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An explanation of the principles and mechanisms involved in peaceful co-existence between animals
and the huge, diverse, and ever-changing microbiota that resides on their mucosal surfaces represents
a challenging puzzle that is fundamental in everyday survival. In addition to mechanical barriers and
a variety of innate defense factors, mucosal immunoglobulins (Igs) provide protection by two comple-
mentary mechanisms: specific antibody activity and innate, Ig glycan-mediated binding, both of which
ecretory IgA
ucosal immunity
lycans
acterial adherence

serve to contain the mucosal microbiota in its physiological niche. Thus, the interaction of bacterial lig-
ands with IgA glycans constitutes a discrete mechanism that is independent of antibody specificity and
operates primarily in the intestinal tract. This mucosal site is by far the most heavily colonized with an
enormously diverse bacterial population, as well as the most abundant production site for antibodies,
predominantly of the IgA isotype, in the entire immune system. In embodying both adaptive and innate
immune mechanisms within a single molecule, S-IgA maintains comprehensive protection of mucosal

f stru
surfaces with economy o

. Role of secretory IgA (S-IgA) in mucosal immunity

Large surface areas of mucosal membranes (∼200–400 m2) are
n constant contact with a highly diverse microbiota [1–6] esti-

ated to comprise ∼15,000–36,000 species and 1800 genera [7,8]
nd exceeding the total number of nucleated cells by an order
f magnitude [1,2,5,9] (1013 nucleated cells vs. ∼1014 bacterial
ells). More than 99.9% of all commensal bacteria are found in
he gastrointestinal tract, particularly in the large intestine [5,10].
hrough evolution, the selective pressure arising from environmen-
al antigens of microbial and food origin has resulted in a strategic,
unctionally advantageous distribution of cells involved in antigen
ptake and processing, and the initiation of immune responses

n mucosal tissues [9,11–13]. The mucosal immune system con-

ains this antigenic onslaught without compromising the integrity
f the mucosal barrier [11] or exhausting the immune system, in
art through the induction of mucosal (oral) tolerance [14,15]. In
ddition to mechanical barriers and humoral effectors of innate
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immunity [6,11,16], mucosal antibodies and mucosal T cells provide
antigen-specific protection [12,17].

The characteristic distribution of antibodies in blood and exter-
nal secretions, including the intestinal fluid, reflects the functional
adaptation of various Ig isotypes to different immune compart-
ments. Given that mucosal membranes are the most important site
of antigen encounter, it should not be surprising that most antibody
production takes place in mucosal tissues, particularly the intes-
tine, rather than in the bone marrow, spleen, and lymph nodes
[12,18–21], and that the daily synthesis of IgA far exceeds that of
IgG, IgM, IgD and IgE combined [19–22]. Importantly for mucosal
protection, more than two-thirds of total IgA production ends up in
the external secretions [19,21]. Quantitative studies of the origin of
mucosal antibodies, particularly in the intestinal tract, demonstrate
that >95% is of local origin and only trace amounts are derived from
the circulation [19,22,23].

The mucosal microbiota, epithelial cells, and the mucosal
immune system constitute a stable and interdependent “tripod”
that maintains mucosal homeostasis by complex mechanisms

[3,4,6,24–28]. For example, epithelial cells display surface recep-
tors that are selectively exploited by bacteria adhering to their
apical surfaces [1,2,28–30], and express the basolateral membrane
receptor (polymeric Ig receptor; pIgR) that transports locally pro-
duced polymeric (p) IgA into the external secretions [23]. Bacteria
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Table 1
Examples of glycans as adhesion sites and receptors for selected bacteria and viruses that colonize, or infect, mucosal surfaces (adapted from [1,26,29,60–78,132]).

