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Abstract: Bone is a preferential site for cancer metastases, including multiple myeloma, prostate,
and breast cancers.The composition of bone, especially the extracellular matrix (ECM), make it
an attractive site for cancer cell colonization and survival. The bone ECM is composed of living
cells embedded within a matrix composed of both organic and inorganic components. Among the
organic components, type I collagen provides the tensile strength of bone. Inorganic components,
including hydroxyapatite crystals, are an integral component of bone and provide bone with its
rigidity. Under normal circumstances, two of the main cell types in bone, the osteoblasts and
osteoclasts, help to maintain bone homeostasis and remodeling through cellular communication and
response to biophysical signals from the ECM. However, under pathological conditions, including
osteoporosis and cancer, bone remodeling is dysregulated. Once in the bone matrix, disseminated
tumor cells utilize normal products of bone remodeling, such as collagen type I, to fuel cancer cell
proliferation and lesion outgrowth. Models to study the complex interactions between the bone
matrix and metastatic cancer cells are limited. Advances in understanding the interactions between
the bone ECM and bone metastatic cancer cells are necessary in order to both regulate and prevent
metastatic cancer cell growth in bone.

Keywords: bone extracellular matrix; breast cancer; prostate cancer; multiple myeloma; metastasis;
bone remodeling; mechanotransduction

1. Introduction

Bone is a unique organ that provides structural support for the body. The bone, including the
extracellular matrix (ECM) is constantly remodeled where ECM components are degraded, modified,
and secreted [1]. The balance between degradation and secretion of the bone ECM is important in
maintaining bone density, elasticity, and strength [2]. The bone is composed of many different cell types,
including, but not limited to epithelial cells, osteoblasts, osteoclasts, osteocytes, and fibroblasts [3,4].
These cells are surrounded by organic components, most notably collagen type I, and inorganic
components, including hydroxyapatite crystals [3–5]. These components encompass the bone matrix
which provide a complex network of biochemical and physiological cues that contribute to bone
processes, including bone remodeling and mechanotransduction [4].

The bone is an attractive site for cancer colonization [6]. Normal bone processes, such as bone
remodeling, are deregulated leading to disorganization of the bone matrix and abnormal behavior
of cells [7]. Once in bone, cancer cells utilize normal products of bone remodeling, such as collagen
type I, to fuel cancer growth [2,8]. Cancer cells recruit other cells in the microenvironment, such
as fibroblasts or osteoblasts to remodel collagen I products, resulting in a disorganized and stiff
matrix [2,8,9]. As a result, ECM dynamics, composition, and integrity are disrupted, ultimately altering
the interactions of native bone cells with their microenvironment and promoting tumor invasion [8].
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Understanding the interactions between the bone ECM and bone metastatic cancer cells are crucial in
order to both regulate and prevent metastatic cancer cell growth in bone.

2. Bone Physiology

Bone is composed of two main types: cortical and trabecular bone (Figure 1) [10,11]. Cortical and
trabecular bone have varying structural properties, which affect how each type responds to mechanical
loading [12–14]. Differences between cortical and trabecular bone are determined by density and
porosity [14,15]. For example, long bones, such as the femur, have three regions: the epiphysis,
metaphysis, and diaphysis [16]. Long bones have an interior of porous, trabecular bone located in the
epiphyses, and a hard exterior shell of cortical bone [13,16]. Located between the metaphysis and the
diaphysis is the epiphyseal plate, or growth plate, which is a marker of longitudinal bone growth [5,10].
The diaphysis of the long bones contain the bone marrow surrounded by hard, cortical bone [16].
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Cortical bone, otherwise known as compact bone, surrounds the exterior of bone [10,11]. Cortical 
bone is composed of densely packed collagen type I fibrils and is highly mineralized, in comparison 
to trabecular bone [10,11]. Therefore, cortical bone adds strength and rigidity to the skeleton [10,17]. 
The mechanical properties of cortical bone are characterized by the porosity, mineralization, and 
organization of the bone microstructure [13].  

Cancer cells frequently disseminate to bone and utilize changes in the bone matrix to promote 
cancer growth [2,18,19]. For example, lysyl oxidase (LOX) secretion by cancer cells is upregulated at 
metastatic sites and contributes to tissue stiffness [20]. Tissue stiffness is a factor known to promote 
cancer colonization and outgrowth [2,8]. 

Trabecular bone, on the other hand, is a porous, loosely organized matrix compared to the 
compact structure of cortical bone [11]. Trabecular bone is located near the ends of bone just below 
the growth plate and is accompanied by red bone marrow, a hematopoietic tissue that produces red 
blood cells, and blood vessels, including sinusoids [10,11]. Sinusoids are large blood vessels that 
facilitate sluggish blood flow, permitting entry of cells from circulation into the bone space [21]. 
Trabecular bone provides flexibility to bone due to its porous structure, forming along lines of stress, 
ultimately acting as a shock absorber [10,17]. Due to its dynamic nature, trabecular bone undergoes 
remodeling more frequently compared to cortical bone, which also increases its metabolic activity 
[12,13]. Trabecular bone also differs in mechanical properties [13]. For example, trabecular bone is 
known to have decreased strength and stiffness compared to cortical bone, but other mechanical 

Figure 1. Gross anatomy of the long bones. Depicted are the three regions of long bones: epiphysis,
metaphysis, and diaphysis. The outermost layer of bone is composed of densely packed cortical bone,
while the interior and ends of bone are made up of trabecular bone (gray region). The growth plate
is located in the metaphysis region and allows for longitudinal growth of bone. The bone marrow is
located in the diaphysis, or shaft of long bones. Vascular sinusoids are located in the epiphysis of bone
and allow for sluggish blood flow into the bone.

Cortical bone, otherwise known as compact bone, surrounds the exterior of bone [10,11]. Cortical
bone is composed of densely packed collagen type I fibrils and is highly mineralized, in comparison
to trabecular bone [10,11]. Therefore, cortical bone adds strength and rigidity to the skeleton [10,17].
The mechanical properties of cortical bone are characterized by the porosity, mineralization, and
organization of the bone microstructure [13].

Cancer cells frequently disseminate to bone and utilize changes in the bone matrix to promote
cancer growth [2,18,19]. For example, lysyl oxidase (LOX) secretion by cancer cells is upregulated at
metastatic sites and contributes to tissue stiffness [20]. Tissue stiffness is a factor known to promote
cancer colonization and outgrowth [2,8].

Trabecular bone, on the other hand, is a porous, loosely organized matrix compared to the compact
structure of cortical bone [11]. Trabecular bone is located near the ends of bone just below the growth
plate and is accompanied by red bone marrow, a hematopoietic tissue that produces red blood cells,
and blood vessels, including sinusoids [10,11]. Sinusoids are large blood vessels that facilitate sluggish
blood flow, permitting entry of cells from circulation into the bone space [21]. Trabecular bone provides
flexibility to bone due to its porous structure, forming along lines of stress, ultimately acting as a shock
absorber [10,17]. Due to its dynamic nature, trabecular bone undergoes remodeling more frequently
compared to cortical bone, which also increases its metabolic activity [12,13]. Trabecular bone also
differs in mechanical properties [13]. For example, trabecular bone is known to have decreased strength
and stiffness compared to cortical bone, but other mechanical properties, such as elasticity and density
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are heterogeneous [13,15]. The heterogeneity of trabecular bone is also due to its high bone turnover
rate, ultimately changing bone microstructure [12,13].

