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Abstract: Traditional methods of detecting and mapping utility poles are inefficient and costly
because of the demand for visual interpretation with quality data sources or intense field inspection.
The advent of deep learning for object detection provides an opportunity for detecting utility poles
from side-view optical images. In this study, we proposed using a deep learning-based method for
automatically mapping roadside utility poles with crossarms (UPCs) from Google Street View (GSV)
images. The method combines the state-of-the-art DL object detection algorithm (i.e., the RetinaNet
object detection algorithm) and a modified brute-force-based line-of-bearing (LOB, a LOB stands for
the ray towards the location of the target [UPC at here] from the original location of the sensor [GSV
mobile platform]) measurement method to estimate the locations of detected roadside UPCs from
GSV. Experimental results indicate that: (1) both the average precision (AP) and the overall accuracy
(OA) are around 0.78 when the intersection-over-union (IoU) threshold is greater than 0.3, based on
the testing of 500 GSV images with a total number of 937 objects; and (2) around 2.6%, 47%, and
79% of estimated locations of utility poles are within 1 m, 5 m, and 10 m buffer zones, respectively,
around the referenced locations of utility poles. In general, this study indicates that even in a complex
background, most utility poles can be detected with the use of DL, and the LOB measurement method
can estimate the locations of most UPCs.

Keywords: deep learning; utility pole; infrastructure mapping; Google Street View; line-of-bearing
measurement; object detection

1. Introduction

Maintaining the electric grid is a challenging task and accurate maps of utility infrastructure
are important for planning and operations, managing risk, and rapidly assessing damages after a
storm [1]. However, the lack of exact locations of electric facilities is not uncommon [2]. For example,
after hurricane Maria struck Puerto Rico in September of 2017, the lack of accurate maps for buildings,
bridges, and electric facilities was considered as a main factor slowing recovery efforts [3]. Mapping
utility poles is labor- and time-intense because the process is usually conducted using human
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interpretation of high spatial-resolution aerial imagery, ground-based field surveys, or unmanned
aerial vehicles (UAVs)/helicopters [2,4]. The high degree of labor requirement makes mapping utility
poles over large areas a daunting task.

Remote sensing (RS) provides promising solutions for automated detection and mapping of
electric facilities. Utility mapping has been explored using optical sensors, on both satellite and
aerial platforms [5-12]; synthetic aperture radars (SAR) [13,14], and light detection and ranging
(LiDAR) [15-19]. Cetin and Bikdash [4] mapped utility poles using shadow information derived
from aerial images and Sun et al. [20] mapped power poles using stereo images. Wang et al. [19]
developed a semi-automated method to classify power lines from LiDAR data in urban areas with both
precision and recall up to 98%. However, due to the small size of utility distribution poles, the spatial
resolution of most satellite platforms is not sufficient for reliable detection [4,21]. The ultra-high spatial
resolutions provided by UAV platforms have made them an emerging tool for surveying electric
utilities [22-24].

Aerial optical imagery can reliably detect utility poles when the spatial resolution is about 30 cm
or better. However, complex backgrounds, and varying sunlight intensities and other factors can
prevent utility pole detection [21]. In addition, tree cover in forested areas, can prevent detection of
utility poles from aerial images [25]. Mobile mapping systems (MPS) can obtain a better view of utility
poles that are obscured by tree cover in aerial images [21]. Studies conducted by Cabo et al. [26] and
Lehtomaki et al. [27] reported that most vertical pole-like objects are accurately detected from side
views acquired from vehicle-based LiDAR. Cheng et al. [28] developed a voxel-based hierarchical
method to extract power lines from vehicle borne LiDAR data in urban area and reported that the
correctness and completeness of the exacted power line points were 99% and 93%. Guan et al. [29]
mapped power lines and towers using a step-wise method (including off-road point extraction,
power-transmission line extraction, and power-transmission line fitting) from vehicle borne LiDAR
data with average completeness, correctness, and quality of 92%, 99%, and 91%. The disadvantages of
MPS include their high costs of data collection and the massive sizes of their point cloud, which can be
challenging to process efficiently [30].

Google Street View (GSV) is an open image collection of panoramic views with estimated
accurate geolocation information using GPS, wheel encoder and inertial navigation sensor along
streets acquired on mobile platforms (including car, trekker, tricycle, walking, and boat, etc.) [31],
which have been increasingly used to enrich geographic information, such as urban greenery [32,33],
land use classification [34,35], and shade provision of trees [36]. Some studies have been carried out
using side-view imagery for electric utilities detection and survey. For example, Cheng and Song [37]
applied a graph cut segmentation method with a set of prior rules to improve recognition of utility
poles. Murthy et al. [38] detected utility poles using a template design from video surveillance on car.
Barranco-Gutiérrez et al. [39] presented a method to detect utility poles from complex environment
based on color, shape and photometric stereovision using dual cameras. Song and Li [40] developed
a sequential local-to-global algorithm to detect power lines from optical images and tested on 160
pictures taken from the ground with 91.95% and 91.33% true positive rates for detecting straight
lines and curved lines respectively. However, in general, it is difficult to distinguish utility poles
from all vertical pole-like objects along roads even by human interpretation because of their small
cross-sectional area [41]. In Sharma et al. [30], a five-stage detection algorithm (including segmentation,
block-oriented quadrilateral extraction, quadrilateral shape determination, orientation-based spatial
clustering of near-trapeziums, and context-based detection) was developed to detect utility poles
in pure side-view images; 70% of poles from 212 frames ground truth were detected. However,
the previously used methods are complicated because they involved utilizing a variety of models
and algorithms, such as feature segmentation, extractions, filters, detection, and template match,
among others.

