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Abstract
Primordial germ cells are the progenitor cells that give rise to the gametes. In
some animals, the germline is induced by zygotic transcription factors, whereas
in others, primordial germ cell specification occurs via inheritance of maternally
provided gene products known as germ plasm. Once specified, the primordial
germ cells of some animals must acquire motility and migrate to the gonad in
order to survive. In all animals examined, perinuclear structures called germ
granules form within germ cells. This review focuses on some of the recent
studies, conducted by several groups using diverse systems, from
invertebrates to vertebrates, which have provided mechanistic insight into the
molecular regulation of germ cell specification and migration.
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Introduction
In 1892, August Weismann challenged the notion that the germline 
(reproductive cells) was derived from the soma (cells of the body). 
Instead, Weismann proposed that the germ cells possessed a special 
immortal substance called “ancestral germ plasm” that was inher-
ited from germ cells of one generation to the next in his “theory of 
the continuity of the germ plasm”1,2. Germ plasm is a maternally 
supplied substance comprised of RNAs, proteins, and organelles 
that are amassed in oocytes and later is sequestered during the 
first embryonic cleavages within a few cells that will become the 
primordial germ cells (PGCs). In the next century, the identification 
of conserved germline-specific markers and the germ cell accumu-
lation of alkaline phosphatase made it possible to trace the origins 
of the germline from its earliest emergence through PGC migra-
tion to the presumptive gonad where they differentiate as male or 
female gametes. Such lineage tracing revealed that indeed some 
animals establish their germline by inheritance of maternal fac-
tors and post-transcriptional regulation in the context of a silenced 
genome but that others do not. In the latter case, these animals lack 
detectable maternal germ plasm and induce their germ cells by 
zygotic transcription factors. Genetic and overexpression screens to 
identify germ cell inducers have uncovered only a few factors with 
the capacity to generate ectopic PGCs. Oskar3 and bucky ball4 are 
“drivers” of germline fate among animals that use a maternal inher-
itance mode of PGC specification, but these genes are specific to 
different subsets of species5–7, and it remains to be determined 
whether their mechanisms of action and specific activities are 
conserved (Figure 1). In humans, which use an inductive mode 
of specification, sox17 is sufficient to specify human primordial 

germ cell-like cells (hPGCLCs)8, but in mouse no germ cell 
inducer has been identified. This suggests that only a few genes 
possess germ cell-inducing activity or that the coordinated action 
of multiple genes is required to establish the germline or both. 
Consistent with this notion, many factors involved in germ 
cell development are involved in RNA regulation, including 
Vasa, a universal marker of and regulator of germ cell develop-
ment9–26. Recently, investigators proposed a “last cell standing 
model”, whereby early PGC determination, as occurs in mater-
nal germ plasm inducers, is not an innovation to protect germ-
line traits. Instead, they proposed that germ plasm provides a 
means to specify the germline lineage earlier, before gastrula-
tion, and thereby liberate the somatic cells of the embryo to more 
rapidly evolve27. According to this model, innovation in animals 
that do not specify the germline early—prior to or in early gas-
trulation either by maternal germ plasm or inductive modes—but 
instead specify PGCs late in gastrulation by zygotic inductive 
modes are constrained by signaling and morphogenesis require-
ments associated with germ layer specification and gastrulation27. 
Significantly, many of the same or related genes regulate PGC 
development independently of specification mode. This review 
focuses on the earliest events of PGC specification in the zygote, 
the mechanisms that induce early PGC-like cells in culture.

Perinuclear accumulations in germ cells
Weismann recognized the germ plasm as a peculiar and compli-
cated structure, but at that time the molecular components were 
not known. Since then, germ cell-specific accumulations have 
been detected in germ cells at all stages of the germline cycle. 

Figure 1. Comparison of two maternal germ plasm assemblers: oskar and bucky ball. The left column lists activities, localization, or other 
properties. Those attributed to Drosophila oskar or zebrafish bucky ball or both are indicated in the relevant columns. PGC, primordial germ 
cell.
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Further adding to the complexity, germ cell substances that have 
been identified throughout the germline cycle have been referred to 
by a variety of terms—nuage, germ plasm, and germ granules, or 
P-granules—at different developmental stages and in different 
animals. In recent years, molecular identification of the compo-
nents of these germ cell substances has revealed that the molecular 
components overlap somewhat and thus nuage, germ plasm, and 
germ granules have at times been treated as largely equivalent. This 
assumption has made it challenging to decipher the functions of 
these germ cell manifestations, particularly when attempting to 
compare studies of these germ cell substances conducted at differ-
ent developmental stages and in different organisms. To facilitate 
comparisons of functional studies between species, definitions of 
nuage, germ plasm, and germ granules in the context of this review 
are provided below.

