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Abstract 

Targeted radionuclide therapy (TRT) is a promising technique for cancer therapy. However, in 
order to deliver the required dose to the tumor, minimize potential toxicity in normal organs, as 
well as monitor therapeutic effects, it is important to assess the individualized internal dosimetry 
based on patient-specific data. Advanced imaging techniques, especially radionuclide imaging, can 
be used to determine the spatial distribution of administered tracers for calculating the 
organ-absorbed dose. While planar scintigraphy is still the mainstream imaging method, SPECT, 
PET and bremsstrahlung imaging have promising properties to improve accuracy in quantification. 
This article reviews the basic principles of TRT and discusses the latest development in 
radionuclide imaging techniques for different theranostic agents, with emphasis on their potential 
to improve personalized TRT dosimetry. 
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Introduction 
Targeted radionuclide therapy (TRT) plays an 

increasingly important role for treating a range of 
cancers. The therapeutic agent is administered to the 
patients via different methods, i.e., intravenous 
injection [1-3], oral uptake [4], loco-regional, arterial 
[5] or direct intratumoral injection. The aim of TRT is 
to deliver a lethal dose of radiation to tumors from 
internal sources by targeting their specific molecular 
or functional targets with agents. The local dose is 
delivered directly by short ranged beta, Auger or 
alpha particles [6], or indirectly via the “bystander” 
effect [7]. Thus, compared to conventional 
chemotherapy or external radiotherapy, it has the 
potential to deliver therapeutic radiation more 
specifically to cancerous cells in a way that minimizes 

toxicity to surrounding normal tissues [8]. Iodine 
based thyroid therapy is a classic example of TRT. 
During the last years, there has been a significant 
growth of TRT due to a number of new isotopes and 
radiopharmaceuticals for the treatment of metastatic 
bone pain, neuroendocrine and other solid tumors, 
mainly in the liver.  

The distribution of the radionuclides is variable 
among patients [9]. Therefore, clinical practitioners 
would like to have a priori-knowledge of the 
biodistribution and washout of TRT agents before 
TRT. This information enables optimization of the 
therapeutic efficacy by adjusting the administered 
dose to each patient, and can be obtained 
non-invasively by single or sequential nuclear 
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medicine scans, e.g., planar and emission computed 
tomography (ECT) or combined with blood sampling 
if necessary. Quantitative images at different time 
points allow fitting of time activity curves for the 
targeted organs and tumors. From the integration of 
these time-activity curves one can obtain the 
cumulative activity and further convert it to the 
absorbed dose, which can help pre-treatment 
planning or post-therapy dose verification. The whole 
dosimetry estimation procedure is shown in Figure 1.  

Despite the growing recognition of personalized 
TRT dosimetry based on the actual agent 
biodistribution for each patient, the “one-dose-fits-all” 
or activity per unit body weight approach is still the 
common practice in TRT. For example, a fixed high 
activity of 2.8-7.4 GBq of I-131 is often used to treat 
thyroid cancer [10]. However, >10% of patients 
received blood doses exceeding the dose limit that 
would lead to myelotoxicity [11], and 80% of lesions 
investigated received a dose deposition of <80 Gy [12]. 
These studies suggest that fixed activity 
administrations either give low amounts of 
therapeutic agent to cautiously avoid deleterious 
effects in normal tissues with a loss of therapeutic 
efficacy to tumors, or potentially harm normal tissues 
by overexposure. Moreover, Strigari et al. indicated 
that personalized treatment planning would increase 
the survival rate and improve clinical efficacy by 
showing strong correlations among received absorbed 
dose, treatment response and toxicity, based on a 
review of 79 studies [13].  

Till now, the accuracy for individualized organ 
dose assessment is still limited by: (i) uncertainties in 
activity quantification due to limitations in the 
imaging systems, with insufficient or inaccurate 
physics modeling in the quantitative imaging process 
[14]; and (ii) post-processing errors in sequential 
images including segmentation, registration, curve 
fitting for cumulative activity estimation, and 
methods for dose estimation based on the cumulative 
activity. Therefore, there is an increasing necessity for 

developing accurate, precise and streamlined 
methods for individualized patient dosimetric 
estimation for the future of TRT. The purpose of this 
article is to give an up-to-date and comprehensive 
overview of methods in TRT dosimetry, i.e., advanced 
quantitative imaging technologies for activity 
estimation, with emphasis on the inherent theranostic 
characteristics of TRT agents, since the review from 
Erdi et al. [15], Bardiès et al. [16] and Ljungberg et al. 
[17, 18] which focused more on conventional 
radionuclide imaging methods.  

Radiopharmaceuticals for radionuclide 
therapy 

The concept of theranostics was launched in 2002 
by Funkhouser and refers to a material that possesses 
both therapeutic and diagnostic capabilities [19]. 
Thus, it delivers therapeutic drugs and diagnostic 
imaging agents at the same time with the same dose, 
which is the case for TRT tracers. However, many TRT 
radionuclides are not optimal for imaging as they 
either do not have simultaneous gamma/positron 
emission, the abundance of gamma 
photons/positrons is too low, or the energy of the 
photons is too high. The most frequently used TRT 
isotopes in current clinical routine are I-131 for 
thyroid therapy, Y-90 for radio-embolization, Lu-177 
for neuroendocrine tumors and Ra-223 for bone 
tumors. An additional notable TRT radionuclide is 
Ho-166, which is a combined beta-gamma emitter, CT 
agent and an ideal paramagnetic MR contrast agent. 
These properties made Ho-166 labeled poly (L-lactic 
acid) microsphere (Ho-166-PLLA-MS) a promising 
agent for radio-embolization (RE) of hepatic tumors in 
selective internal radiation therapy (SIRT) [20, 21]. 
However, its short half-life of 26.8 h indicates that 
each dose will require separate neutron irradiation 
and a short timeline to get the dose from the reactor to 
the patient [22]. 