Deep learning (DL) has shown its powerful ability in computer vision, natural language
processing, and many other fields [42-47]. However, there are very few published studies on using
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DL to map or inspect power line components. In Nordeng et al. [48], a faster regional convolutional
neural network (R-CNN) was used to detect dead-end body component from high voltage power
lines with both detection accuracies and precisions up to 97%. Recently, Nguyen et al. [2] conducted a
comprehensive review of automatic power line inspection from the prospective of computer vision and
the limitations of current vision-based inspection systems, and they suggested that the DL vision-based
unmanned aerial vehicle inspection might be a promising new solution. The objective of this study
is to use DL on GSV imagery to map utility poles. We focused on the detection of utility poles with
crossarms (UPCs) along roadsides. We used a DL-based object detection algorithm (the RetinaNet
object detector [49]) to detect UPCs from GSV images and estimated the locations of detected utility
poles using a modified brute-force-based line-of-bearing (LOB) measurement method. Therefore,
the primary objective of this study is to explore the use of DL in conjunction with GSV for mapping
roadside UPCs.

2. Data

2.1. Study Area and GIS Data

The town of Mansfield (CT, USA) was selected as the study area (Figure 1). Mansfield is a town in
Tolland County, located in the Eastern Connecticut, with an area of 118.3 square kilometres based on
the 2017 U.S. Census Bureau Topologically Integrated Geographic Encoding and Referencing products.
In 2010, Mansfield’s population was 26,543 according to the 2010 U.S. decennial census.
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Figure 1. (a) Location of the study area in the Northeastern United States; (b) location of the study area
in the state of Connecticut.

The town boundary and road GIS datasets in vector file format were downloaded from the
United State Census Bureau (https://www.census.gov/cgi-bin/geo/shapefiles/index.php). Roads
within Mansfield town were extracted and then projected into the NAD83/UTM zone 18N (EPSG:
26918). The extracted road GIS dataset was further pre-processed in order to eliminate duplicated road
segments through the following two steps: The first step was to merge all adjacent/overlapped road
segments using the “dissolve” tool in ArcGIS software. In the second step, the “Multipart To Singlepart”
tool in ArcGIS software was applied to dissolve road segments to generate viewpoints along roads for
downloading corresponding GSV via Google API (see Section 2.2 Google Street View imagery). In this
study, only major roads in the town were chosen (total length: 91.6 km). A total of 9290 viewpoints were
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created along the selected roads, at an interval of 10 m, using a geospatial tool called “Create Points on
Lines” developed by lan Broad (http://ianbroad.com/arcgis-toolbox-create-points-polylines-arcpy/).
It is worth noting that there are differences between the generated viewpoints and the actual GSV
viewpoints in terms of latitude and longitude values because the GSV vehicle does not follow the
exactly same routes as the roads in the GIS dataset. A pre-processing solution was used to compromise
this mismatching issue (see Section 2.2 Google Street View imagery). Reference UPCs (i.e., the ground
truth data) for the whole town were manually mapped using 7.5 cm aerial imagery and checked using
GSV. These validation data included 1039 poles, which were located within a 20 m buffer zone around
selected roads.

2.2. Google Street View Imagery

GSV images can detect the orientation of detected UPCs in 360° GSV, similar as the bearing-only
sensor, which is commonly used to measure the direction toward features from a robot. Static street
view images were downloaded through the GSV image application programming interface (API) by
providing uniform resource locators (URL) that embed the appropriate parameter information [50].
The GSV API automatically snaps the requested coordinates to the nearest available GSV viewpoint [50].
In order to acquire accurate latitude and longitude values for each viewpoint of GSV, the “streetview”
Python package (https://github.com/robolyst/streetview) was used to convert the requested
coordinates into the nearest available GSV coordinates via a list of panorama IDs (i.e., unique
identification for each GSV panorama view with acquired date [year, month], latitude, and longitude).
The most recent panorama ID was then used as location parameter input. Other required parameters
for the URL include size (output size of GSV image), heading (cardinal direction in the range of 360°),
fov (horizontal field-of-view angle), pitch (the up or down angle), and API key [50]. Four GSV images
were obtained for each view point with a fov of 90° and headings of 0°, 90°, 180°, and 270°, respectively
(Figure 2). We developed a Python script to automatically create the URLs and download the 37,160
GSV images needed to cover the study area. The GSV images were acquired between 2011 and 2016
(Figure 3); this range is due to the varying frequencies with which Google updates street view imagery.
We cropped the downloaded images to eliminate the Google logos.
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Figure 2. Two sets of GSV images, four per set, were obtained for a view point panorama ID
(09RrbsPUqQaXgJjg25ey6w) and a viewpoint point panorama ID (BnGQHO076vHGvgRz37XVCQ)
and an example of URL with the parameters highlighted in red color.
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Figure 3. Distribution of GSV images acquisition dates, between 2011 and 2016.