Nuage is the perinuclear granulo-fibrillar electron-dense material 
that has been identified through histological and ultrastructural 
examination of oocytes from invertebrates through vertebrates and 
that is present in various conformations in cells of the male and 
female gametes28. Although nuage occupies a distinct subcellular 
space, it is generally not asymmetric in its distribution. In some 
animals, a subset of nuage components become asymetrically 
localized to a specific subcellular location in oocytes where the 
germ plasm that is transmitted from oocytes to the embryo forms 
(Figure 1). This substance is present prior to zygotic genome activa-
tion and contains germ cell-inducing activity (Figure 1). After germ 
cell specification and zygotic genome activation, germline-specific 
aggregates of proteins and RNA-binding proteins called germ gran-
ules form next to the nucleus (Figure 1). The functions of each of 
these germ cell-specific substances and their distinguishing features 
are active areas of study.

As an initial step toward defining nuage function, the identity 
of nuage molecules has been sought. The products of conserved 
germline-specific genes that are necessary for germ cell develop-
ment, such as Vasa protein, are enriched in perinuclear regions where 
nuage is found16,18,29,30. Nuage has been postulated to be involved in 
the maternal germ plasm pathway; however, nuage is present even 
in animals that do not use inheritance of maternal germ plasm to 
specify their germline, indicating that nuage components may have 
other functions. It is also possible that nuage in animals that use 
inductive modes also contains germ plasm precursor materials, but 
that a nucleator or assembly/scaffold factor that can assemble nuage 
components into active germ plasm is lacking. Notably, evidence 
suggests that specification by zygotic induction is the ancestral 
mode of germline determination in insects and vertebrates6,7,29,31. 
Maternal specification by germ plasm in some insects has been 
associated with the presence of the germ plasm inducer oskar, 
discussed in the following section. Oskar is thought to have been 
co-opted from an ancestral neural role and to have facilitated the 
transition from zygotic germ cell induction to maternal specification 
via germ plasm6,7. Based on the conserved presence and perinuclear 
localization of nuage and the nature of the molecules that localize 
there, nuage functions in processes other than maternal germ plasm 
assembly have been proposed.

Among molecules that are enriched in nuage are proteins involved 
in genesis of piwi-interacting RNAs (piRNAs). piRNAs are 

components of a gonad-specific RNA silencing pathway that is 
thought to protect genome integrity by counteracting transposable 
or selfish genetic elements that promote their own transmission at 
the expense of other elements (reviewed in 32,33). piRNAs are small 
RNAs that are produced from the cleavage of precursor RNAs by 
endonuclease activity of germline-specific members of the Argonaut 
family, called Piwi proteins, and secondary amplification34,35. 
Argonaut family members, including Piwi and Aubergine in flies, and 
human Argonaut homologs have been implicated in transcriptional 
and post-transcriptional regulation of gene expression36. Like Vasa 
protein, Piwi protein homologs reside adjacent to the nucleus within 
the nuage in some species (reviewed in 37). Based on the conserved 
localization of piRNA pathway components as well as genetic and 
other functional data, a conserved nuage role as the site of piRNA 
amplification has been proposed38–56. While this may indeed be the 
case, not all piRNA components localize to the nuage (reviewed 
in 37). Moreover, the phenotypes of some piRNA pathway compo-
nents suggest additional functions in diverse processes, including 
nuclear functions in chromosome rearrangements, chromosome 
dynamics, roles in RNA metabolism and storage, stem cell mainte-
nance, regulation of cell divisions at stages before germ plasm 
would assemble in oocytes, or later roles in PGC maintenance; 
these roles have generated models whereby nuage and later germ 
granules serve to extend the nuclear environment and have been 
reviewed elsewhere57. Owing to its dynamic nature, its varied 
composition at different stages, phenotypic differences between 
genders and species, and multiple stage-specific activities indicated 
by nuage component mutants, including piRNA pathway molecules, 
the developmental functions of nuage are not fully understood.