 

 
Figure 1. Flowchart and the potential error sources for imaging-based TRT dosimetry.  
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Although direct imaging of these radionuclides 
is possible via PET or a conventional gamma camera 
with the appropriate choice of collimator, energy 
window and detectors, the image quality is usually 
inferior to the quality of current F-18 based PET and 
Tc-99m based SPECT studies, and therefore 
quantitation is challenging. Alternatively, the 
distribution of these tracers can be estimated 
indirectly for planning treatment with the use of 
theranostic ‘surrogate’ pairs for imaging and therapy. 
This refers to the same biomolecule labeled with 2 
different radio-isotopes, possessing similar biological 
and chemical characteristics. However, one is for 
therapy while the other one is more effective with 
regards to imaging. Since surrogate imaging isotopes 
may have different half-lives as compared to their 
therapeutic partners, it is necessary to apply decay 
corrections on the pharmacokinetic models predicted 
from a static distribution of the surrogate imaging 
isotope [23]. The concept of direct and indirect 

imaging is illustrated in Figure 2. Common TRT 
radiopharmaceuticals, their imaging surrogates and 
their reported organ absorbed doses in different 
patient studies are listed in Table 1.  

Advanced techniques for imaging 
surrogate/theranostic isotopes 

Most of the available dose calculation software 
needs the input of the cumulative activity in different 
organs. In order to get the cumulative activity, one 
needs to obtain activity distributions for different 
organs at different time points. Functional 
radionuclide imaging techniques such as planar, 
SPECT, bremsstrahlung and PET imaging can serve 
for this purpose. The accuracy of TRT dosimetry is 
therefore highly dependent on the quantitative 
accuracy of the imaging techniques. Each of the 
different imaging techniques are described in detail 
below. 

 

Table 1. Absorbed doses to critical organs and tumors for various TRT agents.  

Therapeutic 
radionuclide 

Probe Ref Radionuclide 
for Dosimetry 

Mean Absorbed Dose for Critical Organs / Tumors 
(mGy/MBq or Gy) 

I-131 Iodine [24]* I-124   Bone marrow Liver Kidneys Heart Lungs Tumor 
rhTSH 0.07-0.33 0.11-0.4 0.11-0.44 0.11-0.46 0.1-0.44 0.05-21 
THW 0.08-0.22 0.19-0.24 0.17-0.32 0.1-0.33 0.11-0.66 0.12-82 

Tositumomab [25] I-131   Bone marrow 
Imaging 0.57-1.44 Gy 
Blood sampling 0.40-1.55 Gy 

MIBG [26] I-131  Adrenals  Spleen Salivary glands Bladder Heart 
0.17 0.49 0.23 0.59 0.072 
Kidneys Liver Lungs Pancreas  
0.12 0.83 0.19 0.10  

Y-90 Microspheres [27] Y-90 Liver  18.3±10.3 Tumor 148.1±92.1 
Zevalin   Kidneys Liver Spleen Lungs Bone marrow Tumor 

[28] Zr-89  N/A 3.2 ± 1.8 2.9 ± 0.7 N/A 0.52 ± 0.04 8.6-28.6 
[29] In-111 0.01-0.65 2.2-11.0 3.50-26.0 1.30-4.30 0.26-1.10 N/A 
 Y-90  0.0-0.3 2.9-8.1 1.8-20.0 1.2-3.4 0.6-1.8 N/A 

DOTA octreotide   Kidneys Liver Spleen Bone marrow Tumor 
[30] Y-86  2.73 ± 1.41 0.66 ± 1.5 2.32 ± 1.97 0.49 ± 0.002 32.1-195.8 
[31] Y-86 1.71 ± 0.89 0.72 ± 0.40 2.19 ± 1.11 0.06 ± 0.02 2.1-29.5 
[32] In-111 3.9 ± 1.9 0.72 ± 0.57 7.62 ± 6.30 0.6 ± 0.2 1.4-31 
[33] In-111 2.84 ±0 .64 0.92 ± 0.35 6.57 ± 5.25 0.17 ± 0.02 2.4-41.7 

In-111 DPTA octreotide [34, 35] In-111 0.52 ± 0.24 0.065 ± 0.01 0.34 ± 0.16 0.03 ± 0.01 0.72-6.8 
 Lu-177  DOTA octreotide [34] Lu-177 1.65 ± 0.47 0.21 ± 0.07 2.15 ± 0.39 0.07 ± 0.004 3.9-37.9 

PSMA  [36] Lu-177 Parotid 
glands 

Kidneys Bone marrow Tumor Bone 
metastases 

Lymph node 
metastases 

1.3±2.3 0.8±0.4 0.07 ± 0.004 3.3±14 0.03 ± 0.01 4.0±20 
Ho-166 DOTMP [37] Ho-166 Kidneys  Bone marrow Bone surfaces Bladder 

0.045±0.005 0.52 ± 0.22 0.78±0.30 0.84 ±0.17 
Microspheres [38] Ho-166   Liver  Tumor  

SPECT 7.7-54.3 Gy 9.1-68.2 Gy 
MR  13.2-64.9 Gy 14.8-75.4 Gy  

Sm-153 EDTMP [39] Sm-153 Bone marrow  0.3-2.1 Bone surface 2.3-14.3 
Sr-89 Chloride [40] Sr-85 Skeletal metastases 215±65.19 
Re-188 HEDP [41] Re-188 Bone metastases  Bone marrow Kidneys Bladder 

3.83±2.01 0.61±0.21 0.71±0.22 0.99±0.18 
* Patients with metastatic differentiated thyroid cancer were injected with THW or rhTSH prior to I-131 administration. THW = thyroid stimulating hormone withdrawal; 
rhTSH = recombinant human thyroid-stimulating hormone.  
MIBG=Metaiodobenzylguanidine; PSMA=Prostate-specific membrane antigen; HEDP=Hydroxyethyledine diphosphonate; EDTMP=Ethylenediamine tetramethylene 
phosphonate; DOTMP = 1, 4, 7, 10 tetraazacyclododecane-1, 4, 7, 10-tetramethylene-phosphonate 
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Figure 2. The concept of direct and indirect imaging methods for TRT agents. 

