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Renin-angiotensin system (RAS) is activated in metabolic syndrome (MetS), and RAS inhibitors are preferred for the treatments of
hypertension with MetS. Although RAS activation is important for the therapeutic target, underlying sympathetic nervous system
(SNS) activation is critically involved and should not be neglected in the pathogenesis of hypertension with MetS. In fact, previous
studies have suggested that SNS activation has the interaction with RAS activation and/or insulin resistance. As a novel aspect
connecting the importance of SNS and RAS activation, we and other investigators have recently demonstrated that angiotensin
II type 1 receptor (AT

1
R) blockers (ARBs) improve SNS activation in patients with MetS. In the animal studies, SNS activation

is regulated by the AT
1
R-induced oxidative stress in the brain. We have also demonstrated that orally administered ARBs cause

sympathoinhibition independent of the depressor effects in dietary-induced hypertensive rats. Interestingly, these benefits on SNS
activation of ARBs in clinical and animal studies are not class effects of ARBs. In conclusion, SNS activation associated with RAS
activation in the brain should be the target of the treatment, and ARBs could have the potential benefit on SNS activation in patients
with MetS.

1. Introduction

Metabolic syndrome (MetS) is characterized by visceral obe-
sity, impaired fasting glucose, dyslipidemia, and hypertension
[1, 2]. The increasing number of patients with MetS is a
worldwide health problem because patients with MetS are
considered to be at a high risk for cardiovascular disease. In
the pathogenesis of MetS, renin-angiotensin system (RAS)
is activated in various organs and tissues [3–6], and RAS
inhibitors, such as angiotensin converting enzyme (ACE)
inhibitors or angiotensin receptor blockers (ARBs), are pre-
ferred for the treatments of hypertension with MetS because
of the prominent depressor effect with the improvement of
insulin resistance [7–9]. Furthermore, in the pathogenesis
of hypertension with MetS, underlying sympathetic nervous
system (SNS) activation is critically involved [10–14], and
previous studies have suggested that SNS activation has the
interaction with insulin resistance [15] and/or RAS activation

[16, 17]. In the animal studies, SNS activation is regulated
by angiotensin-II-type-1-receptor-(AT

1
R-) induced oxidative

stress in the brain [18–23], and recently, we have demon-
strated that SNS activation is strongly mediated by AT

1
R-

induced oxidative stress in the brain of animal models with
MetS [24]. As the novel aspect connecting the importance of
SNS and RAS activation, in the present paper, we focused on
the SNS activation mediated by RAS activation in the brain
of MetS.

2. Sympathetic Overactivation in MetS:
Clinical Study

Insulin resistance and SNS activation have important roles in
the pathogenesis of MetS [10, 15, 25–29]. Urinary excretion
of catecholamine metabolites becomes elevated and more
pronounced as the number of symptoms of MetS increases
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[27]. Sympathetic neural discharge is markedly potentiated
[25], leading to increased insulin levels and elevated blood
pressure [10]. Elevated levels of muscle sympathetic nerve
activity (MSNA) are associated with obesity-induced sub-
clinical organ damage, even in the absence of hypertension
[30]. Interestingly, central obesity demonstrates augmented
sympathetic outflow when compared to noncentral adiposity
body types [27, 31–33] evenwhen hypertension is not present.
Furthermore, the presence of hypertension in MetS results
in a further augmentation of the SNS activation [25, 33]. It
should be noted that activation of the SNS is supposed to
decrease the body weight. However, this does not occur in
MetS with obese subjects. Recently, this is because of the
interruption of the SNS activation as an action of energy
expenditure suggested by Grassi [14] who modified the
scheme originally made by Landsberg. Although it is difficult
to prove this action in humans, activation of the brown
adipose tissue, which increases energy expenditure, does not
occur in obese subjects despite the fact that renal and lumbar
SNS activation occur [34].

The accumulation of body fat with a positive energy
balance was first shown in animal models to result in
SNS activation [35, 36]. The chronic increase in basal SNS
activation is presumably aimed at stimulating 𝛽-adrenergic
thermogenesis to prevent further fat storage [37] but can also
stimulate lipolysis to increase nonesterified free fatty acids,
contributing to insulin resistance. Adipose tissue itself can act
as an endocrine organ and express various adipokines, which
may directly or indirectly activate SNS [29]. A chronically
elevated SNS activation could in turn impair 𝛽-adrenergic
signaling, reduce stimulation of metabolism, and contribute
to obesity and insulin resistance [10, 29]. Moreover, evi-
dence demonstrates that insulin release increases MSNA and
enhances the arterial baroreflex gain of SNS activation [38].
Furthermore, SNS activation is important for the occurrence
and progression of hypertension leading to hypertensive
organ damage in MetS [15]. Thus, treatments targeting the
SNS activation are reasonable for patients with MetS.