Germ plasm assemblers
In primary oocytes of some animals, maternal germ plasm first 
assembles within an ancient perinuclear oocyte structure known 
as the Balbiani body28,58,59 and later is found at the oocyte cortex, 
the posterior pole in some insects or the vegetal pole of some 
vertebrates28,58,59 (Figure 1). Expression-based screens have identi-
fied germ plasm components and candidate regulators on the basis 
of their localization to sites of germ plasm assembly in oocytes, 
such as the Balbiani body of early oocytes or the cortex of late-
stage oocytes (reviewed in 15,59,60). However, localization to the 
germ plasm is only suggestive of potential function as not all mol-
ecules that localize to germ plasm are essential for its assembly or 
activity16–64. Functional assays to define the component(s) of germ 
plasm that can impart germ cell identity, the germ plasm nuclea-
tors or assemblers, have included isolation and transplantation of 
cytoplasm from oocytes to embryos to identify the substance with 
PGC-inducing activity in model systems such as Drosophila65, 
zebrafish66, and Xenopus67. To date, only a limited number of factors 
that can induce germ cells have been identified, and how the germ 
plasm assembles remains a key question in the field.

The molecular constituents of the germ plasm are best understood 
in Drosophila because of the powerful genetic screens which led 
to the identification of key factors of germline assembly and germ 
cell development68–70, including the germ plasm assembler, oskar71. 
Alternative translation generates two forms of Oskar with distinct 
activities72. The short form of Oskar is required for germ plasm 
assembly and function, whereas long Oskar lacks the assembly 
activity and instead is required to anchor germ plasm72–74. Until 
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recently, Oskar (Osk) was viewed as a scaffolding protein that gath-
ered germ plasm via interactions with a myriad of partners25,74–94. 
The regions of Oskar mediating its association with partners such 
as Vasa defined Oskar functional domains73. The recently elucidated 
Oskar crystal structure revealed that both Oskar dimerization and 
interaction with Vasa are mediated via the Osk N-terminal LOTUS 
domain, named after Limkain, Oskar and Tudor domain-containing 
proteins 5 and 783. LOTUS is a globular domain present in several 
germ plasm/granule components95, including the conserved Tudor 
family, first discovered for Tudor’s function in germ plasm assem-
bly in Drosophila68. This finding is in contrast to previous work 
that mapped the Vasa interaction to Oskar’s C-terminus73. In the 
new study, Vasa-Oskar interactions were tested without RNAs to 
exclude RNA-mediated association and this may explain the dif-
ferent binding sites. These findings further support interaction 
between Vasa and Oskar and raise new questions and models to 
explain how these different Oskar complexes promote germ plasm 
formation and activity.

Another exciting aspect of the recent study is the evidence that short, 
but not long, Oskar associates directly with RNA. Surprisingly, this 
binding interaction is not via a canonical RNA-binding motif, but 
instead through a domain that resembles an enzymatically inactive 
SGNH hydrolase domain83. SGNH hydrolases are a large enzyme 
family with thousands of members that are found in all life forms. 
An interesting property among some bacterial SGNH domain- 
containing proteins that may be of relevance to germ plasm 
assembly is their propensity to oligomerize to form amorphous 
aggregates or amyloid-like fibrils96,97. In addition, proteins encoded 
by some LINE (long interspersed nuclear elements) mobile 
genetic elements contain SGNH-like domains and mediate RNP 
assembly98,99. For example, the zebrafish LINE protein ZfL2-1 
ORF1p forms multimers, binds nucleotides, and like Oskar pos-
sesses an SGNH-like domain that lacks overt RNA-binding domain 
structure98. In addition, ORF1ps, including ZfL2-1, have been 
shown to function as chaperones. In this context, ORF1ps inter-
act with the LINE RNA and are postulated to mediate rearrange-
ment of the RNA into a stable conformation that protects the RNA 
from degradation, but later can be reversed to facilitate reverse 
transcription98. Based on in vitro structure function studies, ZfL2-1 is 
postulated to mediate RNP assembly via interactions with positively 
charged peptides that bind RNA structural elements99. It remains to 
be determined whether Oskar has similar chaperone functions, but 
it is easy to imagine how such an activity could apply to germ plasm 
RNAs, which must be translationally silent and protected from 
degradation during transport but later are translated in a specific96 
subcellular location. The unique functional domains and distinct 
interaction properties of Oskar isoforms discussed above provide 
new models to test the mechanism by which Oskar could promote 
RNP and germ plasm assembly either directly via its RNA-binding 
domain or directly or indirectly via its disordered LOTUS and inter-
action with Vasa.