2.1. Bone Cells Modulate the Bone Microenvironment

All sites of bone are metabolically active, which contributes to bone homeostasis and bone
remodeling[10]. Bonehomeostasisandremodeling is tightlycontrolledbycellsof thebonemicroenvironment:
bone-forming osteoblasts, bone-resorbing osteoclasts, and osteocytes (Figure 2) [10,22,23].
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Osteocytes are terminally differentiated osteoblasts that reside in a small cavity called a lacunae 
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connected to the lacunae [10]. Canaliculi include osteocyte processes which allow for interaction with 
other cells in the bone microenvironment, as well as allow for the exchange of waste and nutrients 

Figure 2. Osteoblasts, osteoclasts, and osteocytes are key modulators in the bone microenvironment.
Osteoblasts derived from mesenchymal stem cells and are responsible for bone building. Osteoblasts
have bound and soluble forms of receptor activator of nuclear-factor kappa-β ligand (RANKL), a key
factor needed for osteoclast differentiation. Secreted RANKL can bind to the receptor activator of
nuclear-factor kappa-β (RANK) receptor on osteoclast progenitor cells and initiate differentiation of
osteoclast precursors. Osteoclasts are derived from a monocyte/macrophage lineage. Along with
soluble RANKL, macrophage-colony stimulating factor (M-CSF) binds to the colony-stimulating
factor-1 (C-FMS) receptor on osteoclast progenitors to initiate osteoclast differentiation. RANKL and
M-CSF are the two key factors in osteoclast differentiation and formation. Once osteoclastogenesis is
initiated, mono-nucleate osteoclast precursors fuse together to form multi-nucleate, mature osteoclasts.
Osteocytes are terminally differentiated osteoblasts that have become embedded in the bone matrix.
Osteocytes secrete factors in response to mechanical strain, including nitric oxide, which can activate
osteoblast bone formation or inhibit osteoclast formation and bone resorption.

Osteoblasts, derived from mesenchymal stem cells, participate in bone mineralization, bone
remodeling, and production of bone ECM proteins (Figure 2) [4,22]. Mature osteoblasts participate
in bone mineralization and bone matrix protein production by secreting organic molecules, such
as collagen type I, and inorganic molecules, such as proteoglycans, to form bone and bone
matrix [4,22,24]. Matrix metalloproteinases (MMPs) are also secreted from osteoblasts to aid in
matrix degradation [25]. Osteoblasts also express factors that initiate osteoclastogenesis, such as
receptor activator of nuclear-factor kappa-β ligand (RANKL) and macrophage colony stimulating
factor (M-CSF), the two cytokines needed for osteoclast differentiation [26,27]. Lastly, osteoblasts can
become embedded in their own mineralized matrix [10]. Osteoblasts secrete type I collagen, which is
eventually converted into a hard matrix by calcium phosphate where they become trapped and cannot
divide [10]. These non-dividing and trapped osteoblasts are called osteocytes [10].

Osteocytes are terminally differentiated osteoblasts that reside in a small cavity called a lacunae
(Figure 2) [10]. Osteocytes make up about 90–95% of all bone cells [22]. Osteocytes are able to
interact with the bone microenvironment and surrounding cells through tiny channels called canaliculi
connected to the lacunae [10]. Canaliculi include osteocyte processes which allow for interaction
with other cells in the bone microenvironment, as well as allow for the exchange of waste and
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nutrients [28]. Osteocytes are known to have critical roles in regulating bone remodeling and sensing
mechanical stimuli in bone [4,29–31]. One way osteocytes sense mechanical loading in bone is by
fluid flow shear stress, which is a physical deformation in the bone matrix that causes load-induced
changes in the flow of liquid through the canalicular network [28]. Osteocytes secrete factors in
response to mechanical strain, including fluid flow shear stress [28]. These factors regulate osteoblast
and osteoclast function [28]. Nitric oxide (NO) is one of the factors secrete by osteocytes under
mechanical strain [28,32]. NO decreases osteoblast proliferation and increase osteoblast differentiation
in vitro [32,33]. Osteocytes also regulate osteoclast activation during bone remodeling [28]. It has
been proposed that osteocytes secrete osteoclast-inhibitors, such as osteoprotegerin, and only when a
population of osteocytes die, does this secretion reverse, and osteoclasts become active [34]. In addition
to bone remodeling, osteocytes are also critical in sensing mechanical load in bone, terming them the
‘mechanosensor of bone’ [35–37]. Osteocytes are also mechanotransducers, meaning they can convert
mechanical stimuli into biological output, such as initiating a biochemical signaling pathway [28].

Osteoclasts are derived from hemopoietic stem cells in the bone marrow and are differentiated from
the monocyte-macrophage lineage (Figure 2) [4,10,38]. RANKL and macrophage colony stimulating
factor (M-CSF) are the two ligands needed for osteoclast progenitor differentiation [39–41]. Once M-CSF
and RANKL are bound to their respective receptors, mononuclear osteoclast progenitor cells fuse with
one another, eventually forming large, multi-nucleate osteoclasts (Figure 3) [10,38].
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acid phosphatase (TRAP) positive, indicative of a mature osteoclast. (pink-brown stain). Scale = 200 µm.

Mature osteoclasts are characterized by their large size, presence of many nuclei, and a ruffled
border membrane [10,38,42,43]. Active osteoclasts are further characterized in vitro by (1) formation of
a resorptive pit on dentin [44,45]; (2) formation of an actin ring [43] and; (3) number of multi-nucleated
cells that stain positive for tartrate resistant acid phosphatase (TRAP) [42,46]. During bone resorption,
osteoclasts express αvβ1 integrin to interact with bone matrix through the tripeptide Arg-Gly-Asp
(RGD) binding domains of non-collagenous proteins, such as osteopontin, bone sialoprotein, or
fibronectin [47,48]. In this way, a sealing zone is formed, whereby the ruffled border membrane seals
the site of degradation and releases a number of acids, to degrade bone minerals, and lysosomal
enzymes, such as TRAP and cathepsin K [10,49]. These enzymes aid in degradation of organic
components of the bone matrix [10,49]. When resorbing bone, osteoclasts release cytokines, hormones,
and growth factors, including transforming growth factor-β (TGF-β) that are stored in the bone
matrix [4]. Active TGF-β regulates both osteoclast bone resorption and osteoblast bone formation,
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whereby low concentrations of active TGF-β induces osteoclast precursors to migrate to bone resorptive
pits [50,51]. In addition, active TGF-β released during bone resorption has been shown to stimulate
bone mesenchymal stem cell (MSC) recruitment to sites of bone resorption [52].