Epithelial cell

Target tissue Glycan structure Form

Bacterium
Escherichiae with Type 1 fimbriae Intestine Man5GlcNAcGlcNAc Glycoprotein

Urinary tract
P Intestine Gal(�1,4)Gal Glycoprotein
S Intestine NeuAc(�2,3), Gal(�1,3), GalNAc-O-linked Glycoprotein

Helicobacter pylori Stomach NeuAc(�2-3)Gal Glycolipid

Pseudomonas aeruginosa Intestine Gal�3GlcAc Glycoprotein
Fuc Glycoprotein
Man Glycoprotein

Respiratory tract GalNAc�1-4Gal Glycoprotein

Shigella dysenteriae Intestine AsialoGM1 ganglioside Sialoconjugate

Neisseria gonorrhoeae Genital Gal(�1,4) GalNAc Glycoprotein

Bordetella pertussis Respiratory Gal(�1,4)Glc ceramide Ceramide

Haemophilus influenzae Respiratory tract GlcNAc�3Gal Glycoprotein

Streptococcus pneumoniae Respiratory tract NeuAc(�2-3)-Gal�GlcNAc Glycoprotein

Virus
Influenza A, B, C Mucosal tissues Neu5Ac, Neu5,9Ac2 Sialoconjugates
Paramyxoviruses Mucosal tissues Neu5Ac Sialoconjugates
Coronaviruses Mucosal tissues Neu5, 9Ac2 Sialoconjugates
Reo- and rota-viruses Intestinal tract Sialic acid Sialoconjugates
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Respiratory syncytial virus Respiratory
Mucosal tissues

HIV Epithelial cells

an: mannose, Fuc: fucose, Gal: galactose, GlcNAc: N-acetyl glucosamine, GalNAc:

ndogenous to the intestinal tract, oral cavity, and probably also
he respiratory and genital tracts, are coated in vivo with S-IgA
9,13,17,31–39] that limits their epithelial adherence and penetra-
ion, thereby confining them to the mucosal surfaces. Numerous

odels have demonstrated the role of antibodies, especially S-IgA,
n protecting the intestinal and other mucosal tracts. This has most
onvincingly been demonstrated in vivo in germ-free, colostrum-
eprived newborn piglets [40–42], which, unlike humans, mice,
ats, or rabbits, are born without transplacentally acquired Ig. In
he absence of maternal as well as endogenous antibodies, milk-
eprived piglets die of septicemia (usually E. coli) within 1–2
ays after birth, whereas milk-fed animals survive [40]. Further-
ore, piglets fed milk or serum, survive oral challenge with E.

oli, whereas control animals deprived of Ig, irrespective of its
ource, succumb to the infection. In mice in which pIgR is copiously
xpressed on hepatocytes (not the case in humans, pigs, or dogs)
nd pIgA from the circulation is selectively transported into the
ile and thence into the gut lumen [23,43], pathogen-specific pIgA
ybridoma antibodies derived from “backpack tumors” [44–47]
rotect mice against oral challenge with Salmonella enterica serovar
yphimurium, Vibrio cholerae, or rotavirus [44,45,47–49]. In con-
rast IgG hybridoma antibodies of the same specificity are not
rotective, due to the lack of receptor-mediated transport of IgG

nto the intestine.

.1. Mechanisms of S-IgA-mediated protection

Numerous such experiments clearly demonstrate protection in
ivo dependent on the presence of antigen-specific IgA antibodies
hat interfere with pathogen adherence to or penetration through
he mucosal barrier, or neutralize biologically active antigens such

s viruses or toxins [41,47,48,50–54]. Likewise many in vitro stud-
es of specific antibody-mediated inhibition of bacterial adherence
o epithelial cells corroborate these findings [30,55–57]. However,
gglutination and inhibition of the adherence of E. coli with Type
fimbriae to colonic epithelial cells that express a corresponding
Glycosamine glycans Glycoproteins

Galactosylceramide

tyl galactosamine, NeuAc: sialic acid.

receptor can be mediated by IgA independently of specific anti-
body [30,58,59]. S-IgA and IgA myeloma proteins of both subclasses
agglutinate E. coli, and mannose (Man) inhibits this agglutination.
Furthermore, adherence of E. coli to human epithelial colonic cells
can be inhibited by S-IgA as well as by IgA2 myeloma proteins.
Analysis of the carbohydrate composition and complete primary
structure of the oligosaccharide side-chains reveal that the most
active pIgA2 myeloma protein contain several Man-rich N-linked
glycan chains [30]. Thus, Man-dependent adherence of E. coli to
epithelial cell receptors mediated by Type 1 fimbriae is compet-
itively inhibited by similar glycans on S-IgA and IgA2 myeloma
proteins acting as decoy receptors. Consequently, we have proposed
that IgA proteins exhibit protective functions through antibody-
dependent specific immunity as well as glycan-dependent innate
immunity [30]. This concept was confirmed in vitro for other
microbial ligand-glycan receptors [1,26,29,60–78]. In addition to
E. coli, many other bacteria such as Helicobacter pylori, Streptococ-
cus pneumoniae, Clostridium difficile, Shigella flexneri, Pseudomonas
aeruginosa and Neisseria gonorrhoeae, and some viruses (Table 1)
interact with epithelial receptors via their glycan moiety.