2.3. Annotation Data

A large amount of ground-truth data is essential for the deep supervised learning algorithms
to be effective [51]. We created 3500 ground-truth data points by manually labelling UPCs in GSV
images that were acquired by taking screen captures in Google Maps (Figure 4). In order to enhance
the transferability of the method, each training/validation/test image was taken at a random utility
pole location in the states of Connecticut, Massachusetts, Maine, New Hampshire, New York, and
Texas. The “Labellmg” software (https://github.com/tzutalin/labellmg) was used to annotate the
ground-truth images and produce outputs in the format of XML files. This format was used in
the Pattern Analysis, Statistical Modelling and Computational Learning project (i.e., PASCAL VOC
[http:/ /host.robots.ox.ac.uk/pascal/VOC/]) and the ImageNet database (a large image database
for visual object recognition research [http:/ /www.image-net.org]). In general, a full dataset for DL
includes a training dataset to “teach” the DL algorithm, a validation dataset for minimizing overfitting
of the training data, and a test dataset for assessing the performance. Overall, 2500 annotated GSV
images were used as training data, 500 images were used as validation data, and the remaining 500
images were used for accuracy assessment.

Figure 4. Bounding boxes (red boxes) of labelled utility poles in four GSV images (a—d).
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3. Methodology

3.1. General Procedure

Our proposed DL-based automatic mapping method for UPCs from GSV included three main
steps (see Figure 5): The first step is to detect UPCs in the GSV images using a trained DL network.
The second step is to calculate the azimuth from each viewpoint to the detected UPCs based on the
known azimuth angles of the GSV images, relative to their view point locations, and the horizontal
positions of the target in the images (Figure 5(2)) using the mean value of two X values of the bounding
box. For example, suppose a detected UPC has a bounding box that is centered on column 358 in a GSV
image that is centered at 0° azimuth relative to the image viewpoint. Each GSV image contains 640
columns and spans a 90° horizontal field-of-view; thus, each pixel spans 0.14°. The center of the UPC
is 38 pixels to the right of the image center (at column 320) and so has an azimuth of 5.3° relative to the
image viewpoint. The final step is to estimate the target locations based on the azimuths calculated
from the second step (Figure 5(3)).

Input GSV image (1) Utility pole detection (2) LOB generation from detected object

— —
Viewpoint
(3) Utility poles position inference from LOBs
No
Yes e o s
e——— LastGSVimage —e—

Target @
Sensor []
Viewpoint A Viewpoint B Viewpoint C  Viewpoint D Lo ——

Figure 5. The workflow of mapping utility poles from GSV with deep learning.

3.2. Deep Learning Algorithm

In this study, the RetinaNet object detector, as described in Focal Loss for Dense Object
Detection [49], was used to detect utility poles because of its excellent performance from the prospective
of accuracy and computational efficiency [49]. Compared to state-of-the-art two-stage detectors, such
as faster R-CNN [52] and Mask R-CNN [53], the RetinaNet object detector is a recently proposed
one-stage detector with simpler structure and faster speed, and it can achieve a better accuracy
than two-stage detectors. The RetinalNet object detector is based on the one-stage RetinaNet network
architecture, which was built on top of the feedforward residual learning network (ResNet) architecture
with a Feature Pyramid Network (FPN) [45,49,54]. In terms of structure, a RetinaNet object detector
consists of five main components: (1) ResNet as feedforward architecture; (2) FPN as backbone for
producing convolutional feature pyramid; (3) region proposal networks (RPN) for generating proposal;
(4) fully convolutional network (FCN) as classification subnetwork; and (5) FCN as box regression
subnetwork. It is worth noting that the ResNet used in the RetinaNet network was pre-trained on
ImageNet (i.e., the transfer learning). For this study, we detected UPCs in GSV images using a Keras
(a high-level neural networks API) implementation of a RetinaNet object detector developed by the
development team of keras-retinanet on Github (https:/ /github.com/fizyr/keras-retinanet).
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3.3. Utility Poles Position Inference

Some efforts have been spent in localizing street-level objects using multiple street-view pictures,
such as manhole covers, traffic signs. For example, Timofte and Gool [55] developed pipeline to detect
and localize manhole covers by using 4 pairs of downward looking stereo cameras and conducting
two-steps localization (rough detection from single-view picture and accurate three dimensional (3D)
localization from multi-view pictures). Soheilian et al. [56] detected and reconstructed 3D traffic
signs and achieved average position accuracy of 3.5 cm by intersecting the corresponding rays from
multi-view images and clustering traffic signs candidates. Hebbalaguppe et al. [57] proposed an
automated updating system for telecom inventory using object detection and triangulation-based
method (stereo-vision distance estimation with the SIFT feature matching algorithm) with GSV. Very
recently, it was noticed that Krylov et al. [58] applied a CNN-based sematic segmentation model
with a proposed geotagging method to estimate geographic objects’ locations from GSV with two
classes—traffic lights and telegraph poles. In this study, we used the RetinaNet object detector and
a modified brute-force-based line-of-bearing (LOB) measurement method to localize the position of
UPCs from multiple-view GSV images. However, the specific methods we used are different from
those used in Krylov et al. [58].