2.2. Bone Remodeling During Homeostasis and Disease

Bone remodeling is accomplished by both bone-forming osteoblasts and bone-resorbing osteoclasts
(Figure 4a) [10,22]. First, the bone microenvironment sends an initiating signal to start bone
remodeling [22]. Initiating remodeling signals include hormones, such as parathyroid hormone (PTH),
or mechanical stimuli, such as fluid flow shear stress [4,22]. Osteoblasts respond to the mechanical
stimuli generated by the osteocytes or to direct hormonal signals and recruit osteoclasts to the site of
remodeling [22]. Osteoblasts secrete RANKL and macrophage-colony stimulating factor (M-CSF), the
two factors that stimulate osteoclast resorption [22,26,27]. RANKL is expressed in two forms: a bound
form and a secreted form [53]. Secreted RANKL will bind to the RANK receptor [42,53,54] and M-CSF
will bind to the colony-stimulating factor-1 (c-Fms) receptor on osteoclast progenitor cells to promote
osteoclast differentiation [4,22,42].
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Figure 4. The bone matrix is manipulated to promote cancer growth. (a) The bone matrix is comprised
of organic and inorganic components. The main organic component of the bone matrix is collagen type
I. The bone matrix is also comprised of non-collagenous proteins, including fibronectin, lysyl oxidase
(LOX), a crosslinker of collagen, and matrix metalloproteinases (MMPs), degraders of the bone matrix.
Inorganic bone matrix components include hydroxyapatite crystals, which allow for mineral exchange
in bone. To combat excess bone degradation, osteoblasts secrete osteoprotegerin (OPG), a decoy receptor
for soluble receptor activator of nuclear-factor kappa-β ligand (RANKL). OPG will bind the soluble
RANKL and inhibit it from binding to the RANK receptor on osteoclast progenitors. Debris from
bone resorption is removed and osteoblast progenitors are recruited to the resorption site, where
they differentiate into osteoblasts, and secrete bone-forming molecules. Osteoblasts secrete organic
components, including collagen type I and non-collagenous proteins, including proteoglycans, that aid
in new bone formation. In this way, bone homeostasis is maintained with little net gain or loss of bone
composition. (b) Cancer cells initiate osteoblasts to secrete excess RANKL. Secreted RANKL binds to
the RANK receptor on osteoclast progenitor cells to initiate differentiation. Increases in mono-nucleate
osteoclast precursors cause more fusion and initiate increased production of multi-nucleate, mature
osteoclasts. Due to increases in mature osteoclast formation, there is an increase in bone degradation.
Additionally, OPG secretion decreases from osteoblasts. Therefore, there is less OPG to bind soluble
RANKL, contributing to the indirect increase of osteoclast differentiation. The introduction of cancer
cells into the bone microenvironment disrupts communication between osteoblasts and osteoclasts.

Once committed to osteoclast lineage, osteoclast progenitors fuse together to become large,
multi-nucleate cells indicative of mature osteoclasts that resorb bone [42]. Mature, active osteoclasts
bind to the Arg-Gly-Asp (RGD) binding site and the sealing zone is formed, whereby hydrolases and
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acids are secreted into the resorptive pit [10,42]. To combat excess bone degradation, osteoblasts secrete
osteoprotegerin (OPG), a decoy receptor for soluble RANKL [55,56]. OPG binds the soluble RANKL
and inhibits it from binding to the RANK receptor on osteoclast progenitors, therefore decreasing
osteoclastogenesis (Figure 4a) [56]. Debris from bone resorption is removed and osteoblast progenitors
are recruited to the resorption site, where they differentiate into osteoblasts, and secrete bone-forming
molecules [22]. Osteoblasts secrete organic components, including collagen type I and non-collagenous
proteins, including proteoglycans, that will form new bone [22]. In this way, bone homeostasis is
maintained with little net gain or loss of bone composition [22,57].

Under pathological conditions, including osteomyelitis and bone metastatic cancers, bone
remodeling is disrupted (Figure 4b) [58,59]. Bone metastatic cancer cells take advantage of and
utilize the plethora of cytokines, chemokines, growth factors, and cell adhesion molecules that are
released into the bone niche as a result of dysregulated bone remodeling [17]. This observation
was originally described 130 years ago in 1889 by Stephen Paget [60]. Paget first recognized that
the movement of cancer cells within the body was nonrandom and was also unexplained by blood
flow: “When a plant goes to seed, its seeds are carried in all directions; but they can only grow if
they fall on congenial soil.” [60]. As suggested by Paget, cancer cells are the “seeds” and the bone
microenvironment, rich in growth factors, chemokines, and cytokines, is the “congenial soil” necessary
for cancer cell growth [60]. Paget’s “seed and soil” hypothesis also explains the preferential metastasis
of certain types of cancer cells, including breast, prostate, lung, and multiple myeloma, to the bone.

In bone metastatic cancers, and especially in those that result in osteolytic disease, there is an
increase in osteoclast resorption and decrease in osteoblast bone formation, resulting in overall bone
loss, with no new bone deposition [61]. The most well-known example of this is the ‘vicious cycle’ of
breast cancer metastasis to bone [19,26,62]. Metastatic breast cancer cells hijack the process of bone
remodeling by producing parathyroid hormone related protein (PTHrP), which stimulates osteoblasts
to produce RANKL [19]. RANKL binds to the RANK receptor on osteoclast progenitors and stimulates
osteoclast differentiation and bone resorption [19]. There is an increase in the release of cytokines,
growth factors, and minerals from bone resorption by osteoclasts, further contributing to the ‘vicious
cycle’ of bone degradation [19].

Overall, bone cells are responsible for many functions in the bone microenvironment, including
but not limited to, bone remodeling; modulation of growth factors and cytokines; mechanosensing, and
mechanotransduction [4,22,30,42]. The bone matrix is intertwined with bone remodeling, allowing for
dynamic interactions between the organic and inorganic components of bone and matrix proteins [4,5,63].
Together, bone components and matrix proteins are able to facilitate bone homeostasis.

3. The Bone Extracellular Matrix

The bone ECM is a dynamic structure that encompasses the organic and inorganic components
of bone (Figure 5) [5]. The bone ECM contributes to many different cellular processes, including
cell attachment, differentiation, and migration; tissue repair and regeneration; and structural and
functional support of the tissue [4,5,49]. The bone matrix serves as the foundation for bone growth,
repair, and cellular interactions [5,64,65]. The bone ECM is composed of both organic and inorganic
components that contribute to the structure and function of the bone [4,5].

3.1. Organic Bone Components: Collagenous Proteins

Bone is composed predominantly of a fibril-forming collagen matrix, accounting for about 90% of
the bone matrix [5]. Collagen is an important component of bone matrix because it provides strength
and stability to the skeleton, as well as serves as a scaffold for bone formation, cell attachment, and
utilized as a mechanical stimulus for biochemical signaling [4,66,67]. Collagen type I is the most
abundant form of collagen in bone matrix [5,63,66,68]. Typical collagen type I fibers are triple helical
structures, formed from two α1 chains and one α2 chain wound tightly together into a triple helix
structure [5,63]. The triple helix structure is equivalent to one collagen molecule [10]. These collagen
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molecules then pack together to form the collagen fibrils that form the bone matrix [10]. Collagen fibers
are organized in a hierarchical manner and arrange in a directional manner corresponding to cellular
orientation [68,69]. The biochemical and biophysical properties of collagen type I fibers are known to
affect cellular behaviors, such as cell proliferation, differentiation, and survival [70,71]. For example,
cells respond differently to denatured collagen than mature, crosslinked collagen fibrils [72]. In addition,
collagen fibers in bone are highly cross-linked under normal conditions, which makes the bone matrix
insoluble [73], except during bone remodeling [22]. The insolubility of the bone matrix contributes to
bone strength and stiffness [4,10,67]. Changes in collagen can also occur under pathological conditions,
such as aging and cancer, which can cause bone weakness and fragility [5,74]. In bone metastatic cancers,
type I collagen production and orientation is known to be altered [66,68]. There is increased collagen
production at the bone metastatic site, whereby secreted collagen molecules are dense, misaligned,
and disorganized, further disrupting bone mechanical function (Figure 5b) [66,75]. Liu et al. identified
that metastatic breast cancer cells secreted miR-218 which directly regulated type I collagen secretion
from osteoblasts in the bone niche [76]. The authors further identified elevated levels of miR-218 in
blood samples from patients with breast cancer bone metastases, suggesting miR-218 as a possible
therapeutic for patients with bone metastatic breast cancer [76]. It is also known that lysyl oxidase
(LOX), a crosslinker of collagen, is upregulated at metastatic sites (Figure 5b) [20,77]. Increases in LOX
at the metastatic site increases ECM stiffness and facilitates cancer cell colonization [8]. Cox et al. has
shown in tumor-bearing mice that there was an increase in bone loss and osteolytic lesion formation,
which was LOX-dependent [78]. Cancer cells that were devoid of LOX that were injected into mice
showed decreased osteolytic lesion formation [78]. This data suggests that LOX is used by cancer cells
to change the biomechanical properties of bone remodeling, leading to excess bone degradation and
the formation of osteolytic lesions [78].
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Figure 5. The bone matrix is manipulated to promote cancer growth. (a) The bone matrix is comprised
of organic and inorganic components. The main organic component of the bone matrix is collagen
type I. The bone matrix is also comprised of non-collagenous proteins, including fibronectin, lysyl
oxidase (LOX), a crosslinker of collagen, and matrix metalloproteinases (MMPs), degraders of the bone
matrix. Inorganic bone matrix components include hydroxyapatite crystals, which allow for mineral
exchange in bone. (b) Under disease conditions, such as cancer, the bone matrix is constantly being
remodeled. The biggest change is altered collagen production. Collagen fibrils become thick, dense,
and unorganized compared to their linear, aligned counterparts. Fibronectin production increases, as
well as LOX crosslinking, causing increases in tissue stiffness. MMP production also increases, leading
to excess bone matrix degradation and remodeling.
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3.2. Organic Bone Components: Non-Collagenous Proteins