 

Planar scintigraphy 
Traditional Conventional Planar (CPlanar) 

method was first proposed by Thomas et al., which 
was based on calculating the geometric-mean (GM) of 
two conjugate counting views in combination with 
the effective attenuation correction (AC) [42]. This 
method usually requires drawing the 
region-of-interest (ROI) on the anterior and posterior 
whole-body images. The activity A in the ROI is given 
by:  

𝐴𝐴 = � 𝐼𝐼𝐴𝐴𝐼𝐼𝐵𝐵
𝑒𝑒−𝜇𝜇𝑒𝑒𝑇𝑇

× 1
𝐶𝐶
 ; 𝜇𝜇𝑒𝑒 = 1

𝑇𝑇
∑ 𝜇𝜇𝑖𝑖𝑇𝑇𝑖𝑖𝑛𝑛
𝑖𝑖=1  

Where IA and IB are the counts in the ROI on the 
anterior and posterior images respectively, µe is the 
effective attenuation coefficient and can be calculated 
by the average of all attenuation coefficients in each 
region, T is the body thickness, C is the calibration 
factor and i is the pixel index. This method is 
theoretically independent of the source depth and 
gives a reasonable dose estimate for large organs 
without position overlap and background activity. 
The main limitation of this method is the organ-organ 
or organ-background overlap in the projections, 
which may lead to errors in the activity estimation for 
the organs-of-interest [43]. Sjogreen et al. showed that 
if the attenuation map derived from integrated CT 
along the anterior-posterior direction was used to aid 
the volume definition and to perform background and 
overlapping organs correction, the activity estimation 
errors for major organs in planar imaging could be 

reduced to -21%. For spherical tumors with diameters 
of 3.6 or 2.9 cm, the activity might be underestimated 
by -6% to -47%, varying with tumor location [44].  

Multiple hybrid methods were developed to 
improve the quantitative accuracy for planar imaging 
with accurate modelling of the physical factors, e.g., 
Quantitative Planar (QPlanar) [45] and Extended 
QPlanar (EQPlanar) [46] methods. EQPlanar 
combines the advantages of fast acquisition in 
conventional planar imaging with SPECT by 
manually delineating the 3D volumes-of-interest 
(VOIs) from one time point SPECT to partially solve 
the organs overlap problem. 

Despite the fact that 3D voxel-based dosimetry 
cannot be achieved by the planar method, it is still the 
mainstream dosimetric method for TRT as it takes just 
a few minutes for acquisition and is less 
computationally intensive. It can be implemented 
relatively easily on modern dual-head gamma 
cameras. 

Quantitative SPECT 
The use of SPECT provides 3D spatial 

information and solves the problem of organ overlap 
and reduced contrast caused by background activity 
in planar imaging. This is an essential step in enabling 
3D voxel-based dosimetry. Moreover, modern dual 
modality SPECT/CT scanners provide an improved 
attenuation map from CT for performing AC in 
SPECT reconstruction. The anatomical information 
from CT also improves organ delineation in TRT.  

In a comprehensive quantitative SPECT method 
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(QSPECT) proposed by He et al.[47], scatter 
compensation (SC) was performed using effective 
source scatter estimation (ESSE) [48] which requires 
effective scatter source kernel and scatter attenuation 
coefficient kernel convolutions for each projection. 
Partial volume compensation (PVC) was done using 
the perturbation based geometric transfer matrix 
(pGTM) [49]. The collimator-detector-response (CDR) 
compensation was estimated by Monte Carlo 
simulations (MCS) based on the collimator 
parameters and CT was used for AC. Accuracy within 
10% could be achieved for all organs in the radiology 
support device (RSD) torso phantom while only the 
lungs had a higher error (11%). He et al. later showed 
that the SPECT acquisition time could be shortened by 
a factor of at least 2 with a change in mean error of 
<1% [50]. When the scan time was reduced to 1.5 min, 
the accuracy and precision in hot and large organs 
were still acceptable. Even if the scanning time can be 
shortened, two bed positions are still required to 
cover the whole torso for quantification, increasing 
difficulties in designing the scanning protocol. 
However, 1 bed position could be enough if only 
critical organs are of interest in some applications, 
further reducing the acquisition time. 

Shcherbinin et al. applied the interpolated 
analytical photon distribution (APDI) [51] method 
which uses the Klein-Nishina cross-section to 
analytically calculate the scatter distribution in the 
forward projection step of the iterative ordered 
subsets expectation maximization (OS-EM) 
reconstruction [52], shortening the computation time 
compared with the MCS-based SC method. Errors of 
activity estimation were within 10% for Tc-99m, 
In-111, I-123 and I-131.  

Dewaraja et al. developed a regularized 
reconstruction method to reduce the edge artifacts 
caused by CDR compensation after large update 
numbers [53] and improve the accuracy of activity 
distribution within the targets [54]. The 
penalized-likelihood function utilized the anatomical 
information provided by the CT images (PL-CT) and 
was added to the reconstruction process after certain 
updates of OS-EM. In both simulation and phantom 
studies with uniform activity distribution, PL-CT 
outperformed both the regularized reconstruction 
without CT and the routine OS-EM reconstruction in 
visual assessment, image profile and target activity 
distribution. 

Since gamma cameras are mostly optimized for 
imaging low and mono-energetic isotopes, different 
problems may occur when imaging the therapeutic 
isotopes emitting high energy gamma rays or 
particles, e.g., collimator penetration, contamination 
from higher energy peaks and secondary X-rays. For 

example, I-131 emits 364 keV photons and a large 
amount of penetration occurs when used in 
combination with medium energy collimators. 
Dedicated high-energy collimators can be used to 
reduce penetration but this typically results in poor 
spatial resolution. Some TRT isotopes not only have 
low energy gammas but also small fractions of 
high-energy photons. As the collimator septa are 
designed for low energy peaks, a relatively large 
fraction of high-energy photons will penetrate the 
collimator. Also, the ones that scatter in the patients or 
collimator/detector can still end up in the energy 
window of the main photopeak. Even if these photons 
pass through both collimator and detector, they can 
still backscatter from the remaining parts of the 
gamma camera to the detector.  