3.3.1. LOB Measurement

The outputs of UPCs detection in GSV images using DL are bounding boxes of detected UPCs,
which result from implementation of odometry from monocular vision of GSV images as shown in
Figure 6. Therefore, estimating locations of UPCs in pure GSV images is a multiple-source localization
problem from passive angle measurements, which has been widely investigated [59,60]. The LOB-based
approach is one of three main multiple-source localization approaches [61]. An LOB measurement
was applied to estimate the location of a target (i.e., UPC) because detected UPCs are not signal
sources such as propagating signal sources whose signal strength can be measured (Figure 6). An LOB
measurement does not require as many strict conditions as other methods (e.g., synchronization and
power transit) do.

In LOB localization, azimuths from viewpoints of multiple images to a given UPC allow the UPC
location to be triangulated (see Figure 6). Ideally, intersection of multiple LOBs is the exact location of
the target because the LOBs pass through the target (see Figure 6). However, numerous ghost nodes
(i.e., false targets) occur when the LOB measurement is used in a dense emitter environment, as shown
in our study for estimating locations of UPCs in GSV images [62] (see Figure 7). As a result, a modified
brute-force-based three-station cross location algorithm was utilized to minimize the ghost node
problem of multiple-source localization using LOB measurement (Figure 4: source localization from
viewpoints A, B, and C), based on two assumptions that targets and sensors are on the xy plane, and
all LOB measurements have the same precision [63]. More specifically, the LOB measurement method
uses the following steps (Figure 7): (1) for a given viewpoint, find the closest neighboring viewpoints;
we tested the performance of the algorithm using 2 to 8 of the closest neighboring viewpoints (i.e.,
the corresponding number of views is 3 to 9); (2) measure the angles between each pair of LOBs
from all viewpoints [64]; (3) check if there are positive associations among LOBs (set as 50 m length)
from current viewpoint and its nearest viewpoints [63]; (4) repeat the process from step (1) to step
(3) for every intersection point. To be more specific, three positive detections from any three views
within an angle threshold (3) produce a positive association among LOBs [63]. Therefore, theoretically,
given that detection rates are constant, the number of estimated UPCs increases as the number of
views increases based on the probability of combination. For example, assuming the number of all
possibilities of UPC estimation is t(t € N) and the detection rate is constant; then the probability of

positive association with 7 views (i.e., @) is greater than the probability of positive association

with 4 views (i.e., C(4t’ 3) )-
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Figure 6. An example of using the bearing measurement to estimate a target location from a sensor
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Figure 7. An example of using the brute-force-based three-station cross location algorithm to eliminate

ghost nodes from four views with an angle threshold of 5°.
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In this study, nearest viewpoints were selected in order to conduct cross validation. A list of the
closest neighboring viewpoints (2, 3, 4, 5, 6, 7, and 8 viewpoints; that is, 3, 4, 5, 6, 7, 8, and 9 views
after including the view from the current viewpoint) and angle thresholds (1°, 2°, and 3°) were used
for testing to decide if there is a positive association and which threshold performs the best. No more
than 9 views were selected for testing mainly because of the length of LOB and the interval of GSV
acquisition (10 m). The extreme scenario of 9 views is that 8 viewpoints are on a line and located on one
side of the current viewpoint. 80 m is almost the maximum distance requirement for the intersection
of two 50-m LOBs. A list of distances (3 m, 4 m, and 5 m) were applied to eliminate ghost nodes that
are located too close to the center line of a road. These thresholds allow more relaxation of position
inference rule in the LOB measurement. In the process of UPCs detection in GSV, almost parallel rays
from camera to long-distance objects can intersect many other rays. Therefore, any object with a width
less than 30 pixels was excluded in order to reduce the computation workload of eliminating ghost
nodes because the used position inference method is an iterative method.

3.3.2. Multiple LOB Intersection Points Aggregation

LOB measurements with a modified brute-force-based three-station cross location algorithm
produce multiple LOB intersection points as potential candidates for each utility pole. In order
to estimate the most likely location of a utility pole, a geospatial aggregation algorithm with an
aggregation distance of 10 m was used to estimate the centroid of clusters of LOB intersection points
(see Figure 8). The geospatial aggregation algorithm consists of three main steps: (1) calculate Euclidean
distance matrix of all LOB intersection points; (2) cluster LOB intersection points based on the Euclidean
distances between LOB intersection points; and (3) calculate the centroid of each cluster of intersection
points (Figure 8).

Multiple LOB

intersection points Fainks aggiEgalion

7 LOB intersection point
Ghost node

O

[ ]
Candidate target e
Sensor a
LOB —_

Figure 8. An example of aggregating multiple LOB intersection points.