There are other proteins besides collagen that are important for bone matrix structure and
remodeling. Among the many non-collagenous proteins in the bone ECM, the top 5 most characterized
proteins are Bone Sialoprotein (BSP), osteopontin (OPN), fibronectin (Fn), proteoglycans, and matrix
metalloproteinases (MMPs) [4,5,79]. The first non-collagenous protein identified in bone was Bone
Sialoprotein (BSP) [5]. Bone sialoprotein (BSP) is a protein of the small, integrin-binding ligand
N-linked glycoprotein (SIBLING) family [80]. SIBLING family proteins, including BSP, have an
RGD binding domain that mediates cell attachment and signaling, are secreted into the bone matrix
during bone mineralization [81]. Gordon et al. found that BSP is also an important regulator
of osteoblast differentiation and subsequent matrix mineralization [82]. Overexpression of BSP
increased osteoblast-related gene expression of Runt-related transcription factor-2 (Runx2) and alkaline
phosphatase enzyme activity, contributing to osteoblast differentiation [82]. In addition to BSP, another
SIBLING family protein, OPN, is also an important organic component of the bone matrix [83].
OPN is expressed in a variety of tissues, including osteoblast progenitors and osteoblasts [80,83]
is a critical component in cell-matrix interactions, bone resorption, and bone remodeling [83–85].
OPN regulates cell-matrix interactions through their RGD binding domain with integrins [80,86].
During biomineralization, OPN can bind directly to hydroxyapatite crystals, an inorganic component
of the bone matrix, and inhibit mineralization [87]. OPN is also important for bone remodeling;
bone cells secrete OPN during bone remodeling and can also increase OPN expression in response
to mechanical stimuli [88,89]. It has been suggested that OPN also stimulates migration and bone
resorption of osteoclasts through the cell surface adhesion receptor CD44 [90,91].

In bone metastatic cancers, such as breast and prostate cancers, bone matrix proteins, including
BSP and OPN, have been implicated in the selective affinity of cancer cells to bone, through enhanced
migration, invasion, and proliferation [92,93]. Carlinfante et al. identified that bone metastases from
breast cancer patients had a higher expression of OPN compared to bone metastases from prostate
cancer patients [93]. In contrast, bone metastases from breast cancer patients had a low expression
of BSP compared to bone metastases from prostate cancer patients, suggesting that OPN and BSP
expression are selective markers for the two types of metastases: osteolytic, more indicative of bone
metastases from breast cancer patients and osteoblastic, more indicative of bone metastases from
prostate cancer patients [93]. Another study demonstrated that inoculation of human breast cancer
cells with BSP overexpression into athymic nude mice developed osteolytic bone metastases, whereas
metastases that developed as a result of inoculation of human breast cancer cells with decreased
expression of BSP did not develop osteolytic bone metastases. These results suggest that BSP may
regulate osteolytic bone metastasis formation [94]. In addition, multiple studies have shown that
OPN binding to cell surface adhesion receptor CD44 stimulates cancer cell migration, invasion, and
metastasis [95–97]. Overall, phosphoproteins BSP and OPN are important regulators of cell-matrix
interactions, bone mineralization, and bone remodeling, but are important mediators in tumor
progression and metastasis [81,82,84,85,92].

In addition to the SIBLING family, there are other non-collagenous proteins, including
proteoglycans, that are important in maintaining the bone matrix. Proteoglycans are one of the
main classes of proteins found in the ECM and are important for formation and regulation of the bone
matrix [10]. Proteoglycans are distinguished from other glycoproteins by the size and arrangement
of the side sugar chains called glycosaminoglycans (GAGs) that are attached to a core protein [10].
GAGs are can be very large or very small [10]. Proteoglycans also regulate cell signaling by binding to
proteins and (1) enhancing or decreasing the protein signal, (2) inhibiting the protein’s function by
binding to it, or (3) by binding to the protein to inhibit it from being degraded [10]. Small, leucine-rich
proteoglycans (SLRPs) are a subclass of proteoglycans are present during are found in mineralized
bone matrix [98]. SLRPs participate in matrix organization binding to components of the bone matrix,
such as collagen [4,98,99]. Bound and soluble SLRPs also regulate growth factor bioavailability and
facilitate cell-matrix interactions by aiding in growth factor binding to receptors [99]. Decorin is a SLRP
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secreted by osteoblasts in the bone matrix [4,10,98,99]. Decorin regulates collagen fibril assembly and is
essential for proper collagen fibril formation [10]. Decorin also participates in bioavailability of growth
factors, such as the transforming growth factor β (TGF-β) [10,100]. TGF-β is a pleiotropic growth
factor involved in many biological processes, including but not limited to, embryonic development,
immune regulation, wound healing, and inflammation [101,102]. TGF-β was found to bind at the core
protein and not the GAG chain of decorin [10,103]. When in the presence of collagen type I, decorin
binds to TGF-β and sequesters it in the ECM [104]. Decorin has also been shown to bind TGF-β during
bone remodeling and enhance its bioactivity [105]. These studies suggest that decorin may have a
dual role in regulating growth factor bioactivity in the bone matrix. In addition to regulating growth
factor bioactivity and matrix organization, decorin has anti-tumor properties in patients with bone
metastases [100,106,107]. One pivotal study conducted by Nemani et al. investigated the interactions
between bone cells and stromal cells and how decorin might be mediating this interaction when
multiple myeloma cells are present [106]. The authors first looked at the expression of decorin in
multiple myeloma cells and found that when compared to an osteosarcoma cell line that constitutively
expressed decorin, multiple myeloma cells had no detectable amounts of decorin [106]. The authors
next wanted to determine the expression of decorin in differentiating osteoblasts, bone marrow stromal
cells (BMSCs) and osteoclasts [106]. Differentiating osteoblasts and BMSCs expressed high levels of
decorin, especially during osteoblast differentiation, but when co-cultured with multiple myeloma cells,
decorin expression decreased, which is thought to be due to decreased osteoblast differentiation [106].
Osteoclasts from multiple myeloma patients expressed decreased amount of decorin, but exogenously
adding decorin to a differentiating culture of precursor osteoclasts yielded a decrease in the number of
TRAP positive osteoclasts, suggesting that decorin inhibits osteoclast differentiation [106]. Overall, this
study demonstrates that decorin has anti-tumor effects that modulate the tumor microenvironment
indirectly [106].