In addition, the attenuation and scatter 
corrections also need to be adapted for TRT isotopes. 
For example, some isotopes have two low energy 
peaks for imaging but each requires a different 
attenuation factor. For AC, one can simply discard 
photons from one of the energy windows, which 
would lead to a huge loss of information especially for 
isotopes whose two peaks have similar abundance, 
e.g., In-111 and Lu-177. Another approach would be 
to acquire photons from 2 peaks separately or enable 
list-mode acquisition, with 2 reconstructions followed 
by combination of the two images. However, this 
approach suffers from increased storage, acquisition 
or computational time. One way to solve this problem 
is to use an effective attenuation coefficient that 
regards the photopeaks as a single photon energy, 
which could make maximal use of the available 
information with no extra computational burden [55]. 
Model-based SC, such as ESSE, estimates scatter using 
an effective scatter source [48] by pre-calculating the 
blurring kernels from MCS. This is superior to energy 
window-based SC for clinical TRT, with reasonable 
reconstruction time.  

The latest MIRD pamphlet presents a set of 
guidelines for data acquisition protocols and image 
reconstruction techniques recommended for 
quantitative Lu-177 SPECT [56]. Medium energy 
collimators are recommended for their good 
signal-to-noise ratio (SNR) due to reduced septal 
penetration of high-energy photons. An energy 
window of 15%-20% centered on the 208 keV 
photopeak is suggested for acquisition. Occasionally 
the 113 keV peak can be acquired as well if counts 
collected in the 208 keV window are insufficient. 
However, self-scatter of 113 keV photons and 
down-scatter of 208 keV photons into this 113 keV 
energy window should be taken into consideration, 
and triple energy window (TEW) SC method is a 
potential solution. He et al. applied their QSPECT 
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method for Lu-177 in a physical phantom study [57]. 
TEW was used to generate projection data including a 
20% energy window for photopeaks of 208 keV, 113 
keV and the combination of both peaks. Errors were 
<3.2% for all organs using the 208 keV energy 
window, up to 40% using only the 113 keV energy 
window, and up to 14% for the combined photopeaks.  

Bremsstrahlung imaging  
When imaging theranostic isotopes, e.g., Y-90, 

Sr-89 and Ho-166, it is important to mention the 
presence of secondary radiation not directly 
generated from gamma decay itself. The electrons 
emitted from β- decay undergo several interactions 
with the surrounding tissue before being stopped. By 

interacting with other charged particles they can 
generate bremsstrahlung photons (similar to x-ray 
generation in an X-ray tube). This leads to a 
continuous spectrum of X-ray with a maximum 
energy equal to the maximum energy of the emitted 
electrons. A typical spectrum is shown in Figure 3. 
The distance travelled from the point of emission 
before bremsstrahlung is inversely related to the 
energy of the emitted X-ray. The amount of X-rays 
generated depends on the material (more in dense 
materials like bone). Typically only a few percent of 
emitted electrons will generate secondary X-rays. For 
example, about 2-4% of Y-90 decays will lead to 
bremsstrahlung X-ray generation.  

 

 
Figure 3. The process for Y-90 radionuclide therapy and bremsstrahlung imaging for Y-90 dosimetry with a conventional gamma camera. 
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Quantification of bremsstrahlung images from 
beta emitters is very challenging due to its continuous 
energy spectrum. For example, high energy photons 
will be more likely to penetrate the collimator septa 
and detector crystal, whereas low energy photons 
have increased probability to be scattered. Rong et al. 
designed an optimal collimator for Y-90 
bremsstrahlung SPECT imaging, with an 84 mm hole 
length, 3.5 mm hole diameter and 1.4 mm septal 
thickness [58]. Compared with the commercial high 
energy general purpose (HEGP) collimator, their 
design improved spatial resolution by 27%. Another 
challenge is that an effective attenuation coefficient is 
needed for AC due to the wide photon energy range 
[59]. Since there is no pronounced photopeak in the 
energy spectrum for bremsstrahlung radiation, 
selection of an optimal energy window is critical for 
quantification. Furthermore, traditional SC methods 
such as TEW are not suitable since the scattered 
photons cannot be distinguished from the primary 
photons in a continuous energy spectrum. Shen et al. 
studied the use of a Wiener filter to deconvolve septal 
penetration and scatter while suppressing image 
noise in planar Y-90 bremsstrahlung imaging, which 
used geometric mean of the conjugate view and 
effective point source methods for quantitation [60]. 
The estimated Y-90 activity for liver, spleen and 4 cm 
diameter tumors were within 17% and the cumulated 
activity was within 8% compared to the true value. In 
comparison, for 2 cm diameter tumors the activity and 
cumulated activity errors can increase to about 30% 
and 18%. Rong et al. proposed an OS-EM 
reconstruction algorithm incorporating multi-range 
SC and CDR modeling methods which can provide 
accurate estimates of organ activities [61]. They 
separated modeling of the primary bremsstrahlung 
and scattered photons with multiple energy ranges. 
ESSE scatter kernels, attenuation and CDR were also 
modeled and compensated for each subrange in the 
forward and back projection. This reduced the Y-90 
activity quantitation error for all organs-of interest, 
especially the kidneys, by up to 27%. Roshan et al. 
reviewed the energy window selection, collimator 
design and reconstruction algorithm for Y-90 labeled 
microsphere bremsstrahlung imaging [62]. With a 
conventional medium energy general purpose 
collimator, a multiple-energy window with three 
energy peaks centered at 75 keV, 120 keV, and 185 
keV with CT based AC and SC could achieve the 
highest system sensitivity and the lowest imaging 
acquisition time.  

With the development of advanced techniques to 
improve image quality and quantitation, 
bremsstrahlung imaging is feasible to estimate organ 
activities in TRT. However, it is still limited by 

inferior spatial resolution, low number of counts, 
broad energy distribution, and severe scatter of 
bremsstrahlung photons. Pinhole or multi-pinhole 
collimators can improve the tradeoff between 
sensitivity and resolution in comparison with the 
conventional parallel-hole collimator for 
bremsstrahlung SPECT [63]. The better attenuating 
material used for pinhole collimation (tungsten rather 
than lead) could result in better bremsstrahlung 
SPECT performances. High-energy X-rays would 
down-scatter into the acquisition energy window, 
which would lead to a higher count-rate and 
substantial dead time effect, while scattering within 
the pinhole collimator is less of a problem for its 
empty cone geometry as compared to parallel-hole 
collimators [63]. However, the small field-of-view 
(FOV) of pinhole collimators is still a major problem 
for whole body TRT dosimetry.  