3. Sympathetic Overactivation in Animal
Models with MetS

It has been well documented that insulin can augment
sympathetic outflow in animals via intracerebroventricular
administration [39, 40]. Sympathetic outflow increases upon
the injection of insulin into the third cerebral ventricle
of rats [39]. A recent study also has demonstrated that
the insulin affects arcuate nucleus, via the paraventricular
nucleus of the hypothalamus, to increase the SNS activation
and increase baroreflex gain of SNS activation [41]. While
very little insulin is produced in the central nervous system,
central insulin receptors are found on the hypothalamus [42]
and can cause a coactivation of the SNS activation through
transport-mediated uptake across the blood-brain barrier of
peripherally secreted insulin [29]. In addition, the arcuate
nucleus is unusual in that it contains highly permeable capil-
laries [43], such that insulin may directly activate receptors
in this area without a specific transport mechanism [44].

These results suggest that the increase in plasma insulin
causes sympathoexcitation via central mechanisms in animal
models with MetS. As other mechanisms, we should discuss
about leptin. Leptin is an adipocyte-derived hormone that has
a key role in the regulation of the body weight through its
actions on appetite and metabolism in addition to increasing
blood pressure and SNS activation [40]. Rahmouni et al. sug-
gested that mice with diet-induced obesity exhibit circulating
hyperleptinemia and resistance to the metabolic actions of
leptin. Recently, it was also demonstrated that RAS in the
brain selectively facilitates renal and brown adipose tissue
sympathetic nerve responses to leptin while sparing effects
on food intake [45] and that hypothalamic arcuate nucleus
plays an important role in mediating the sympathetic nerve
responses to leptin and in the adverse sympathoexcitatory
effects of leptin in obesity [46].

In the other possible central mechanisms of sympa-
thoexcitation in MetS, oxidative stress in the brain would
be considered to play a pivotal role. Oxidative stress in
the hypothalamus contributes to the progression of obesity-
induced hypertension through central sympathoexcitation
[47]. We also have demonstrated that AT

1
R-induced oxida-

tive stress in the rostral ventrolateral medulla (RVLM)
induces sympathoexcitation in rats with obesity-induced
hypertension [24, 48]. RVLM is known as a major vasomotor
center in the brainstem, and SNS activation is mediated by
neuronal activity in the RVLM [49, 50]. In the RVLM, AT

1
R-

induced oxidative stress has been determined to be a major
sympathoexcitatory [21–23, 51]. Neurons in the RVLM con-
tribute to elevated sympathetic outflow in rats with dietary-
induced obesity [52]. In obesity-induced hypertension, sys-
temic oxidative stress is increased and is associated with
the development and progression of hypertension in various
organs [53–56]. Taken together, it could be considered that
SNS activation is increased in animal models with MetS via
AT
1
R and oxidative stress in the brain.

4. Renin-Angiotensin System Activation
in MetS

Previous many studies have demonstrated that RAS is acti-
vated in various organs and tissues in MetS [3–6, 29, 57].
Several peptides involved in the RAS have been impli-
cated in insulin resistance [58–60] or hypertension [61, 62].
Hypercholesterolemia can increase AT

1
R gene expression

on vascular smooth muscle cells [63, 64]. Low-density
lipoprotein receptor-deficient mice fed a diet enriched in fat
and cholesterol exhibited elevated plasma concentrations of
angiotensinogen, angiotensin II [65], and brain angiotensino-
gen [66]. These results indicate that hypercholesterolemia
stimulates the expression of several components of the RAS.

Prolonged hyperglycemia and hyperinsulinemia could
upregulate RAS [67–70]. Furthermore, angiotensin II can
reduce whole body glucose utilization and insulin sensi-
tivity, increase skeletal muscle and adipose tissue insulin
resistance, and impair insulin signaling and action. Recent
studies suggest that the RAS activation influences glucose
homeostasis independent of its ability to regulate blood flow.
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Figure 1: A schema presenting our concept in the regulation of sympathetic nervous system mediated by brain renin-angiotensin system in
the metabolic syndrome. The numbers on the different arrows are the references from the bibliography.