Fibronectin (Fn), a matrix glycoprotein, mediates many cellular interactions within the bone
matrix, including but not limited to, cellular adhesion, migration, and differentiation (Figure 5a) [108].
Fn can be divided into two sub forms: plasma Fn, which is mainly produced by hepatocytes in
the liver and is soluble; and cellular Fn, which can be produced by different cell types and tissues,
and is relatively insoluble [108]. Cellular Fn is cell-type-specific, meaning depending on the tissue
type, the splicing of Fn may vary [108]. Each variant could have different adhesion, ligand binding,
or solubility properties that may be tissue dependent [108]. In the bone, Fn is secreted mainly by
fibroblasts, but in the bone matrix, osteoblasts are the main producers of Fn [10,109]. Fn is also
known to regulate osteoblast differentiation [109,110]. Faia-Torres et al. has shown that having a low
Fn-density matrix was able to promote the differentiation of human MSCs to an osteogenic lineage
determined by the expression of alkaline phosphatase and collagen type I staining [111]. In addition
to osteoblast differentiation, Fn has a collagen binding domain that serves as a scaffold for collagen
fibril formation [108,112,113]. There is controversary as to whether denatured collagen or native
collagen binds more effectively in this region, but there is evidence supporting that both denatured
and native collagen can bind to the collagen binding domain of Fn [108,114]. The deposition of
Fn into the bone ECM by cells of the bone microenvironment is a tightly regulated process [108].
Fn has been shown to be manipulated by other cells in the bone microenvironment, such as cancer
associated stromal cells during tumorigenesis [115–117]. Studies have demonstrated that tumor cells
signal to the surrounding tumor stroma to produce Fn, since cancer cells cannot produce their own
Fn matrix [116,117]. The cancer-initiated Fn matrix is highly unorganized and composed of thick,
dense fibrils (Figure 5b) [116,117]. The remodeling of the bone matrix by tumor stroma cause further
mechanical and structural changes, which is mediated by MMPs [117].

MMPs, are proteolytic enzymes mainly responsible for matrix degradation, including the bone
matrix, as well as protein cleavage (Figure 5a) [79]. MMPs can cleave precursor proteins, such
as pro-MMP precursors and activate them [1]. Most MMPs can exist as secreted proteins or
membrane-bound proteins, but all target a wide range of ECM molecules [7,118]. For example,
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MMP-3 and MMP-10 selectively target proteoglycans and fibronectin, whereas MMP-8 and MMP-14
selectively target collagen type-1 and MMP-9 degrades denatured collagen [1,79]. It is known that
various subtypes of bone cells produce different MMPs; osteoblasts produce MMP-1, MMP-2, MMP-13,
and MMP-14, whereas it has been suggested that osteoclasts solely produce MMP-9 [119–122]. MMP-9 is
activated by cleavage of the pro-domain by various MMPs, such as MMP-2 [123,124], MMP-3 [124], and
MMP-13 [125]. MMP-9 is important for chondrocyte apoptosis during endochondral ossification [126].
MMP-9 is also highly expressed during fracture healing, whereby it aids in degradation and
stabilization of the bone matrix [7]. MMP-2, MMP-13, and MMP-14 have multiple functions during
osteogenic differentiation, including acting as a major degrader of collagen type I during pre-osteoblast
differentiation [127,128] and early ossification of bone [7]. Tauro et al. demonstrated that increases
in MMP-2, MMP-3, MMP-13, and MMP-9 expression correlated with increases in bone matrix
degradation [129]. MMPs have also been shown to be important in cancer progression, whereby
MMPs are upregulated, resulting in excessive matrix degradation and remodeling (Figure 5b) [1,118].
Therefore, targeting MMPs during cancer progression may decrease tumor outgrowth. Perentes et
al. demonstrated that downregulating MMP-14 in breast cancer cells reduced blood vessel invasion
and spontaneous metastasis in a triple negative breast cancer model [130]. Tauro et al. has shown
using a MMP-2 inhibitor that specifically targets bone, tumor-associated bone destruction and tumor
growth was reduced in vivo [129]. In addition, they found that the MMP-2 inhibitor targeted breast
cancer cells and osteoclasts, but not osteoblasts in vitro, suggesting decreased bone destruction [129].
Bruni-Cardoso et al. studied the effects of stromal-derived MMP-9 on the progression of prostate cancer
in bone and found MMP-9 was able to induce prostate cancer tumor progression without contributing
to changes in bone composition [131].

3.3. Inorganic Bone Components

Inorganic bone matrix is a rich source of minerals, including calcium and phosphate, which are
released during bone resorption [5]. The inorganic bone matrix is mainly composed of hydroxyapatite
crystals, which allow for mineral exchange in bone (Figure 5) [5,66]. Extensive studies have shown
that collagen deposition can initiate and orientate hydroxyapatite crystal formation, which are both
vital for bone matrix mineralization [68,132]. Nakano et al. identified that rabbit ulna and skull bone
varied in their structure of hydroxyapatite orientation via a suggesting that apatite crystallization is
related to stress distributions in bone [133,134]. Furthermore, Sekita et al. has shown that the abnormal
arrangement of apatite crystals, in conjunction with collagen fibers, impairs bone mechanical function
and disrupts osteoblast alignment [66]. To study bone mechanical function, the authors inoculated
mouse femurs with or without prostate cancer cells and analyzed collagen and hydroxyapatite
orientation and bone density [66]. The authors found that mice inoculated with prostate cancer cells
had a non-directional bone patterning, compared to unilateral bone formation in mice not inoculated
with prostate cancer cells, which was further determine to be due to the abnormal alignment of collagen
and hydroxyapatite crystals [66]. The abnormal alignment of apatite crystals and collagen fibers was
further found to disrupt osteoblast alignment during both breast and prostate cancer bone metastatic
progression [66,135].

4. Bone Metastatic Cancers

Primary bone cancer, such as osteosarcoma, is rare [136], but cancers that metastasize to bone are
quite common [137]. Bone is the third leading site of cancer metastases, behind lung and liver [137].
Bone is a preferential site of metastasis because of its high metabolic state due to constant bone turnover,
releasing growth and survival signals into the bone microenvironment which may stimulate cancer
cell survival [60]. Furthermore, bone contains vascular sinusoids, which are areas of sluggish blood
flow [10,11]. Metastatic cancer cells take advantage of this sluggish blood flow and primarily enter
the bone via the vascular sinusoids [138,139]. Bone metastatic lesions most commonly present in
patients previously diagnosed with prostate cancer, breast cancer, or multiple myeloma [140,141].
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Bone metastases are usually classified as osteolytic or osteoblastic, although some metastases can
be mixed [137]. Osteoblastic metastases are characterized by increased bone deposition, whereas
osteolytic lesions are characterized by excessive bone resorption [137].

4.1. Prostate Cancer

Patients with bone metastatic prostate cancer can present with either osteoblastic, osteolytic,
or mixed metastases [142], but most commonly present with osteoblastic lesions [140,143,144].
Schneider et al. demonstrated that bone turnover induced prostate cancer cell localization to the
long bones of athymic mice [145]. Athymic mice were treated with recombinant parathyroid hormone
(PTH), a well-known stimulator of bone turnover, inoculated mice with prostate cancer cells, and
found that mice treated with PTH had increased bone formation adjacent to tumor regions compared
to control mice [145]. This data suggests that cancer cells localize to more active sites of bone, activating
bone turnover and stimulating tumor colonization and growth [145].