Quantitative PET imaging 
Compared to planar, SPECT and bremsstrahlung 

imaging, PET is more accurate in terms of in vivo 
activity quantification due to its superior spatial 
resolution, sensitivity and specificity for tumor 
detection. Image degradation factors in PET including 
random coincidences, detector normalization, dead 
time, attenuation and scatter need to be considered for 
TRT treatment planning [64]. The co-registered X-ray 
CT in PET/CT, or segmented MR images in PET/MR 
can be used for AC. Time-of-flight (TOF) imaging 
method is now a common specification in new PET 
scanners to provide a gain in image SNR [65], 
improved lesion detectability and more precise lesion 
uptake measurements. This merit can also be traded 
for reduced acquisition time or injection dose [66]. 
Additionally, immuno-PET was proposed as a 
quantitative imaging procedure to investigate the 
biological effect and pharmacokinetics of 
radioimmunotherapy agents, e.g., radiolabeled 
antibody in targeted and non-targeted tissues with 
high resolution [67, 68]. 

Similar to SPECT, the higher doses required for 
TRT can also be challenging for PET scanners with 
limited count-rate capability. The singles coming from 
secondary radiation or high-energy photons from 
non-pure annihilation effects lead to a higher random 
fraction. This is especially the case for Y-90 where the 
singles rate is relatively high and the positron 
branching ratio is very low, which leads to a higher 
random fraction. With a proper energy and 
coincidence window this effect can be reduced but it 
still contributes to the background signal.  

Most PET theranostic isotopes are longer lived 
and emit high energy positrons with longer positron 
ranges as compared to F-18 whose mean positron 
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range is 0.64 mm, limiting the best possible spatial 
resolution and quantification accuracy. For the latest 
generation of clinical PET systems, the reconstructed 
spatial resolution lies in the range of 4-6 mm and the 
positron range is relatively smaller. In preclinical 
imaging with a typical 1-2 mm reconstructed spatial 
resolution, this factor has a major impact. Several 
groups have investigated the impact of 
non-conventional isotopes on both spatial resolution 
and image contrast using high-resolution preclinical 
and clinical PET [69-71], and methods have been 
proposed for positron range correction. Derenzo et al. 
proposed a method to remove blurring in the filtered 
backprojected reconstructed images by Fourier 
deconvolution based on measured positron range 
functions [72]. Recently, methods incorporating 
isotope-specific positron range modelling into the 
maximum a posteriori (MAP) or OS-EM 
reconstruction algorithms have been developed 
[73-76]. Jødal L et al. provided the positron range 
distribution for some conventional and 
non-conventional isotopes by MCS. The results could 
be applied to image reconstruction algorithms to 
improve spatial resolution. 

In order to fit the time activity curves for TRT 
agents with half-lives of typically 2-4 days [77], 
positron emitters with longer half-lives such as I-124 
and Y-86 (100.2 h and 14.7 h) have been used in 
preclinical and clinical studies. Ideally, the positron 
emitters used for PET imaging are isotopes of the 
radionuclides in therapy, e.g. I-124 for I-131, and Y-86 
for Y-90. However, I-124 and Y-86 are not pure 
positron emitters and they are associated with 
spurious coincidences such as prompt gamma 
coincidences (PGC), gamma-gamma cascades, intense 
bremsstrahlung radiation, and high-energy gamma 
rays that result in pair production [78]. Although most 
prompt gamma emissions have energy peaks higher 
than the upper bound of the PET energy window, 
they may still be down-scattered in the PET energy 
window and degrade image contrast [79]. For 
example, about 50% of the positrons are emitted with 
a 603-keV gamma photon simultaneously for I-124. 
Three gamma photons with energies of 
1,077/1,854-keV, 628 and 443 keV are emitted 
simultaneously per Y-86 decay whose positron 
abundance is 32%. Background subtraction in the 
sinograms [80], empirical or analytical kernels for 
sinogram convolution [81] and recovery coefficient 
(RC) [82] have been proposed to resolve PGC. For 
Y-86 quantitation, Warland et al. proposed a 
patient-dependent method based on sinogram tail 
fitting with a Y-86 point spread function (PSF) library 
[81] to correct for PGC. The background and kidney 
activity errors in a phantom study were reduced from 

117% to 9% and 84% to 5% respectively. In patient 
studies, the activity difference between total body 
scanning and urine sample was reduced from 92% to 
7%. Buchholz et al. developed a scanner-dependent 
background subtraction method to correct for PGC 
[83]. They showed that quantification of Y-86 labeled 
radiotracers was feasible but they only evaluated 
simple cylindrical phantoms. Jentzen et al. estimated 
the RCs for I-124 in different PET/CT scanners [82]. 
Their results showed that after applying the RC, the 
error in activity estimation was ±10% for spheres 
≥12.6 mm in diameter. However, RCs depend on 
different radionuclides and scanners which need to be 
determined respectively.  

Lovqvist et al. compared the accuracy of 
biodistribution estimation between Y-86 PET and 
In-111 planar images in a nude mice model [84] when 
they acted as Y-90 imaging surrogates. The results 
showed that the uptake of In-111 and Y-86 was 
generally similar within the first 2 days post-injection 
but the activity of Y-86 was significantly higher than 
In-111 in most tissues at 4 days post-injection.  

Instead of using Y-86 as surrogate, Y-90 also 
emits a few positrons via internal pair production and 
they are sufficient to be detected by PET. Gates et al. 
[85] and D’Arienzo M et al. [86] used conventional 
PET/CT scanners to detect the deposition of Y-90 
microsphere directly. Comparing the performance of 
quantitative Y-90 bremsstrahlung and PET, Kao et al. 
concluded that Y-90 PET with advanced 
compensation techniques is superior in the aspects of 
image resolution, sensitivity and quantitation [87, 88], 
while Padia et al. showed that TOF Y-90 PET provided 
less scatter for comparable spatial resolution [89]. 
However, L(Y)SO, which is the most frequently used 
scintillator in PET nowadays, contains Lu-176, which 
is intrinsically radioactive and leads to a small 
background signal in the coincidence measurement. 
This effect is a potential limitation associated with 
Y-90 quantification due to the extremely low 
abundance of internal pair production for Y-90.  

