA-free protease
inhibitor tablets (Roche)) and monosome fractions were pooled. RNA was isolated
from monosomes by hot-phenol extraction and directly precipitated using GlycoBlue
as coprecipitant.

The size-selection step after dephosphorylation of the footprint was omitted.
Dephosphorylated mRNA footprints (5 pmol) were linked to the 1 mg linker L10

(ref. 57) by incubation with 200 U T4 RNA Ligase 2, truncated (NEB) at 37 �C for
2.5 h in buffer containing 20 mM Tris pH7, 20% PEG MW 8000, 10% DMSO, 20 U
SUPERase � In. Linked footprints were size-selected by gel electrophoresis. Reverse
transcription was carried out with 200 U SuperScript III (Invitrogen), 20 U
SUPERase � In, 10 nmol dNTP, 25 pmol Linker L10L20 (ref. 58), 100 nmol DTT in
20 ml of 1� FSB buffer (Invitrogen). Circularization by incubation with CircLigase
(Epicentre) was performed two times for 1 h each (a second aliquot of CircLigase
was added after one hour) and the product was directly used for amplification by
PCR. Deep sequencing was performed using Illumina HiSeq 2000 instrumentation.

Bioinformatic analysis of ribosome profiling data. The raw reads from the
ribosome-protected fragments were trimmed of the 30 custom adaptor
50-CTGTAGGCACCATCAATTCGTATGCCGTCTTCTGCTTG-30 using cuta-
dapt59 (v1.1). The low quality reads were filtered using PRINSEQ60 (v0.20.4), and
reads shorter than 20 nucleotides were discarded. The processed reads were first
aligned to the ribosomal RNA sequences using Bowtie 2 (ref. 61) (v2.2.3). The
unaligned reads were then aligned to the Saccharomyces cerevisiae assembly R64-1-
1 (UCSC: sacCer3) using Tophat63 (v2.0.13) with up to two mismatches allowed.
Gene annotations were obtained from Saccharomyces Genome Database
(http://www.yeastgenome.org/) on 30 October 2014. For downstream analysis, only
reads with length 27–32 nucleotides were considered, as they are more likely to
represent the ribosome-protected fragments. The ribosome profiles of individual
genes were obtained by quantifying the coverage at a gene position by the 50 end of
the reads. The reads that correspond to start and stop codons in the active site were
not considered. Since the active site of translation is B15 nucleotides downstream
of the 50 end of the ribosome-protected fragment, the ribosome profiles of genes
were calculated from four codons upstream of the start codon to six codons
upstream of the stop codon. For pairwise comparison of ribosome profiles in the
two replicate samples (Supplementary Fig. 1d), only those genes were considered
that had at least one read mapping to each codon position and no multiply aligned
reads, with the first and last codons not considered. In all, 91 genes met these
criteria.
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