The bone matrix houses a plethora of cytokines and growth factors, including transforming
growth factor beta (TGF-β) [2,51]. TGF-β is a known potent mitogen for osteoblast formation [4], where
osteoblasts produce increased amounts of TGF-β in sclerotic bone compared to normal bone [146].
Therefore, mechanical stimuli or bone remodeling release these factors into the bone microenvironment,
whereby cancer cells utilize these factors to stimulate cancer growth [1,2,8,147]. Meng et al. used
a knockout mouse model of TGF-β receptor 2 (TGFBR2) in osteoblasts and a knockout mouse
model of TGFBR2 in osteoclasts to determine the effects of TGF-β signaling in prostate cancer bone
metastases [148]. After intratibial or intracardiac inoculation of prostate cancer cells, knockout of
TGFBR2 in osteoblasts promoted bone lesion formation and knockout of TGFBR2 in osteoclasts
inhibited bone lesion formation [148] Using a cytokine array, the authors identified basic fibroblast
growth factor (bFGF) as the most upregulated growth factor in tibias from in osteoblasts from TGFBR2
knockout mice inoculated with prostate cancer cells, and was further found in osteoblasts to be the
mediator of the prostate cancer growth [148]. This data suggest loss of TGF-β signaling in osteoblasts
has an a metastasis-promoting effect through bFGF in a prostate cancer bone metastasis model [148].

It has also been shown that osteonectin, a collagen binding bone matrix protein, is upregulated in
prostate cancer bone metastases and stimulates the invasion and migration of prostate cancer cells [149],
however other studies have shown that osteonectin-null mice had accelerated cancer progression,
invasion and metastases [150,151]. Because of the discrepancy in the literature, Kapinas et al. wanted to
devise the role of osteonectin in prostate cancer bone metastases using mineralized matrices produced
by osteonectin-null and wild-type prostate cancer cells [152]. The authors found that osteonectin-null
matrices had a non-directional, thin matrix compared the directional and collagen-thick wild type
matrix [152]. The authors further found that prostate cancer cells grown on the wild type matrices
exhibited decreased cell proliferation and increased cell spreading, suggesting that osteonectin may
play a role in inhibiting prostate cancer growth [152].

It is known that metastatic prostate cancer cells can attach to osteoblasts in the bone microenvironment
to facilitate tumor progression [153]. Kimura et al. has demonstrated that physical contact between
prostate cancer cells and osteoblasts disrupts osteoblast alignment on a bone matrix, further contributing
to remodeling of bone microstructure [135]. Similarly, Seikta et al. demonstrated that mouse femurs
inoculated with prostate cancer cells induced a non-directional bone forming pattern, where alignment
of collagen and apatite crystals and bone toughness was decreased [66]. Prostate cancer bone metastasis
may also contribute to changes in the bone matrix. Particularly, Sottnik et al. has shown that
tumor-generated pressure in mouse tibias modified the bone microenvironment and induced the
growth of prostate cancer cells [29]. Further investigation revealed that the exerted pressure induced
osteocyte expression, and through bone matrix remodeling effector C-C motif chemokine ligand 5
(CCL5), and MMPs, promoted the growth of prostate cancer bone metastases [29].



Cancers 2019, 11, 1020 12 of 27

4.2. Breast Cancer

Breast cancer also preferentially metastasizes to bone [62,141]. Bone metastatic breast cancer
patients can have osteoblastic, osteolytic, or mixed lesions [154], but patients predominantly present
with osteolytic lesions [155], whereby osteoclasts are overactive [156,157]. When breast cancer cells
enter bone, bone homeostasis is disrupted and the balance is shifted to favor bone resorption and
remodeling of the bone matrix [4]. The formation of osteolytic lesions occurs when communication
between osteoblasts and osteoclasts is disrupted [27]. It is well established that TGF-β induces secretion
of parathyroid hormone-related protein (PTHrP) from breast cancer cells and increases the production
of RANKL from osteoblasts to stimulate osteoclast formation and activation [27,158]. Osteoclasts then
resorb bone, releasing cytokines and growth factors, including TGF-β, which cancer cells can use to
produce more PTHrP [19,62]. This process is known as the ‘vicious cycle’ of bone degradation, which
also contributes to increased bone matrix remodeling [19,27,60]. In addition to bone resorption, patients
exhibiting primary and metastatic breast cancer tumors with high desmoplasia or increased fibrosis,
have increased expression of stromal cell collagen and fibronectin and MMPs, corresponding with
increased bone extracellular matrix remodeling and poor patient outcome [59,159,160]. For example, in
breast cancer metastasis, MMP-9 is associated with degradation of bone matrix through the activation
of p38, a mitogen activated kinase [161], or by cleavage with cathepsin K, a proteinase responsible for
matrix degradation [162]. While there is evidence that ties specific ECM components to breast cancer
metastases, there is much less known about how mechanical cues facilitate tumor progression [163].
During breast cancer metastasis, ECM remodeling relates closely to bone resorption [4] and previous
data has indicated that alterations in the tumor microenvironment cause increases in pressure and
compression, leading to ECM stiffening and cell contractility [164,165]. Page et al. has shown that
increased rigidity in mineralized bone matrix stimulates tumor cells to take on a bone destructive
phenotype by altering the expression of genes associated with bone destruction [166]. They showed
that tumor-produced gene expression of Gli2 and PTHrP, two genes that regulate bone remodeling,
were significantly increased when breast cancer cells were cultured on a rigid 2D matrix compared
to a less stiff 2D matrix, suggesting that rigidity of matrices can change the alter expression of genes
involved in bone remodeling [166]. The authors identified integrin β3 (Iβ3) and TGRFR2, two growth
factor receptors regulated by TGF-β signaling, as regulators of Gli2 and PTHrP, whereby both receptors
co-localized on rigid matrices compared to less rigid matrices, suggesting that a rigid matrix can
change gene expression and bone destruction through mechanosignaling [166].

4.3. Multiple Myeloma

Multiple myeloma (MM) is also known to cause alterations in the bone microenvironment, leading
to osteolytic bone lesions [167]. Multiple myeloma is a plasma cell cancer that homes to the bone
marrow, causing severe skeletal complications, hypercalcemia, and fatigue [168]. Changes also occur
in the bone microenvironment, including increased angiogenesis and interactions between bone
marrow stromal cells (BMSCs) and myeloma cells, contributing to tumor progression [169]. A study by
Wu et al. demonstrated that BMSCs from MM patients were stiffer than BMSCs from normal volunteers
as measured by the atomic force microscope (AFM), suggesting that microenvironmental changes
can regulate cell behavior, which may contribute to disease progression [170]. Furthermore, CD138-

myeloma cells, but not CD138+ myeloma cells, were responsible for regulating stiffness of BMSCs [170].
CD138- myeloma cells were identified clonal subpopulation of multiple myeloma cancer stem cells
that have continuous self-renewal property and were found to be in the bone marrow of multiple
myeloma patients associated with poor survival [171,172]. Studies have identified this CD138- stem cell
population express stromal cell-derived factor-1 (SDF-1), which regulates homing of multiple myeloma
cells to the bone marrow, and its receptor C-X-C motif chemokine receptor 4 (CXCR4) [170,173].
The Protein Kinase B (also known as AKT) signaling pathway was previously found to mediate prostate
cancer cell migration and invasion via the SDF-1/CXC4 axis [174]. Wu et al. determined that CD138-

multiple myeloma cells regulate BMSC stiffness though the SDF-1/CXC4/AKT signaling pathway in the
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bone microenvironment [170]. These studies demonstrate the microenvironmental changes, such as
matrix rigidity, can affect cell behavior and change the expression of certain genes or active pathways
that are associated with tumor progression.