4. Experiments and Results

4.1. Experiments

For testing the performance of using deep learning to estimate the locations of UPCs in
GSV images, we conducted experiments on a customized server, which is equipped with an Intel
i5 CPU, 16 GB RAM, a GeForce GTX 970 graphic card, and a GeForce GTX 1080ti graphic card.
To obtain an optimal parameter setting, we trained and validated the RetinaNet object detector
with 50-layer, 101-layer, and 152-layer ResNets (denoted as RetinaNet-50, RetinaNet-101, and
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RetinaNet-152, respectively) using the same labeled samples. For each of the three trained detectors
(or detector-training choices), a step of 2500, a batch size of 1, and an epoch number of 200 were
selected for the learning process. In the training step of DL, the step size was decided based on the
sizes of batch and training dataset. During training, random horizontal flips augmentation along the X
direction (with a chance of 0.5) was used to introduce variation in the training data. In order to avoid
overfitting, a validation dataset was used to evaluate the accuracy of the RetinaNet object detector with
three training choices at the end of each epoch. The strategies for reducing overfitting were suspended
during the validation process. Figure 9 shows that the average precision (AP) reached the peak value
around the 25th epoch and the model tended to be convergent. Thus, the RetinaNet object detectors
were trained for 25 epochs before applying to utility pole detection from GSV images for our study
area (see Figure 9).
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Figure 9. Validating the RetinaNet object detector learning with 50-layer, 101-layer, and 152-layer
ResNets, respectively, for optimizing the RetinaNet object detector.

4.2. Results and Discussions

4.2.1. Accuracy Assessment of Object Detection

Figure 10 shows the accuracy of the RetinaNet object detector for detecting UPCs in GSV with 500
annotated GSV scenes including 937 reference objects. The count of false negative detection is zero
in the confusion matrixes because non-utility pole objects were excluded from the training dataset.
Overall, the RetinaNet-101 has the best overall accuracy (OA) among the three trained detectors. OAs
of the RetinaNet-101 are around 78%, 72%, and 50% when the intersection-over-union (IoU) thresholds
are greater than 0.3, 0.4, and 0.5, respectively. Additionally, compared with the other two trained
detectors (RetinaNet-50 and RetinaNet-152), the RetinaNet-101 also has the highest recall and precision
(Figure 10). The precisions of RetinaNet-101 are 0.95, 0.91, and 0.73 and its recalls are 0.81, 0.77, and
0.62, respectively, when IoUs thresholds are greater than 0.3, 0.4, and 0.5. It is worth mentioning that
the OAs corresponding to different IoUs are presented because high IoUs may cause underestimation
of the performance of the detection for UPCs in GSV in certain scenarios (Figure 11). For example,
Figure 11 shows that the detector RetinaNet-101 was able to detect the target but still had an IoU
less than the three selected IoU thresholds, which means the detected target was not considered as a



Sensors 2018, 18, 2484 11 of 21

positive detection. Based on the accuracy comparison, the RetinaNet-101 after training 25 epochs was
finally chosen for detecting UPCs.
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Figure 10. Confusion matrices for the RetinaNet object detector learning with 50-layer, 101-layer, and
152-layer ResNets after training 25 epochs on IoU with values greater than 0.3, 0.4, and 0.5 for choosing
optimal parameters. (a) RetinaNet-50 with IoU > 0.3; (b) RetinaNet-50 with IoU > 0.4; (c) RetinaNet-50
with IoU > 0.5; (d) RetinaNet-101 with IoU > 0.3; (e) RetinaNet-101 with IoU > 0.4; (f) RetinaNet-101
with IoU > 0.5; (g) RetinaNet-152 with IoU > 0.3; (h) RetinaNet-152 with IoU > 0.4; (i) RetinaNet-152
with IoU > 0.5.

Reference

[ ] Detection

Figure 11. Examples of accuracy assessment of utility poles detection with underestimated performance
at different measured IoUs. (a—d) are four different examples of true positive detections with different
IoU values.
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4.2.2. Accuracy Assessment of Location Estimation

Table 1 shows the accuracy values of UPC location estimation, measured as the percentage of
the number of estimated locations of UPCs located within the buffer zones of reference utility poles.
To evaluate the impacts of the number of views, the threshold of angle, and the threshold of distance
to the center of a selected road, we considered seven views (i.e., 3,4, 5, 6, 7, 8, 9), three thresholds
of angle (i.e., 1°, 2°, and 3°), and three thresholds of distance to the center of the selected road (i.e.,
3 m, 4 m, and 5 m). For the method we tested, around half of the estimated UPC locations were
within the 6 m buffer zone of their reference locations, and up to 79% of the estimated locations
were within the 10 m buffer zone of reference locations. However, around 12% of the estimated
UPC locations were within the 2 m buffer zone of reference locations which suggests that the LOB
approach does not provide consistently accurate UPC locations. In terms of the threshold of angle in
the modified brute-force-based three-station cross-location algorithm, Table 1 shows that using more
views and larger angle thresholds resulted in more estimated UPCs, which is attributed to the increase
of relaxation of the modified brute-force-based three-station cross location algorithm. In the meantime,
more estimated UPCs could also result in lower accuracy in UPC estimation because relaxation allows
more ghost nodes to be estimated UPCs (see Table 1). From Table 1, one can see that the average
percentage of the number of estimated locations of UPCs being within all buffer zones of reference
utility poles for the results of 8 views is the highest (47.80%) compared to the results of other numbers
of views. In contrast, using larger thresholds of distance to center of selected road resulted in less
estimated UPCs. In general, the accuracy of the location estimation for UPCs is reasonable and the
estimated data are valuable because the optical GSV imagery was the only data source used to conduct
the localization.