Thus, it has become obvious that the N- and O-glycans of S-
IgA provide a link between innate glycan-mediated and adaptive
specific antibody-dependent protection (Fig. 1). This concept, of
paramount importance in IgA-mediated mucosal defense, prompts
additional considerations. First, it has been shown that bacte-
ria indigenous to the oral cavity and intestinal tract are coated
in vivo with IgA [9,17,31–39,79–81]. However, it is not known
whether this coating depends on specific antibody-antigen or
glycan-mediated interactions. Considering the enormous num-
bers of bacteria (∼1012/g of intestinal content) [10], their diversity
(∼15,000–36,000 species of 1800 genera) [7], and the large number

of potential antigenic determinants on many bacterial structures,
it is unlikely that such coating is based exclusively on specific
recognition by S-IgA antibodies. Secondly, in the large intestine
IgA2-producing cells are dominant in contrast to other mucosal
tissues [82,83], and antibodies to antigens (e.g., endotoxin) of Gram-
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ig. 1. Model of a human dimeric S-IgA molecule with assigned adaptive (specific-
ntibody) activity and innate (glycan-dependent) activity [88]. Asterisk—possible N-
lycosylation sites within the CDR3 segment of the VH region of � chains [97,98,128].

egative bacteria are associated predominantly with the S-IgA2
ubclass [84–86]. Thirdly, in addition to glycans on the H chain
f IgA [87–91], secretory component (SC), the extracellular seg-
ent of pIgR, is extremely rich in glycans comprising 7 N-linked

hains [88,92–94] that also act as highly effective inhibitors of
dherence for some bacterial species (e.g., Shigellae, S. pneumoniae
64,65,67–70]). Finally, prevention of the adherence of enormously
iverse and variable mucosal microbiota is likely to be at least
artially independent of specific antibody activity, reflecting the

mmediate need for protection against a broad spectrum of daily
ncountered microorganisms. Thus, in concert with the postu-
ated Fab-mediated “polyreactivity” of S-IgA antibodies [95–100],
lycan-mediated interactions are likely to further enforce protec-
ive functions of S-IgA.

Skeptics of these concepts may argue that mucosal defenses
n IgA-deficient individuals should be significantly compromised.
ndeed, the majority of such patients display a higher incidence of
espiratory and intestinal infections [101–103]. Currently, IgA defi-
iency is defined as <50 mg IgA/100 ml of serum, regardless of S-IgA
hich is not taken into account although it is usually also dimin-

shed. Because complete absence of IgA in sera or secretions of IgA-
eficient patients is extremely rare, it is possible that even low lev-
ls of S-IgA may provide some level of protection. Furthermore, in
ost IgA-deficient individuals S-IgA is replaced by S-IgM [102–110].

hus, in IgA-deficient individuals, 65–75% of total Ig-containing
ells in the intestines produce IgM, in sharp contrast to normal indi-
iduals (in the large intestine, ∼90% of cells produce IgA, ∼6% IgM,
nd ∼4% IgG) [18,109]. Most importantly in this context, IgM and IgA
isplay many common structural features, including: ability to form
olymers; presence of J chain [111,112]; ability to bind pIgR (thereby
orming SC-containing secretory IgM) [23,65,106,113]; homologies
etween primary structures of C�3, C�4 and C�2, C�3 domains
nd the C-terminal “tail-piece” [111,114,115]; and VH gene segment
epresentation [116,117], indicating their close evolutionary and
unctional similarity [114]. This structural homology also extends
o the glycan moieties: IgM and IgA molecules display a similar
umber and domain location of N-linked glycan side-chains, and
oth contain Man-rich chains [114,118–122]. Therefore, despite dif-
erences in the number of Ag-binding sites (up to 10 for IgM, and
–8 for IgA dimers and tetramers), and ability to activate comple-
ent, it is clear that IgA and IgM are structurally, functionally, and

volutionarily closely related isotypes.