In addition, another study by Vallet et al. has shown that microenvironmental C-C motif
chemokine 3 (CCL3), and its receptors C-C chemokine receptor type 1 (CCR1) and C-C chemokine
receptor type 5 (CCR5), are important in promoting osteolytic lesion formation, through regulation
of osteoclast differentiation, and tumor progression in multiple myeloma patients [175]. CCL3 is
proinflammatory chemokine modulates osteoclast differentiation by binding to its receptors CCR1 and
CCR5 activating the AKT and extracellular signaling regulated kinase (ERK) signaling pathway [175].
CCL3 has also been shown to promote multiple myeloma cell migration and survival in the bone
microenvironment [176]. This study found CCL3 is responsible for the inhibition of osteoblast function
through the activation of ERK, subsequent downregulation of osterix, an osteogenic transcription
factor, and expression of osteocalcin, a osteoblast differentiation marker [175]. Furthermore, inhibition
of CCR1 decreased ERK activation and increased expression of osterix and osteocalcin, when in the
presence of CCL3, suggesting CCL3 is an important regulator of osteoblast and osteoclast function,
leading to the uncoupling of osteoblast and osteoclast homeostasis in multiple myeloma [175]. Another
study also found osteoblast function was mediated by CCL3 in multiple myeloma in which multiple
myeloma cells decreased osteoblast-induced decorin secretion [106]. Decorin was produced by
osteoblasts, but not by multiple myeloma cells, suggesting that decorin is an inhibitory molecule
for multiple myeloma survival in the bone microenvironment [106]. These studies demonstrate that
microenvironmental signals and interactions with surrounding cells are important in initiating multiple
myeloma tumor growth.

4.4. Lung Cancer

Lung cancer metastasizes to bone approximately 34.3% of the time, making the skeleton a
preferential site of metastasis [177]. Interactions with the bone stroma appear to drive lung cancer
homing and colonization, whereby factors expressed by bone marrow stromal cells, osteoblasts, and
osteoclasts, such as platelet derived growth factor receptor beta, promote metastatic lung cancer
engraftment in bone [178]. In another example, Vicent et al. determined that bone resorption as driven
by TGF-beta, anchorage-dependent factors including melanoma cell adhesion molecule (MCAM)
and Sushi domain-containing protein 5 (SUSD5), and protein kinase D3 (PRKD3), a protein kinase
that modulates the activity of matrix metalloproteinases during ECM remodeling [179], all promoted
increased bone metastatic lung cancer colonization and growth [180]. In one final example, Tang et
al. observed a role for the stromal-derived factor-1 (SDF-1) CXCR4 axis in the chemoattraction of
lung cancer cells to bone [181]. The authors isolated mRNA and protein from the highly aggressive
lung cancer cell line A549 and compared it to mRNA and protein isolated from lung cancer cell lines
that are less aggressive, including H928 and H1299 cells. The authors determined that the CXCR4
receptor, which binds with high affinity to SDF-1, was highly expressed in the aggressive A549 cells
when compared to the less aggressive H928 or H1299 cells. SDF-1/ CXCR4 interaction was directly
responsible for the chemoattraction of lung cancer cells in Boyden chamber assays. Further analysis
showed that lung cancer cells’ interaction with SDF-1 mediated the upregulation of MMP9 expression
which further increased lung cancer cell chemoinvasion to bone [181]. Thus, these studies suggest that
factors involved in remodeling of the bone matrix promote lung cancer cell homing to bone.

The available literature suggests that two of the more common types of lung cancer, non-small
cell lung cancer (NSCLC) and small cell lung cancer (SCLC), metastasize to bone and present mainly
with osteolytic bone metastases of the spine and ribs. These lesions can also be mixed osteoblastic and
osteolytic [182–184]. Interestingly many bone turnover markers, including bone sialoprotein (BSP),
collagen type I, and osteopontin (OPN) can be used as biomarkers for the diagnosis, prognosis, and
evaluation of lung cancer bone metastases including that of NSCLC and SCLC [82,185–187]. In particular,
He and colleagues found that NSCLC patients with bone metastases had higher BSP serum levels
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compared with NSCLC patients without bone metastases [188]. Furthermore, meta-analysis data
correlated type I collagen with the progression of bone metastases in lung cancer patients [189–192].
In another study, Valencia and colleagues identified that knockdown of the discoidin domain receptor-1
(DDR1), a receptor for type I collagen, in the lung cancer cells reduced bone metastatic burden as
measured by tumor burden and osteolytic lesion formation in a mouse model of lung cancer bone
metastasis [193]. The authors further found that lung cancer cells with knockdown of DDR1 exhibited
significantly decreased bone tumor burden [193].

OPN, as a biomarker, is increased in patients with NSCLC and is associated with an
aggressive lung cancer phenotype [194]. OPN promotes lung cancer cell migration by driving
lung cancer cell epithelial-to-mesenchymal transition (EMT) [195], as well as lung cancer cell
interactions with integrins [196]. Integrins are transmembrane receptors that mediate cell-matrix
and cell-cell adhesion [10]. Roman et al. found that fibronectin interacts with integrin α1β5 through
receptor-mediated signaling, which is important for lung cancer metastasis to bone [197]. To test the
role of fibronectin and integrin α1β5 interaction on metastatic potential of lung cancer bone metastasis
in vivo, Roman and colleagues silenced the α5 subunit in lung carcinoma cells [197]. When α5-silenced
lung carcinoma cells were injected into C57BL/6 mice, there was a decrease in bone metastatic burden
compared to control wild-type or α2-silenced carcinoma cells [197]. Thus, these studies as a whole
demonstrate that bone turnover markers and matrix proteins are important predictors for progression
of bone metastatic lung cancer.

5. Current Therapies Targeting Bone Metastases

Bone is a common site of metastasis and patients with bone metastasis report the worst quality of
life of all sites of metastasis. This is due to debilitating skeletal related events associated with bone
metastases, including bone pain, fractures, and hypercalcemia. As previously described, in many cases
of bone metastasis, osteolytic lesions are common whereby osteoclasts are overstimulated to resorb bone
and osteoblasts fall short in building new bone, resulting in net bone loss [19,59,61]. To combat excess
bone degradation by osteoclasts, bisphosphonates, which are inorganic pyrophosphates, are commonly
used in the clinic [17,198]. Bisphosphonates bind to exposed bone mineral produced by resorbing
osteoclasts, resulting in high concentration of the drug in the resorptive pit [137]. The bisphosphonates
are then internalized by osteoclasts which cause disruption of the chemical process of bone resorption,
ultimately result in osteoclast apoptosis [199–201]. Bisphosphonates are well tolerated by patients,
with mild to moderate flu-like symptoms being the most common side effect [201]. Bisphosphonates
are used to help with the symptoms of bone metastases, such as osteolytic lesion formation, but they
are not curative [137].

Current Food and Drug Administration (FDA)-approved bisphosphonates used in the clinic for
bone metastases are categorized as either first, second, or third generation bisphosphonates [137,198].
First generation bisphosphonates include clodronate. Examples of second-generation bisphosphonates
are pamidronate and alendronate. And, examples of third generation bisphosphonates include
ibandronate and zoledronic acid [202,203].