Figure 12 shows a visual comparison of the distributions of estimated locations of UPCs with
different numbers of views (i.e., 3,4, 5, 6, 7, 8 and 9 views), an angle threshold of 2°, and a distance
threshold of 4 m. Overall, the distributions of estimated UPC locations (Figure 12b-h) are almost the
same as the distributions of the reference UPCs except for some missing UPCs (see Figure 13b—e).
In particular, Figure 13b—e show that most estimated locations of UPCs are geographically close to
the reference locations of UPCs. Our method failed to estimate UPC locations when a given UPC was
not detected in at least three GSV images out of a certain number of views—three is the minimum
number of images required to triangulate a position and eliminate ghost nodes (see Figure 7). This
explains why the number of estimated UPCs increases as the number of views increases (see Table 1
and Figure 12b-h). Location mismatches that occurred (see Figure 13b—e) may have been caused by
GSV image distortion, terrain relief, the position accuracy of GSV, UPC lean, or by limitations in the
method we used. For example, ground locations of UPCs are different from the orthographic projected
locations estimated from GSV images (see Figure 14) due to leaning UPCs. Our proposed method has
great potential for the areas where GSV imagery is available and where a UPC distribution map with a
<10 m accuracy is acceptable.
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Table 1. Accuracy assessment of location estimation of utility poles with crossarms (UPCs) based on 1039 reference UPCs.

Percentage of the Number of Estimated Locations of UPCs Being within a Certain

Number Threshold Threshold of Distance to Buffer Zone of Reference Utility Poles (%) Number of
of Views  of Angle (°) Center of Selected Road (m) Estimated UPCs
<Im <2m <3m <4m <5m <6m <7m <8m <9m <10 m
1 3 1.75 8.04 2238 35.66 46.85 54.9 6259 68.18 74.83 80.07 286
1 4 1.83 8.42 2344  36.63 47.62 5568 6447 70.7 76.92 82.42 273
1 5 1.92 7.69 23.08 3731 4923 57.69 6731 7269 79.23 85 260
2 3 1.71 8.05 19.51 3098 4488 5341 5878 6463 7293 77.8 410
3 2 4 1.75 8.27 19.8 31.08 4536 53.88 60.15 6692 7494 79.95 399
2 5 1.85 8.71 2032 3272 4776 56.73 6359 69.66 77.31 82.32 379
3 3 2.37 8.84 20.47 31.9 4332 50.86 5754 6401 71.12 75.86 464
3 4 2.68 8.95 2036 31.77 4318 5123 5817 6555 7293 77.18 447
3 5 2.56 9.3 20 3279 4488 53.02 6023 6698 74.65 79.53 430
1 3 2 7.56 1956  30.89 40.67 51.33 58 63.11 71.11 76 450
1 4 1.87 7.26 2037 3091 42,62 5386 60.89 6745 74.71 79.16 427
1 5 2.02 7.83 2096 3232 4444 5581 6338 7045 77.78 83.33 396
2 3 1.31 7.86 17.84 2913 3944 4812 5499 6252 67.76 72.83 611
4 2 4 1.2 7.72 18.01 29.5 41.68 51.29 5832 65.87 71.7 76.33 583
2 5 1.09 8.56 1858 30.78 4353 5337 6047 6812 7432 79.05 549
3 3 1.35 7.77 16.89 29 3842 4679 5531 6278 68.76 74.14 669
3 4 1.39 8.19 18.08 30.45 4096 49.15 57.5 65.84 71.56 76.82 647
3 5 1.47 9.61 19.06 3094 4251 5098 59.45 68.4 74.43 78.99 614
1 3 2.2 10.8 2234 3535 45.6 51.83 5751 6429 71.98 77.47 546
1 4 2.46 11 2235 3636 48.48 55.3 6193 6894 75.19 79.17 528
1 5 2.63 11.3 22.63 3737  49.7 56.97 6384 7192 77.78 83.23 495
2 3 2.31 11 19.62 30.3 42.14 48.77 57.58 64.36 71.28 75.47 693
5 2 4 2.53 10.3 19.2 3244 4583 5327 6l1.61 68.3 73.66 77.98 672
2 5 2.52 10.2 19.69 32.6 47.72 5528 63.15 70.08 77.17 81.57 635
3 3 2.37 10.4 19.05 29.17 3955 47.83 5637 6334 69.51 74.24 761
3 4 2.84 10.4 19.08 30.72 42,63 5142 6035 6698 72.26 76.73 739
3 5 3.01 11.1 20.23 32.28 43.9 53.52 6241 70.01 76.33 80.63 697
1 3 2.5 12.2 2321 36.06 4641 5292 6027 67.78 73.12 78.46 599
1 4 2.87 12.2 2399 37.67 4814 5456 63.18 70.78 74.32 78.55 592
1 5 25 12.9 25.04 38.64 4991 57.07 6547 73.7 78 82.47 559
2 3 2.43 10.8 21.62 3392 4473 52.3 59.86 65.14  71.76 78.24 740
6 2 4 2.46 10.3 21.61 3475 47.74 56.5 6471 7086 74.69 79.07 731
2 5 2.47 11.2 2311 36.63 5044 59.88 67.3 73.4 78.05 82.27 688
3 3 2.22 9.75 20.49 3247 4123 50.49 57.9 63.21 70.62 75.43 810
3 4 2.63 10.1 21.13  33.88 445 55.38 62.88 68.63 7325 76.63 800
3 5 2.76 10.8 2297 3478 4619 57.09 6444 7047 76.12 79.4 762