Vertebrates, even those that use maternal inheritance to specify 
their germline, lack oskar and instead have a vertebrate-specific 
gene called bucky ball (buc) or vegetally localized 1 (velo1)4,100. Buc 
shares features with Oskar in that both are localized in oocytes as 
RNAs and proteins4,81,101–103, both are required for and can organ-
ize germ plasm3,4, both have been viewed as unstructured proteins, 

both display complex post-transcriptional regulation at the level 
of splicing81,104 and RNA localization72,81,105, and both have proper-
ties of self-assembling aggregates and interact with RNA-binding 
proteins and other factors at the RNA and protein levels73,75–90,92,94. 
Whether or not Buc protein, like Osk, can directly bind RNAs is 
unknown. Based on homology searches, Buc lacks identifiable 
functional domains and thus the mechanisms by which it promotes 
Balbiani body formation, germ plasm assembly, and oocyte axis 
specification are not clear and have relied on identifying Buc inter-
action partners and mapping their interaction sites on Buc78,81,106. 
However, Bucky ball and Oskar germ plasm factors also have 
some differences (Figure 1). Specifically, Buc protein is present 
in early-stage oocytes81,101, whereas Osk protein is detected in late-
stage oocytes72, and the few reported Buc interaction partners are 
vertebrate-specific78. Finally, osk RNA has functions independent 
of its protein-coding role84,107, whereas no evidence of protein- 
independent RNA functions of buc have been reported. These dif-
ferences support convergent evolution or co-option of these genes 
as germ plasm assemblers; however, further analysis, including 
cross-species comparisons and rescue experiments, are required to 
determine the extent to which the activities of these germ plasm 
assemblers overlap.

Much less is understood about the molecular regulators of maternal 
germ plasm specification in vertebrates; however, recently, endog-
enous Buc protein was shown to localize to the cleavage furrows 
of early embryos101,106 by a maternal Kinesin 1 (Mkif5Ba)-depend-
ent mechanism106. Moreover, the ability of Buc to induce ectopic 
PGCs requires Mkif5Ba and Buc protein localization to the cleav-
age furrows106. Similarly, formation of germ plasm aggregates in 
Xenopus requires the Kinesin-like protein Xklp2108, indicating 
a conserved role for microtubule motor-dependent assembly of 
germ plasm in these vertebrates. Because germ plasm is present in 
zebrafish Mkif5Ba mutant embryos but germ cells are absent, this 
mutant provides evidence that inheritance of maternal germ plasm 
from oocytes alone is not sufficient to specify PGCs. Moreover, 
germline establishment requires proper spatiotemporal localization 
of PGC determinants.

Germ plasm, germ granules, and germline identity
The capacity of germ plasm to specify PGC fate has clear support 
from studies in Drosophila65, zebrafish66, and Xenopus67, in which 
transplantation of the germ plasm can induce PGCs. In contrast, 
when germ granules are not properly segregated in Caenorhabditis 
elegans mutants, excess PGCs do not form nor do all cells adopt 
germline fates; instead, the cells take somatic fates109. This exam-
ple suggests that germ granules are not sufficient for PGC fate. 
These differences in germ cell induction capacity between granules 
and plasm raise the question of whether germ plasm and granules 
are based on their shared enrichment of RNA-binding proteins 
(RNAbps), RNAs, and other overlapping component4,73,78,101,106,110 
manifestations of the same mechanism/structure operating at dif-
ferent stages or instead are distinct entities with unique properties. 
Alternatively, not all granules are equivalent. The maternal germ 
plasm associated with the maternal inheritance specification mode 
is continuous from oocyte to embryo, whereas perinuclear germ 
granules assemble only in PGCs, even in zygotically induced/ 
discontinuous modes of germline specification. Thus, maybe these 
germline entities are not functionally equivalent. If this is the case, 
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germ plasm from oocytes should contain germ cell-inducing factors, 
which germ granules of PGCs lack. Consistent with this notion, 
the perinuclear nuage in Drosophila oocytes is distinct from the 
polar granules nucleated by Oskar111 during specification of pole 
cells/PGCs65. Moreover, recent studies in Drosophila, C. elegans, 
and zebrafish provide evidence that germ granules are heterogene-
ous. In Drosophila, single RNA fluorescent in situ hybridization 
(FISH) analyses of granules revealed their organized architecture 
of “core” germ plasm proteins (e.g., Vasa and Oskar) distributed 
throughout granules and specific RNAs spatially arranged within 
granules112. Significantly, although Oskar protein is present in gran-
ules, oskar RNA is not112,113 (Figure 2). When chimeric osk with a 
nanos 3’ untranslated region (UTR) is directed to granules, germ 
cell numbers and Vasa expression are reduced113, indicating that osk 
segregation from granules is needed for normal PGC development. 