Motion blurring artifacts from patients’ 
voluntary and involuntary motion, e.g., respiratory 
and cardiac motion, also affect image quantification. 
The use of respiratory gating with PET imaging has 
proven to be an efficient way to reduce motion 
blurring with minimal count loss or increase in scan 
time. Osborne et al. have shown that amplitude-based 
gating on Y-90 PET/CT images can be used to realize 
respiratory motion correction, which may further 
improve post-therapy dosimetry accuracy [90]. 

Table 3 summarizes the 4 radionuclide imaging 
techniques for TRT, highlighting their major features, 
limitations, and quantitative accuracy.  
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Table 3. Overview of radionuclide imaging-based dosimetry for targeted radionuclide therapy.  

Imaging 
technique 

Isotope Energy 
window 
(keV) 

Ref Data source Target 
region 

Compensation 
technique and 
reconstruction 
algorithm  

Key advantages of the 
method/ findings of the 
study 

Limitations Activity quantification 
errors 

Planar In-111 
 

171±7%; 
245±7% 
 

[45] Physical 
phantom and 
MCS 
 

Critical 
organs 
and 
tumors 
 

AC (projection of 
CT); SC (TEW: 
152±4%, 205±10%); 
CDR; background 
and overlapping 
correction;  

CPlanar method with full 
compensations  

Organs overlap  Phantom: liver: -2.51%; 
heart: -3.21%; lungs: 
-17.22%; large sphere: 
-7.02%; small sphere: 
-28.95%; 
MCS: <48% for all organs  

AC (projection of 
CT); SC (TEW: 
152±4%, 205±10%); 
CDR; OS-EM. 

QPlanar method partially 
solves organ overlap 
problem and allows more 
accurate modelling of 
image degradation 
factors  

Required alignment 
between 3D organ 
VOIs and 2D planar 
projections; 
Assumed uniform 
activity distribution 
in each VOI 

Phantom: liver: 3.22%; 
heart: 0.90%; lungs 7.61%; 
large sphere: -1.16%; 
small sphere: -0.59%; 
MCS: <14% for all organs 

[46] MCS and 
patient study 

Critical 
organs 

AC (CT); SC (TEW: 
152±4%, 205±10%); 
CDR; OS-EM. 

EQPlanar method 
combines whole body 
and individual organ 
rigid registration with 
background separation, 
partially improves the 
QPlanar method 

Inferior 
quantification of 
small objects, e.g. 
tumors; 
Long computation 
time 

MCS: <-7.12% for all 
organs; 
Patient: * 

QSPECT [47] RSD torso 
phantom and 
MCS 

Critical 
organs 
and 
tumors 

AC (CT); SC (ESSE); 
CDR; PVC (pGTM) ; 
OS-EM. 

Proposed a 
comprehensive SPECT 
quantitation method with 
model-based 
compensation methods 

Assumed uniform 
uptake within each 
ROI when pGTM 
PVC modeling; 
Increased 
computation 
complexity  

MCS: <5% for all organs 
except for lungs (11.47%); 
Phantom: <6.5%; except 
for the smaller sphere 
(-11.9%);  
 

I-131 364±10%  [91] MCS Critical 
organs 

AC (CT); SC (ESSE); 
CDR OS-EM. 

Proposed model based 
down-scatter 
compensation for high 
energy photons  

Increased 
computation 
comlexity  

MCS: <2.5% for all 
organs, except for bone 
marrow (-9.33%) 

Lu-177 208±10% [92] Physical 
phantom and 
patient study 

Tumors 
and critical 
organs 

AC (CT); SC (APDI); 
OS-EM. 

Investigated the 
feasibility and reliability 
of individualized 
dosimetry based on 
SPECT 

No CDR and PVC 
was attempted; 
Increased 
computation 
complexity  

Phantom: large tumors: 
(>16 ml) <20%; small 
tumors: (2.6 ml) <30%; 
Patient: * 

Ho-166 81±7.5% [38] Patient study Tumors 
and critical 
organs 

AC (CT); SC (TEW: 
118±6% for 
down-scatter 
correction); OS-EM. 

First validated the 
feasibility of quantitative 
MR imaging in TRT 
dosimetry by comparing 
with QSPECT result 

MR should be 
imaged twice: before 
therapy (for 
anatomical info.);  
after Ho-166 admin. 
(for quantitation), 
which decreased the 
clinical feasibility 

Patient: * 

Bremsstrahlung 
Imaging 

Y-90 
 

55-285  [60] Physical 
phantom 

Critical 
organs 
and 
tumors  

AC (linear effective 
coefficient or 
transmission scans); 
SC and septal 
penetration 
compensation 

Use a Wiener filter to 
compensate for scatter 
and septal penetration 

Simple geometry for 
physical phantom 
with homogeneous 
background and no 
overlapping sources 

Phantom: individual 
activities <17% and 
cumulated activities <8% 
for all organs 

100-500 [61] Physical rod 
source 
phantom and 
MCS 

Tumorsan
d critical 
organs 

AC (CT); SC (ESSE); 
CDR; OS-EM. 

Proposed a multi-range 
scatter and CDR 
modeling method 

Increased 
computation 
complexity  

MSC: <12 % for all 
organs; 
Phantom: large sphere: 
-7.0%; medium sphere: 
-9.7% and small sphere: 
-10.2%  

PET Y-86 350-650  [81] Physical 
phantom and 
patient study 

Tumors 
and critical 
organs 

AC (transmission 
scans); SC 
(sinograms 
convolution); dead 
time correction; 
OS-EM. 

Proposed a patient 
dependent sinograms 
convolution based 
correction method for SC 
and PGC by providing 
tail fitting with PSF 
library 

The count level 
reduced causing 
reduced SNR 

Phantom: background: 
9%; kidneys: 5%; 
Patient**: whole-body: 
<7%  

I-124 [93] Physical 
thyroid 
phantom and 
rats 

Tumors AC (CT); dead time 
correction; FBP. 