13 of 21
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Table 1. Cont.

Percentage of the Number of Estimated Locations of UPCs Being within a Certain

Number Threshold Threshold of Distance to Buffer Zone of Reference Utility Poles (%) Number of
of Views  of Angle (°) Center of Selected Road (m) Estimated UPCs
<Im <2m <3m <4dm <5m <6m <7m <8m <9m <10 m
1 3 2.7 124 24.01 3831 49.92 56.6 63.28 68.68 74.72 79.81 629
1 4 291 12.4 2536 41.03 52,67 5816 6559 7254 77.71 82.23 619
1 5 2.74 13.2 27.05 4315 55.65 6096 69.01 75.34 80.65 84.93 584
2 3 2.2 9.95 21.71 3424 4444 5207 5956  65.37 70.8 76.36 774
7 2 4 2.61 9.52 2321 36.64 47.72 5619 64.15 70.01 73.14 77.84 767
2 5 2.37 10.6 2329 3835 51.05 59.14 67.78 73.08 77.82 82.01 717
3 3 2.75 10.2 22.04 3353 4395 5222 5928 66.35 72.1 75.57 835
3 4 3.15 10.2 2312 3523 4625 5533 6247 68.77 72.88 76.15 826
3 5 3.31 11.5 2392  36.01 48.6 56.87 65.14 70.99 75.95 79.64 786
1 3 3.08 12.2 25.08 40.92 52.92 58.77 64.77 70.46 70.46 76.77 650
1 4 3.87 12.9 26.63 43.03 5542 6084 6641 73.68 78.17 82.51 646
1 5 4.08 13.7 28.22  45.02 58.4 63.62 7047 7716 8254 86.79 613
2 3 3.44 11.3 23.66  36.01 47.2 5433 6158 6552 70.74 75.7 786
8 2 4 3.68 11.3 2551 3744 50 57.61 6447 69.16 7221 76.78 788
2 5 3.49 12.1 26.71 3919 5262 5946 67.65 7289 77.18 80.54 745
3 3 3.05 11.2 23.12 34.62 4542 5293  60.09 66.2 71.24 75.7 852
3 4 3.51 11.2 24.09  35.79 47.6 56.02 6199 69.36 72.4 76.02 855
3 5 3.78 13.3 25,61 38.66 49.88 5744 6573 71.71 76.1 79.63 820
1 3 2.67 11.7 2467 4146 5215 5899 6553 7192 76.37 82.91 673
1 4 2.85 12 2639 4273 5472 61.62 6687 73.01 77.21 82.01 667
1 5 3.14 13.8 28.57 4584 58.87 64.52 70.8 76.77  81.16 85.71 637
2 3 3.18 113 22.03 36.72 47.37 54.59 61.57 65.97 70.26 75.64 817
9 2 4 3.04 12.2 23.45 37.3 4897 5723  62.33 67.8 71.08 75.7 823
2 5 3.47 12.5 25.06 40.36 51.8 59.13  66.07 7147 7545 78.92 778
3 3 2.95 11.4 22.05 3636 47.16 5477 6091 65.8 70.11 75.34 880
3 4 2.83 12.2 2342 36.88 49.21 5656 6244 6799 71.15 75.23 884
3 5 34 12.9 2474 3998 51.11 5815 6495 71.04 75.38 78.55 853

14 of 21
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Figure 12. The distributions of reference utility poles with crossarms (UPCs) and estimated UPCs

using different numbers of views, an angle threshold of 2°, and a distance threshold of 4 m in the study
area. (a) Reference utility poles; (b) estimated UPCs using 3 views; (c) estimated UPCs using 4 views;
(d) estimated UPCs using 5 views; (e) estimated UPCs using 6 views; (f) estimated UPCs using 7 views;

(g) estimated UPCs using 8 views; (h) estimated UPCs using 9 views.
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Figure 13. Enlarged examples of distribution patterns of reference and estimated utility poles with
crossarms in the study area. (a) the locations of enlarged examples; (b) enlarged area A; (c) enlarged

area B; (d) enlarged area C; (e) enlarged area D.
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Figure 14. Examples of errors in estimating locations of utility poles from GSV, caused by the difference
between ground locations (black solid lines) and their corresponding orthographic projected location
(green dash lines). (a—d) are four different examples of leaning UPCs with different leaning angles.