Taken together, these findings are consistent with plasm and gran-
ules being distinct entities in Drosophila. Similarly, endogenous 
Buc protein localizes to germ plasm of oocytes and early embryos 
but is not detected in germ granules of PGCs106. Moreover, buc RNA 
is a component of germ plasm of oocytes but not embryos, and 
even when overexpressed, Buc protein, but not buc RNA, localizes 
to germ granules of zebrafish PGCs4,101,106 (Figure 2). In addition, 
in zebrafish, vasa RNA but not Vasa protein is a component of the 
Balbiani body, where germ plasm localizes in oocytes18. In con-
trast, Vasa protein is a PGC granule component in zebrafish11,18,114 
and other animals examined (reviewed in 15,115,116). In zebrafish, 
as in Drosophila, analysis of MS2-tagged and endogenous vasa 
and nanos RNAs indicates that granules are not equivalent117,118; 
therefore, it is likely that some but not all have the capacity to induce 
the germ cell fate or that these granules have another function.

Figure 2. Comparison of maternal germ plasm and zygotic germ granule components between two organisms, Drosophila and 
zebrafish, that use maternal inheritance to specify their primordial germ cells (PGCs). The first column depicts the localization of germ 
plasm components (listed beneath the cartoon) at the posterior pole of mid-stage oocytes of Drosophila (top) and in the Balbiani body of 
early-stage oocytes of zebrafish. After fertilization, maternal germ plasm components (listed beneath the schematic) localize to specific 
membranes within the syncitial blastoderm of Drosophila and meroblastic cleavage (cells are incompletely separated and connected to 
the yolk) stage zebrafish embryos. The cells that receive these membranes develop as the PGCs. White rectangles depict maternal germ 
plasm components. The last column (grey rectangle) depicts PGCs of Drosophila and zebrafish after their migration to the gonad and 
indicates components of embryonic PGCs and germ granules. Dazap2, deleted in azoospermia-associated protein 2; Dazl, deleted in 
azoospermia-like; Elav, HuC; gcl, germ cell-less; Rbpms2, ribonuclear-binding protein with multiple splice isoforms 2.

Page 6 of 14

F1000Research 2015, 4(F1000 Faculty Rev):1462 Last updated: 15 FEB 2016



In addition to their varied composition discussed above, other evi-
dence indicates that germ plasm and germ granules may not be 
functionally equivalent. For example, the germ plasm and germ 
granules occupy distinct subcellar locations. In zebrafish and 
Xenopus, germ plasm associates with the endoplasmic reticulum 
in oocytes28. In zebrafish embryos, germ plasm first accumulates at 
furrows of cleavage-stage embryos by a mechanism that involves 
RNA recruitment and clearance106,119, whereas germ granules are 
perinuclear and form after genome activation120. In addition, the 
period when cells are competent to develop as PGCs, regardless 
of specification mode, precedes granule assembly and is develop-
mentally restricted and brief, indicating that germ cell-inducing 
activity is tightly regulated. In Drosophila, rescue of osk mutants 
and the number of excess PGCs in overexpression contexts depend 
on Osk levels3,71. In zebrafish, expression of exogenous Buc after 
fertilization produces only a few additional PGCs, indicating 
that levels or timing may be limiting4,106. Similarly, in mice, high 
levels of the zinc finger transcriptional protein Blimp/Prdm1 are 
required to drive the epigenetic and cellular features of germ cells 
in vivo121, and BLIMP1 specifies hPGCLCs in a similar dosage-
dependent manner122. These observations suggest that a limiting 
threshold or additional non-mutually exclusive factors (molecu-
lar, spatial, or temporal), or both, are essential for PGC identity. 
Accordingly, splitting determinants among sister cells, as occurs 
in C. elegans maternal-effect sterile (mes-1) mutants109,123, would 
produce two cells lacking sufficient factors for germline fate. 
Notably, granules are also heterogeneous and dynamic structures in 
C. elegans124,125. Finally, other evidence from C. elegans shows that 
specific germ granule factors, including PGL-1 and PGL-3, induce 
aggregate/granule formation in non-germline cells without convert-
ing those cells to PGCs, further indicating that granules alone are 
not sufficient for germ cell identity/specification126,127.