. IgA-associated glycans display remarkable heterogeneity
Structural studies of human polyclonal S-IgA and mono-
lonal (myeloma) IgA1 and IgA2 proteins reveal considerable
eterogeneity with respect to number, sites of attachment,
ogy Letters 124 (2009) 57–62 59

composition, and primary structure of their glycan side-chains
[30,71–77,87–94,115,122–127], which is likely to be of enormous
biological importance. Because different microorganisms interact
with epithelial cells through diverse glycan receptors, heterogene-
ity of IgA-associated glycans affords a variety of structures that can
effectively inhibit these interactions.

Glycan moieties in S-IgA molecules are associated with H chains,
J chain, and SC [88,90–94,124], but Man-rich N-linked glycans
that inhibit the binding of Type 1 fimbriae to epithelial recep-
tors occur only on the H chains [30,122]. However, other bacteria
may interact with N- or O-linked glycans on H chains or SC
(Table 1, section B). Although the majority of N-linked glycans
are found in the Fc region of the � chains [88–89,114,115,124],
there is great heterogeneity in the number and composition of
individual glycan chains [30,122] and additional N-linked glycan
chains may also be present in the Fd fragment (N-terminal half
of the � chain comprising VH and CH1 domains), within the
third complementarity-determining region (CDR3) [97,98,128]. The
authors of these novel and functionally important studies propose
that a high rate of somatic mutation in the CDR3 taking place
within intestinal IgA-producing cells [97,98,116,117,128,129] gener-
ates a glycosylation-signaling sequence that alters the specificity of
intestinal IgA antibodies. Thus, antigen-binding by Fab segments of
S-IgA is determined by both specific antibody activity and glycan-
dependent interactions.

The heterogeneity of N- and O-linked side-chains, with respect
to their number, composition, and types of glycosidic bonds is fur-
ther extended because many of them are incomplete, truncated
forms [30,78,88,122]. Most importantly, and in sharp contrast to
the combinatorial possibilities of amino acids, glycans can gener-
ate a remarkably higher number of structures, due to the variety of
glycosidic bonds. Thus, a sequence of 6 (out of 20) amino acids can
theoretically generate 6.4 × 107 distinct hexapeptides, while there
are potentially 1.44 × 1015 different hexasaccharides [130].

Specific antibody diversity is generated in an antigen-
independent fashion during the differentiation of B lymphocytes
by a number of mechanisms including recombination of multiple
VJ (for L chains) and VDJ (for H chains) gene segments, com-
binatorial diversity of L and H chains, somatic hypermutation,
gene conversion, and others [131]. The result of these genetic
events is the generation of B lymphocytes with surface mem-
brane Ig molecules that accommodate an enormous number of
potential antigens, leading, after antigen-specific recognition, to
B cell proliferation, differentiation, and the ultimate secretion of
large amounts of antigen-specific antibodies. It is conceivable that
analogous mechanisms operate in the generation of innate, glycan-
mediated mechanisms of protection. Through random generation
of enormously diverse glycan structures on mucosal glycoproteins,
including S-IgA, S-IgM, SC, mucin, and lactoferrin, glycan config-
urations are generated that complement the equal heterogeneity
of microbial adhesins. The protective effectiveness of these mecha-
nisms may be further enhanced by subsequent somatic mutations
within V regions of H and L chains, including the generation of gly-
cosylation signals that lead to alterations of antibody specificities.

Parallel structural and functional exploration of the principles
of adaptive (specific antibody) and innate (glycan) S-IgA-mediated
immunity is likely to generate novel approaches to the design of
broadly protective compounds that work by selectively interfering
with the adherence and penetration of pathogens, or that contain
the commensal microbiota residing at mucosal surfaces.
This work was supported in part by grants, 5 U19AI028147, the
Czech Republic (VZMSM0021620812), DE06746, AI074791, and the
John R. Oishei Foundation.
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