First generation bisphosphonates are non-nitrogen containing, so disruption of osteoclasts occurs
via cellular metabolism, leading to osteoclast apoptosis [204]. The first generation bisphosphonate
clodronate was originally approved in Europe in 1992 for management of skeletal related events,
including osteolytic lesions, bone pain, and hypercalcemia associated with breast cancer or multiple
myeloma [202]. On the other hand, second and third generation bisphosphonates are different from
first generation bisphosphonates because they contain a nitrogen-containing side group [202]. Second
and third generation bisphosphonates are more potent than the first-generation bisphosphonates
because they impair intracellular osteoclast signaling by inhibiting farnesyl diphosphate synthase
(FPP) pathway [198,202,205,206]. The FPP pathway inhibits osteoclast activity and induces osteoclast
apoptosis [205,206]. The second generation bisphosphonate pamidronate, commonly known as Aredia,
was first approved for clinical use in the US in 1996 for the treatment of osteolytic metastasis in
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breast cancer [207]. The second-generation bisphosphonate alendronate, commonly called Fosamax, is
associated with reduced bone metastases in post-menopausal women. In a study of 297 osteoporotic
women carried out by Rouach and colleagues, women who were treated with alendronate exhibited
a reduced risk of developing bone metastatic breast cancer when compared to patients who were
not treated with alendronate [208]. Finally, third generation bisphosphonates differ from second
generation bisphosphonates by the location of the nitrogen group [209]. The nitrogen group is on a
different side chain, which allows for a more potent reaction of FPP, thereby leading to an increase
of osteoclast inhibition [209]. The third generation bisphosphonate zoledronic acid (ZA), commonly
known as Zometa or Reclast, was first approved in 2001 for the treatment of skeletal complications
related to bone metastases [202]. ZA has been shown to be more effective for the management of
skeletal related events and skeletal complications in breast and prostate cancer compared to other
bisphosphonates [210–212]. At the present, ZA is the most effective bisphosphonate clinically available
and is currently the standard of care used to treat patients with bone metastases [213].

In addition to bisphosphonates, other therapies, such as RANKL monoclonal antibodies, are
being used in the clinic to treat osteoclast resorption [202]. The first and only RANKL-monoclonal
antibody, denosumab, was approved in 2010 for the management of bone metastases and for the
prevention of bone pain, fractures, or hypercalcemia [202,204]. Denosumab functions by binding
to soluble and membrane-bound RANKL with high affinity [204,214]. This inhibits RANKL from
binding to the RANK receptor on osteoclasts, decreasing osteoclast formation and activity [204,214].
Denosumab is given as a subcutaneous injection, compared to bisphosphonates, which are given
intravenously [202,214]. Subcutaneous injections greatly increase the convenience and attainability of
administration and treatment of the drug [200,203].

There are currently no drugs available to directly stimulate the activity of osteoblasts and thus
promote bone formation, but romosozumab, a sclerostin inhibitor and commonly known as Evenity, is
used to increase bone formation [215,216]. Romosozumab works by inhibiting the actions of sclerostin,
an inhibitor of bone formation. Under normal circumstances, when sclerostin, a secreted glycoprotein,
binds to its receptor, low-density lipoprotein receptor-related protein 5/6 (LRP5/6) and co-receptor
Frizzled, on osteoblasts β-catenin phosphorylation is inhibited resulting in β-catenin degradation,
and ultimately inhibiting osteoblast bone formation [215,217]. Romosozumab blocks sclerostin from
binding to LRP5/6 and Frizzled, thus promoting bone formation [215,217]. Sclerostin also stimulates
RANKL secretion to induce osteoclastogenesis [218]. Sclerostin inhibitors, including romosozumab,
bind to sclerostin and inhibit it from binding to its receptors, resulting in continuous bone formation
and decreased osteoclastogenesis [217,219,220].

6. Models to Study the Bone and Bone Matrix

Biophysical properties of bone and the bone matrix are important determinants of cell
behavior [4,8]. The cell-matrix interactions in bone can effect cell migration, proliferation, survival,
and remodeling [8,221], however studying them can be difficult. One limitation to studying
bone and bone matrix remodeling is the ability to recapitulate a bone-mimetic microenvironment
in vitro [222–224]. Bone is a complex structure and without the use of animal models, recapitulating a
bone microenvironment in a laboratory setting can be challenging [222,224]. Therefore, the development
of unique model systems to determine interactions between cells and the bone matrix is essential.
One alternative to this quandary is to use 2D or 3D hydrogels (Figure 6) [222–224]. Most commonly
used for in vitro work are 2D hydrogels, which can be either natural or synthetic [222]. Both natural
and synthetic hydrogels have advantages and disadvantages. Natural hydrogels, such as collagen,
are obtained from organisms, such as rat tail tendon, and do not have to be significantly modified,
whereas synthetic hydrogels, such as polyacrylamide, are readily available from laboratory supply
companies, but need to be adjusted to fit a specific range of substrate mechanics [135,166,222]. A major
disadvantage to 2D hydrogels is the inability to accurately portray 3D structure of native tissues, and
subsequently the biophysical properties, such as elastic modulus and tissue stiffness [223].
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When choosing a hydrogel, it is important to determine how the cells will adhere to a natural or
synthetic hydrogel and how this may effect stability and biophysical properties [222]. A cell can behave
differently on different types of material, including natural or synthetic hydrogels, thus it is important
to determine the context of the environment. For example, a natural hydrogel should be picked for
cells that normally grow on a collagen matrix because collagen is a natural hydrogel [222]. Cells can be
seeded atop a hydrogel (2D) or be embedded in a hydrogel (3D) [222,224]. Use of a 2D versus a 3D
hydrogel, or a natural material versus a synthetic material, will depend upon the experimental design
and what output is most important. For example, the best 3D hydrogels to use if wanting to accurately
portray the structure of the bone matrix, would be a natural 3D hydrogel consisting of collagen because
this structure would accurately portray the composition, density, and mechanotransduction properties
of the tissue [223].

3D hydrogels best mimic native tissue, which can lead to more realistic cellular responses, such as
cell physiology and mechanotransduction [222–224]. Drawbacks to using 3D hydrogels are that cells
will have hindered spreading or mobility because of being surrounded by matrix [224], as well as the
inability to independently control pore size and stiffness [223]. To combat these limitations, Cassereau
et al. developed a 3D tension bioreactor that allows for constant mechanical tuning of a native collagen
I hydrogel stiffness, without any alterations to the structure, composition, or pore size of the gel [223].
The group wanted to determine the impact of ECM stiffness on tumor progression, independent of
structural changes to the ECM [223]. They found that increasing ECM rigidity, by increasing collagen
concentrations, was able to induce tumor cell invasion [223].

Lastly, scaffolds can also be used as an alternative approach to study the bone microenvironment.
Biomimetic scaffolds are 3D structures that are usually made with a synthetic polymer specific to
the type of environment best suited to the cell type in use. For example, Seib et al. used a highly
porous silk scaffold that was biocompatible to bone and had bone morphogenetic protein 2 (BMP2)
properties [225]. In this way, scaffolds were used to model the microenvironment as accurately as
possible without using an in vivo approach [225,226]. In addition, cells can also be seeded onto the
scaffold and growth in vitro, and then implanted into animals, such as mice [226].
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7. Concluding Remarks, Challenges, and Future Perspectives

The bone is a fertile soil for metastatic cancer cells, and the bone components, including the
bone matrix, are essential in facilitating cancer growth. The bone matrix has emerged as a central
player in primary and metastatic cancer, which allows the ECM to be an active participant through
different stages of disease progression. The dynamic nature of the matrix makes it a necessary target for
deregulation by cancer cells. It is becoming increasingly evident that bone matrix proteins, including
organic component collagen type I and decorin, are being remodeled and manipulated to govern
cancer growth in bone.

Now, researchers are starting to realize the importance of the bone during disease progression,
especially in the case of therapeutic intervention. It will be important to determine which components
of the bone ECM are most critical in facilitating disease progression and how these changes may affect
cancer growth. One challenge that researchers are currently facing is the lack of model systems to
study bone metastatic cancers. Understanding the mechanisms behind these events will lead to a
better understanding of what factors are altered during bone matrix remodeling in bone metastatic
cancer, and how these changes contribute to disease progression.
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