Used PET/CT for TRT 
dosimetry and validated 
it with phantom and 
small animal studies 

Relative low 
positron emission of 
I-124 (~23%) 
degraded the image 
quality 

Phantom: large sphere 
(250 ml): 2.86%; medium 
sphere (125 ml): 6.57%; 
small sphere (31 ml): 
-1.08%; 
Rats :* 

Y-90 [94] Physical 
phantom and 
patient study 

Tumors Resolution recovery 
algorithm (TrueX); 
standard AC, SC, 
PVC and PGC 
correction; OS-EM. 

TOF PET improved the 
contrast of hot-spheres  
 

Slight deterioration 
in background 
variability 

Phantom: total activity 
error 5%; large hot 
sphere: 8%; background: 
1%; 
Patient :* 

Note: *For the clinical and preclinical study, no quantification errors were shown since the gold standard was unknown. **True activity=injected dose - activity in urine 
collections 
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Error source and uncertainty propagation 
for image-based 3D dosimetry 

As described in Figure 1, uncertainties in 
image-based 3D dosimetry are attributed to many 
aspects including image degradation during the 
imaging process, dose calibration for system 
sensitivity measurement, volume-of-interest 
delineation, image registration, curve fitting, 
integration and dose conversion. It is important to 
acknowledge the potential sources and amplitude of 
errors for the final dose assessment on the critical 
organs and tumors. The quantitative errors from 
imaging have been described in detail in the previous 
sections. Other error sources are summarized as 
follows. 

Dose calibration 
To obtain quantitative bio-kinetic information of 

the radiopharmaceutical, it is essential to determine a 
calibration factor to convert the planar or 
reconstructed ECT voxel values into activity. The 
uncertainty caused by the determination of this 
calibration factor is dominant for QSPECT imaging 
based dosimetry [95].  

Generally, there are two ways for measurement 
of the calibration factor (cps/MBq). The first is to 
acquire an image of a uniform phantom with known 
activity concentration [96]. The requisite calibration 
factor is equal to the known concentration in the 
phantom divided by the count in the ECT images. It 
can be used for other studies acquired using the same 
protocol and post-processing method. The second is 
to measure the calibration factor using a planar image 
of an in-air calibration source [97, 98]. In this method, 
the calibration factor is defined as the ratio between 
the background-corrected count rate in the whole 
image and the known source activity. The first 
approach using phantom calibration measurements is 
a more common approach. For SPECT imaging, if a 
parallel-hole collimator is used, then the measured 
calibration factor could be applied to all voxels within 
the FOV regardless of the source-to-collimator 
distance.  

Volume-of-interest delineation 
Determination of the VOIs is one of the most 

important steps in treatment planning and might 
affect the quantification accuracy by up to 30% [52]. 
The inferior spatial resolution and statistical noise on 
nuclear medicine images, as well as organs 
overlapping on the planar images impede the 
accuracy of image segmentation for VOI definition. 
Therefore, it is suggested that this step be performed 
on high resolution structural images such as CT and 

MRI, and then applied the VOIs to the registered ECT 
images after interpolations. Han et al. showed that the 
combination of functional and anatomical information 
can improve segmentation accuracy. They 
demonstrated that use of a graph cuts segmentation 
method based on both PET and CT data can yield 10% 
higher accuracy than using sole PET or CT data for 
tumors [99]. 

A well-designed segmentation method satisfies 
three conditions: accuracy, repeatability and 
efficiency, and according to different operational 
methods, segmentation for VOIs can be categorized as 
manual, semi-automatic and automatic methods. The 
accuracy of manual VOIs may easily be affected by 
blurred boundary due to the image resolution, PVE 
and operator’s experience. Thus, automated or 
semi-automated techniques are often suggested for 
reducing inter-operator variation and time. Many 
state-of-the-art interactive segmentation algorithms 
for medical imaging applications have been proposed 
and are covered in several comprehensive reviews 
[100-102]. 

Image registration  
In TRT, patients usually need to be imaged at 

different time points to obtain the time activity curve 
(TAC) and calculate organs’ cumulative activity. 
However, patient movement and organ deformation 
are likely to happen between scans which may lead to 
reduced accuracy, especially for 3D dosimetry where 
cumulative activity needs to be generated on a 
voxel-by-voxel basis. Papavasileiou et al. showed that 
the differences in absorbed dose may be up to 90% 
even for small rigid mis-registration with translations 
<9.5 mm and rotations <6˚ [103]. These errors became 
more serious when the VOIs were distant from the 
center of the images. Therefore, registrations between 
serial nuclear medicine scans are essential for 
improved TRT dosimetry. Registration on 
quantitative functional images is challenging due to 
the lack of anatomic information, statistical noise after 
a large number of updates and isotope decay 
especially for later time points. Modern 
multi-modality scanners acquiring both ECT and high 
resolution anatomical images provide a feasible 
solution for this problem [104].  

 Moreover, non-rigid deformation in 
organ/tumor is more likely to happen in the clinical 
circumstance and rigid registration in most studies 
may not be adequate especially for small organs or 
lesions. Sjogreen et al. studied the impact of rigid or 
non-rigid registration of serial SPECT/CT images for 
TRT accuracy [105]. In their studies, rigid or non-rigid 
registration was performed on the CT images, and the 
deformation field obtained from the CT-CT 
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registration was then employed to transform the 
corresponding SPECT images. They found that the 
activity estimation was more consistent after both 
rigid and non-rigid registrations. The differences 
between rigid and non-rigid registrations for 
residence time and absorbed dose in organs were 
small, but non-rigid registration had better precision 
especially in the anatomical regions where non-rigid 
movement was more likely to be present, e.g. neck 
and shoulder region. Ao et al. investigated the effect of 
using non-rigid local organ based registration on 3D 
dosimetric estimation, showing superior performance 
for non-rigid registration [106].  

As multi-modality imaging techniques have 
shown merits for both segmentation and registration, 
sequential anatomical scans, e.g., low dose CT, might 
be considered to be included in the standard clinical 
TRT protocol in the near future. 