Germ granules are enriched for RNA-binding proteins and pro-
teins with other roles in post-transcriptional regulation; therefore, 
if germ granules do impart germline identity, it is possible that 
post-transcriptional regulation of other factors that may or may not 
be granule components is involved. If so, granules could impart 
germline fate only to cells that already express that factor; for 
example, Osk recruits components that regulate localization and 
translation of two germ granule components nanos and pgc, which 
promote patterning and pole cell development in flies110,112,128–130, 
and Buc must be localized to induce PGCs in zebrafish106. Con-
sistent with an essential role for granules in germ cells, depletion 
of one or more germ granule components in C. elegans causes 
sterility131–133. Recently, maternal dazap2 was shown to maintain 
germ granules of zebrafish PGCs by acting epistatic to Tudor-7 
and antagonistic to Dynein activity78. Because PGCs are specified, 
and granules form but later are not maintained in PGCs lacking 
maternal Dazap2, Mdazap2 mutant germ cells provide an opportu-
nity to explore potential roles of granules in maintenance of verte-
brate PGCs. The historical view of nuage, germ plasm, and germ 
granules was that each of these entities would promote the germ cell 
fate beginning with their specification to maintenance of germline 
identity. Efforts to gain a deeper understanding of the components 
of germ granules and functional assessment of these conserved ele-
ments of PGCs have provided strong evidence for mechanisms to 
preserve or protect germline identity; therefore, it is worth consid-
ering the possibility that the germ granules of specified embryonic 

PGCs contribute to a mechanism that preserves germline identity 
rather than specification of PGC fate. Understanding the contribu-
tion of granules to germ cell development and fertility remains an 
active area of investigation.

Germline specification in mammals
In mammals, the germ cells are not specified by inheritance of 
maternal cytoplasm (germ plasm), but instead are specified later 
by inductive signals. In the mouse embryo just before gastrulation, 
signals from extra-embryonic ectoderm and visceral endoderm are 
necessary to specify germ cells within the posterior epiblast that 
is adjacent to the forming primitive streak (Figure 3). Unlike in 
flies and fish, in mice, no single factor that is necessary and suf-
ficient to specify germ cells has been discovered. The earliest mark-
ers of mouse PGCs, including Blimp1 (Prdm1) and Prdm14, two 
critical factors that suppress somatic gene expression (thus pro-
moting germ cell-specific gene programs)133–137 and developmental 
pluripotency-associated 3 (DPP3/Stella), are required to maintain 
rather than specify the PGCs138. Strikingly, nearly all cells of the 
mouse pregastrula epiblast can express Prdm1 or Prdm14 when 
induced by ubiquitous expression of the bone morphogenetic protein 
ligands Bmp4139 and Bmp8b140. Importantly, induced cells in culture 
can reconstitute functional sperm to germ cell-depleted neonates141. 
However, in vivo, only a few cells within the posterior epiblast that 
are positioned proximal to the extra-embryonic ectoderm become 
PGCs142. A Wnt3 signal from the epiblast primes these cells to 
respond to BMP produced by the extra-embryonic ectoderm141. The 
mechanisms that limit germ cell induction in anterior regions are 
not fully understood. However, PGC formation involves anterior 
endoderm factors and additional BMP family members that repress 
Blimp1 and thus promote acquisition of pluripotency and PGC 
development specifically in the posterior epiblast141. Other factors, 
such as microRNAs and their antagonists, contribute to PGC devel-
opment (for example, by regulating Prdm1 expression)143. However, 
the functions of these molecules are not confined to PGCs and so 
they do not represent germline determinants. Significant unresolved 
questions are how and what factors limit selection of just a few cells 
within this region to become PGCs. Moreover, the identity of the 
factor or factors that specify them remains unknown.