4.2.3. Parameter Sensitivity Analysis of Location Estimation

To quantify the degree to which the location inference method affects the location estimation,
we conduct Sobol’s sensitivity analysis with a sampling size of 500 on the three main parameters
for estimating locations of UPCs (i.e., number of views, angle threshold, and buffer distance).
Parameter sensitivity for the location estimation method (as a function) is analyzed through conducting
experiments using a variety of combinations of parameters (Table 1). During the sampling process
in Sobol’s sensitivity analysis, we simplified the testing method (i.e., location inference method) by
grouping results into categories because of the time intensive execution of the testing method with
hundreds of sampling scenarios. Two sets of sensitivity analysis were conducted from the aspect of
parameters versus the number of estimated UPCs (Table 2) and parameters versus the percentage of
the number of estimated locations of UPCs being within a 5 m buffer zone of reference UPCs (Table 3).

Table 2 exhibits that, after measuring sensitivity across the three parameters, the number of views
contributes the most to the number of estimated UPCs, followed by angle threshold. More UPCs can
be estimated as the number of views increases (Table 1). The threshold of distance shows very limited
impact on the number of estimated UPCs. For example, in the case of the number of views being 8,
the corresponding average numbers of estimated UPCs for angle thresholds 1°, 2°, and 3° are 636, 773,
and 842, respectively; in contrast, the corresponding average numbers of estimated UPCs for distance
thresholds 3 m, 4 m, and 5 m are 763, 763, and 726, respectively. However, Sobol’s sensitivity analysis
on the percentage of the number of estimated UPC locations being within a 5 m buffer zone of reference
UPCs shows that the effect of distance threshold is much stronger, increasing from 0.0157 to 0.1826
in terms of total order sensitivity (Table 3). This indicates that increasing the threshold of distance
can reduce the error of location estimation by eliminating ghost nodes generated from almost parallel
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LOBs. Increasing the other two parameters has a similar effect because increasing the number of views
and threshold of angle allows more LOB intersections to suffice conditions of being candidates.

Table 2. Sobol’s sensitivity analysis on the number of estimated UPCs based on tested results

Sobol (N = 500)

Parameter S1 S1_conf ST ST_conf
Number of views 0.6786 0.0979 0.6851 0.0730
Threshold of angle 0.2921 0.060 0.2962 0.0299

Threshold of distance 0.0150 0.0160 0.0157 0.0021

S1: First order sensitivity; ST: Total order sensitivity; conf: corresponding confidence intervals with a confidence
level of 95%.

Table 3. Sobol’s sensitivity analysis on the percentage of the number of estimated locations of UPCs
being within a 5 m buffer zone of reference UPCs based on tested results.

Sobol (N = 500)

Parameter S1 S1_conf ST ST_conf
Number of views 0.5084 0.08334 0.6066 0.0779
Threshold of angle 0.2185 0.05645 0.2841 0.03889

Threshold of distance 0.15367 0.0500 0.1826 0.0274

S1: First order sensitivity; ST: Total order sensitivity; conf: corresponding confidence intervals with a confidence
level of 95%.

4.2.4. Limitations and Future Studies

This study is mainly an exploratory study, with only one method being used for each task of
detection and location inference. Even though this study presents a great potential of using DL to
map UPCs from GSV images, there are some limitations worth a mention. First, GSV is increasing the
coverage and accelerating the update frequency, but it is still challenging to map up-to-date geographic
information from GSV images. For example, the UPC locations may have changed since the time
that the available GSV images were acquired, especially if the images are more than a few years
old. Second, a large amount of training dataset is needed to achieve an acceptable accuracy with
the Retina-101. Therefore, a comprehensive study about the minimum requirement of the training
dataset for using DL to map UPCs or other geographic objects is needed. Third, we only validated
the DL model on detecting utility poles with crossarms; however, a large percentage of utility poles
do not have crossarms or other distinctive features. Fourth, accuracy of the LOB method is reduced
when UPCs have a significant lean mainly because of terrain and optical distortion of GSV without
compensation; better positions could have been obtained by detecting the base of the UPCs, but this
would likely have resulted in false positives due to trees (Figure 14). Fifth, this method considers
UPCs that are geographically very close to each other as one UPC because of the fundamental flaw of
LOB measurement.

5. Conclusions

Mapping UPCs is a labor-intensive and time-consuming task. This study suggested a DL-based
automatic mapping method to map UPCs from GSV, which uses a DL algorithm (the RetinaNet
object detector) and the LOB measurement to estimate the locations of UPCs in GSV automatically.
A case study was conducted to demonstrate the performance of the suggested method. The results
show that (1) with properly-set parameters, the RetinaNet object detector is able to detect most UPCs
from GSV (e.g., an OA of 0.78 can be achieved by RetinaNet-101 when IoU threshold is greater than
0.3); and (2) by combining LOB measurement and multiple points aggregation, the UPC position
inference method can estimate the positions of UPCs at a reasonable accuracy (i.e., <10 m). In general,
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the suggested integrative method shows to be promising in our case study. With the wide availability
of GSV images, the method might be a valuable way for automatically mapping UPCs and could be
useful for mapping other geographic objects located along roads.
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