Angiotensin II infusion into the interstitial space of skeletal
muscle in dogs could result in insulin resistance independent
of changes in blood flow [71]. Chronic angiotensin II infusion
into insulin-sensitive rats was shown to reduce peripheral
glucose use and insulin-induced glucose uptake [72]. In a
model of angiotensin-II-induced hypertension, significant
reduction in tyrosine phosphorylation of the insulin receptor
and the insulin receptor substrate 1 in skeletal muscle was
consistent with a whole-body reduction in insulin-mediated
glucose transport [73]. Furthermore, RAS inhibitors could
ameliorate insulin resistance [74, 75]. These studies could
strongly suggest that RAS activation may contribute to
insulin resistance in the MetS. Additionally, several large-
scale clinical trials have demonstrated that the use of ARBs
or ACE inhibitors can significantly reduce the incidence of
new-onset diabetes in hypertensive patients and/or patients
with MetS [76–79].

5. Renin-Angiotensin-System-Induced
Sympathetic Overactivation in MetS

Both SNS and RAS are activated in obesity, and both systems
can upregulate the action of the other [16, 17]. RAS is not
only implicated in the observed sympathetic overdrive in
obesity but may also provide a mechanism through which
sympathetic overactivation leads to chronic hypertension
[29]. In a previous clinical study, the inhibition of angiotensin
II for three months in patients with MetS reduced MSNA
activity by 21% [80].

With regard to the central SNS regulation, sympathetic
outflow is strongly mediated by RAS activation in the brain.
It has already been demonstrated that RAS in the brain
mediates SNS activation via oxidative stress in animal mod-
els with hypertension and/or heart failure [18–23]. In rats
with obesity-induced hypertension, AT

1
R-induced oxidative

stress in the RVLM induces sympathoexcitation [24, 48].
Taken together, it could be considered that SNS activation

could be mediated by RAS activation and oxidative stress in
the brain of MetS.

6. Angiotensin II Receptor Blockers Cause
Sympathoinhibition in MetS

In hypertensive patients with MetS, RAS inhibitors such
as ACE inhibitors or ARBs are preferred [7–9]. In our
recent study, we have found several new findings as follows:
(1) telmisartan, but not candesartan, reduced plasma nore-
pinephrine concentrations in the patients with MetS in spite
of the similar depressor effects; (2) amelioration of baroreflex
dysfunction in patients withMetS was significantly greater in
the telmisartan-treated group than in the candesartan-treated
group [28]. Our findings provide novel insight indicating
that ARBs have beneficial effects on autonomic function in
patients with MetS. Moreover, sympathoinhibitory effect of
ARBs might not be a class effect. We also previously demon-
strated that telmisartan inhibits SNS activation in hyperten-
sive rats [22, 23]. In the animal studies, direct microinjection
of ARBs into the RVLM or intracerebroventricular infusion
of ARBs inhibits SNS activation in hypertensive rats [21, 81–
83]. Interestingly, a previous study found that telmisartan
can penetrate the blood-brain barrier in both a dose- and
time-dependent manner to inhibit the centrally mediated
effects of angiotensin II following peripheral administration
[84]. We demonstrated that oxidative stress in the RVLM
causes sympathoexcitation and baroreflex dysfunction [23,
51]. Taken together, these findings lead us to speculate that
orally administered telmisartan, but not candesartan, could
cause sympathoinhibition due to a reduction in the oxidative
stress in the brain. Although other ARBs also inhibit the
central actions of angiotensin II in the brain [84–89], these
effects might differ depending on the pharmacokinetics and
properties of each drug [84]. For example, in terms of ago-
nist activity of peroxisome proliferator-activated-receptor-
(PPAR-) gamma, a previous study suggested that orally
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administered rosiglitazone, PPAR-gamma agonist, promotes
a central antihypertensive effect via upregulation of PPAR-
gamma and alleviation of oxidative stress in the RVLM
of spontaneously hypertensive rats [90]. Although both of
telmisartan and candesartan have the function as a partial
agonist of PPAR-gamma, only telmisartan can achieve this
effect with therapeutics doses [91], and telmisartan might
have benefits associatedwith agonistic effect of PPAR-gamma
to a greater extent than candesartan [87, 88]. Further studies
are necessary to clarify whether the ARBs-induced sym-
pathoinhibitory effect is dependent on the central PPAR-
gamma in MetS or not.

7. Summary

RAS and SNS are abnormally activated inMetS, and there are
interactions between RAS, insulin resistance, and SNS acti-
vation. Among these interactions, SNS activation is mainly
augmented byRAS activation and oxidative stress in the brain
(Figure 1). In patients with MetS, SNS activation mediated by
RAS activation and oxidative stress in the brain should be the
target of the treatments for hypertension, and ARBs could
have the potential benefit on SNS activation.
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