Cumulative activity 
Time integrated activity coefficients can be 

generated either by fitting an exponential function to 
each voxel and integrating the values of each voxel 
analytically over time or simply by a voxel-by-voxel 
numerical integration. One-phase, two-phase and 
multi-phase exponential decay models are used to 
describe the kinetic function of the targeted organs or 
tumors [43, 50, 107]. In the modeling process, 1 to 3 
exponential terms can be selected. The sums of the 
exponentials are used as the model function of the 
TACs and are fitted for each organ.  

Dose conversion 
There are two main methodologies in TRT 

dosimetry: phantom-based and patient-specific 
dosimetry. For the MIRD phantom method [108, 109], 
a pre-calculated S factor is used to convert the activity 
to the mean absorbed dose that was calculated by 
MCS estimates for a referenced phantom. Due to the 
fixed organ size, shape and position, the MIRD 
method cannot achieve high dosimetric accuracy for 
patients with different anatomical variations, even 
though many adjustments have been proposed [110]. 
Moreover, only the mean absorbed dose at the 
organ-level can be obtained, which is not sufficient for 
pharmacokinetics evaluation.  

To achieve dosimetry at the voxel level, one can 
use either dose-point kernel (DPK) convolution [111], 
MCS [112, 113] or voxel S values (VSVs) for dose 
conversion. In the late 90s, DPKs convolution with the 
3D activity distribution was widely recommended for 
its efficiency compared with real-time MCS. The 
DPKs for electrons and photons, i.e., the mean 
absorbed dose per transition at a given radial distance 
for an isotropic point source located within an infinite 

homogeneous medium, can be pre-calculated for 
different isotopes [114, 115]. The VSVs approach was 
proposed to provide corresponding S values to the 
geometry of the voxel imaging data (e.g., SPECT, PET) 
and was adopted by the MIRD Committee [116, 117]. 
The local energy deposition (LED) method was 
proposed to simplify application of VSVs for pure 
beta emitters, and assumes that all kinetic energy 
released from beta emissions is locally absorbed 
within the source voxel. Thus, the 3D dose 
distribution can be calculated by simply multiplying 
the cumulated activity in a voxel with a unique 
dosimetric factor. Pasciak et al. showed that LED can 
reduce blurring effects on the activity concentration 
and is more accurate compared to VSVs using MCS 
method as the gold standard in a Y-90 microsphere 
SPECT study. This technique can further be applied to 
PET [118]. However, both DPK and VSV approaches 
cannot address the problem of tissue inhomogeneity. 
MCS-based dosimetry [119] is more accurate since it 
considers all the tissue variations within the patients, 
simulating particle transportation and energy 
deposition from all possible source organs. However, 
the intensive computation time impedes its clinical 
utility. 

Uncertainty propagation for image-based 
dosimetry 

Gustafsson J et al. investigated uncertainty 
propagation for image-based dosimetry by observing 
the decrease in standard deviation when removing a 
particular error source [120]. They used three 
anthropomorphic computer phantoms combined with 
a pharmacokinetic model of Lu-177-DOTATATE, 
modeling variations in calibration factor, noise on the 
CT-derived density map, dynamic activity 
distribution during SPECT data acquisition, VOI 
delineation and imaging starting time-points. The 
absorbed dose of the left kidney was investigated by 
excluding variations in factors mentioned above. They 
showed that the highest uncertainty in kidney 
absorbed dose appears to be the PVC using a fixed 
recovery coefficient and gamma camera calibration. 
The uncertainty propagation in quantitative PET 
based dosimetry (e.g., PGC, positron range correction) 
and PVC has not been systematically studied yet.  

Except for the uncertainties attributed to image 
acquisition and post-processing, differences between 
the dose calibration and dosage administration time, 
residual activity remaining in the delivery system 
post administration, radionuclide impurities, and 
operator’s errors also contribute to the overall errors 
in absorbed dose assessment, which can introduce 
errors in the prescribed dose after treatment planning 
or efficacy assessment after dose verification. 
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Conclusion 
Quantitative imaging for TRT is challenging 

since most of the therapeutic agents are not optimal 
for imaging. The image generation methods for 
quantitative planar and ECT need to compensate 
many common image degradation factors for TRT 
agents, including down-scatter, bremsstrahlung 
photons and PGC, and researchers have obtained 
promising results for different isotopes. Conventional 
planar imaging quantification is still a common 
clinical choice for TRT due to its fast protocol for 
whole body imaging. However, accuracy is limited 
due to organ overlap and background activity. 
Although some advanced planar imaging techniques 
like QPlanar and EQPlanar can improve accuracy, the 
lack of 3D information impedes dosimetry at the 
voxel level. The limitations in planar imaging as well 
as the development of immuno-PET and TRT PET 
tracers prompt the use of SPECT/CT and PET/CT for 
more accurate quantification. PET possesses great 
potential for TRT due to its superior imaging 
characteristics and quantification, but availability of 
the technique and isotope is less widespread than 
SPECT/CT. For imaging gamma emitters such as 
I-131 and In-111, quantification errors within 10% can 
been obtained with different combinations of 
compensation [62]. For imaging positron emitters like 
Y-86 and I-124, quantitative errors are within 7% [81]. 
However, direct comparison of these methods is 
challenging as the studies were conducted using 
different phantoms, activity levels and imaging 
protocols.  

Although the advantage of improved 
quantification for SPECT and PET as compared to 
planar imaging is apparent, optimization of imaging 
protocols with short acquisition times to cover the 
organs-of-interest or whole body imaging is 
important for routine clinical implementation. 
Moreover, advances in computing power, more 
advanced image reconstruction algorithms and 
compensation techniques, as well as associated 
hardware improvements (e.g., choices of collimator 
and detector) are essential to pursue high dosimetric 
accuracy. Yet the optimal way for quantitative 
imaging in TRT will probably be dependent on the 
distribution and object imaged, e.g., more scatter in a 
heavier patient.  

The use of 3D quantitative ECT techniques is 
well recognized for TRT treatment planning and 
monitoring treatment response with high accuracy, 
while its merits await large scale clinical trials to 
demonstrate differences in therapeutic efficacy and 
clinical outcome for patients with and without 
receiving pre-treatment patient-specific dosimetry.  
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