PGCs in humans, as in mice, are specified in extragonadal regions 
around the time of gastrulation onset. However, there are impor-
tant differences in the timing and development of extra-embryonic 
tissues and likely PGC specification between human and mouse. 
During the second week of development, the human embryo is 
composed of epiblast and primitive endoderm, which gives rise to 
the yolk sac (Figure 3). Owing to technical and ethical bounda-
ries, lineage tracing to capture the first emergence of human PGCs 
prior to gastrulation has not been feasible. Nonetheless, human 
PGCs were identified in extragonadal regions more than 100 years 
ago and have been detected in human embryos in the Carnegie 
collection as early as stage 6 (around 2-week-old embryos) in 
the yolk sac endoderm in the vicinity of the developing allan-
tois, an amniote structure involved in nutrition and waste removal 
(Figure 3)144. Functional studies of the earliest stages of PGC 
specification in humans would require manipulation and analysis 
of embryos within the first month following fertilization and this 
is not feasible. As an alternative to in vivo mammalian contexts, 
more tractable in vitro systems to study specification of mouse and 
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Figure 3. Primordial germ cell (PGC) induction in mammals. (A) The early stages of PGC emergence in mouse and humans. In mouse, cues 
from extra-embryonic ectoderm, including bone morphogentic proteins (BMPs), induce transcriptional regulators that promote PGC identity 
in the cells of the adjacent posterior epiblast. In humans, PGCs are first detected around the onset of gastrulation within the endodermal 
yolk sac wall. The signals that induce human PGCs in vivo are not known. (B, C) The molecular players involved in PGC specification from 
stem cells in culture. (B) For mouse cells, the program to induce primordial germ cell-like cells (PGCLCs) from embryonic stem cells (ESCs) 
in culture requires transforming growth factor-beta (TGF-β) family members (Activin) and basic fibroblast growth factors (bFGFs) to promote 
an epiblast-like cell (EpiLC) state. Exposure of the EpiLCs to BMPs (BMP4) and stem cell factor (SCF) and leukemia inhibitory factor (LIF) 
converts the EpiLCs to cells with mouse PGC-specific gene expression profiles. (C) For human cells, the program to induce PGCLCs from 
human-induced pluripotency cells (iPSCs) in culture like mouse requires TGF-β family members (Activin) and CHIRON to inhibit glycogen 
synthase kinase 3, an inhibitor of Wnt activity. This combination of factors promotes an induced mesoderm-like cell (iMLC) fate, which upon 
exposure to BMP4, LIF, SCF, plus epidermal growth factor (EGF) generates cells with human PGC-specific gene expression profiles. Notably, 
the transcription factor Sox2 is required in mouse cells, whereas Sox17 is necessary for human cells. In addition, PRDM14 is highly expressed 
in mouse PGCs and has been reported to be low or not expressed in human PGCs. AVE, anterior visceral endoderm; ExM, extra-embryonic 
mesoderm; ICM, inner cell mass; VE, visceral endoderm.
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human PGCs have been sought. In mice, key advances in PGC 
reprogramming paradigms have been facilitated by the develop-
ment of germline reporters to identify and select for the lineage, 
including a mouse Vasa homolog (MVH) transgenic embryonic 
stem (ES) cell line, wherein the MVH promoter drives GFP reporter 
expression145 and a germ cell-specific gcOct4-GFP146. These tools 
enabled identification of germ cell-like cells in culture within just a 
few days. With markers in hand and using the germline-promoting 
factors defined from developmental studies, it was not long before 
mouse sperm147 and egg146 cells were derived from long-term ES 
cells. As germline stem cells (GSCs), PGCs are expected to gener-
ate cells that ultimately develop as functional gametes, sperm, or 
eggs that can produce a normal healthy fertile animal. The first ani-
mals generated from PGC-like cells (PGCLCs) were abnormal148, 
a limitation to using such cells to study normal germline develop-
ment or infertility. However, in 2011, healthy offspring were pro-
duced from male-derived PGCLCs building on the observation that 
nearly all of the pregastrula cells in the mouse could express key 
PGC factors Blimp1 (Prdm1) and Prdm14 in response to BMP4149. 
In that study, the authors recapitulated gametogenesis in vitro by 
first reprogramming cells to a pregastrula epiblast state before 
exposure to germ cell-differentiation cues (Figure 3A,B). Later, 
the same group generated female PGCLCs with meiotic potential 
in reconstituted ovaries that produced fertile progeny after in vitro 
fertilization150, indicating that the in vitro produced cells could 
develop as functional female gametes in the correct environment.

Encouraged by the success in establishing in vitro models of mouse 
PGC generation, several groups pursued in vitro models of human 
PGC development. With the mouse methods based on developmen-
tal paradigms in hand, the opportunity to discover the molecular 
programs responsible for producing the human germline seemed 
imminent. However, initial attempts to derive human PGCs quickly 
revealed that the mouse programming strategies were not effective, 
suggesting that despite conserved germ cell factors there must 
be differences in their mechanisms to generate germline cells 
(Figure 3A). Thus, several groups sought and recently reported con-
ditions to efficiently generate hPGCLCs8,122,151 (Figure 3C). Similar 
transcriptional programs associated with successful generation of 
hPGCLCs were discovered in two independent studies; one study 
used transcription activator-like effector nucleases to engineer 
human cell lines that express fluorescent reporters for BLIMP1 
and TFAP2C to select for germ cells122, and the second8 imparted 
pluripotency by using a combination of four inhibitors and selected 
for germline cells by using a reporter for the conserved PGC- 
specific protein Nanos62,63,152–154. Interestingly, these studies indi-
cate that PGC specification is somewhat more direct in human cells 
compared with mouse cells. In human cells, Sox17 induces and is 
necessary to specify hPGCLCs, with Blimp1 acting downstream to 
promote PGC gene expression and repress expression of mesendo-
dermal, neuronal, and epigenetic reprogramming genes as the cells 
differentiate into hPGCLCs8,122. In mice, ES cells first transition to 
an epiblast state, and Blimp1, but not Sox17155,156, represses somatic 
programs in nascent mPGCLCs149 (Figure 3). In both, epigenetic 
reprogramming is associated with PGCLC differentiation. How-
ever, the observed overlap in transcriptional programs between the 

human and mouse PGCLCs was surprisingly limited122, indicating 
distinct PGC specification programs between mouse and human 
despite their reliance on shared signaling molecules. Notably, the 
hPGCLCs generated so far resemble early hPGCs and thus pro-
vide an unprecedented opportunity to study the earliest events in 
hPGC specification. However, late-stage hPGCLCs have not been 
obtained on the basis of the absence of markers that are normally 
expressed after PGCs migrate to the gonad, indicating that further 
differentiation or refinement of the protocols is required to obtain 
and study development of these later stages. Recapitulating devel-
opment from stem cell to mature germ cell remains a challenge 
and an important step to realize the full potential of hPGCLCs 
to provide insight into human diseases, including infertility with 
a genetic basis or environmental/toxicological basis, as well as 
developmental disorders.

Once specified, PGCs in flies, fish, and mammals, but not 
C. elegans, must travel from their extragonadal site of specification 
to the presumptive gonad where the PGCs will differentiate into 
sperm in males or oocytes in females (reviewed in 157,158). Suc-
cessful migration to the gonad anlagen is essential for further PGC 
development and survival. With PGC markers and molecular and 
genetic approaches, key steps in PGC migration and the underlying 
cell behaviors have been defined and have been comprehensively 
reviewed elsewhere (for detailed reviews, see 157,158). The RNA-
binding protein Nanos regulates PGC migration and survival in 
Drosophila63,159, C. elegans160, and zebrafish62,161, and nanos 
orthologs have a conserved role from invertebrates to humans in 
GSC maintenance62–64,152,159,160,162–166. Despite conserved require-
ments for nanos orthologs, the relevant RNA targets of nanos genes 
and downstream mechanisms promoting germ cell survival are not 
fully understood. In non-mammalian animals, GSCs persist into 
adulthood and continue to produce new gametes throughout the 
reproductive life of the animal. In mammals, GSCs maintain sper-
matogenesis throughout the lifetime of adult males, but whether 
or not female mammals have the capacity to generate new oocytes 
after birth has been highly controversial and an area of active study 
(reviewed in 167). Coming back to August Weismann’s words, 
“The importance of such a theory lies primarily in its suggestive-
ness, by which alone it becomes a step towards the ideal at which 
we aim, namely, the formulation of the true and complete theory”1,2. 
Clearly, the existence of GSCs, either naturally occurring in adult 
mammalian females or in vitro produced, has important therapeutic 
implications for the field of reproductive medicine; however, further 
development of tools and studies of the mechanisms to specify and 
maintain stem cell niches and ovarian reserve in diverse systems are 
essential for an improved understanding of germline development 
and reproductive health.
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